# Классические методы статистики: критерий хи-квадрат
q=qchisq(p = 0.95, df = 1)
q
## [1] 3.841459
########### Задача о вкусовых предпочтениях соков ###############
observed_juice <- c(32, 28, 16, 14, 10)
res <- chisq.test(observed_juice, p = c(1/5, 1/5, 1/5, 1/5, 1/5))
res
##
## Chi-squared test for given probabilities
##
## data: observed_juice
## X-squared = 18, df = 4, p-value = 0.001234
q=qchisq(p = 0.95, df = 4)
q
## [1] 9.487729
############## Мыши #####################
mice = matrix( c(13, 44, 25, 29), 2,2)
mice
## [,1] [,2]
## [1,] 13 25
## [2,] 44 29
chisq.test(mice)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: mice
## X-squared = 5.7923, df = 1, p-value = 0.0161
chisq.test(mice, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: mice
## X-squared = 6.7955, df = 1, p-value = 0.009139
############### Три популяции наземных моллюсков ################
light <- c(12, 40, 45)
dark <- c(87, 34, 75)
very.dark <- c(3, 8, 2)
color.data <- matrix(c(light, dark, very.dark), nrow = 3,dimnames = list(c("Pop1", "Pop2", "Pop3"), c("Light", "Dark", "Very dark")))
color.data
## Light Dark Very dark
## Pop1 12 87 3
## Pop2 40 34 8
## Pop3 45 75 2
chisq.test(color.data)
## Warning in chisq.test(color.data): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: color.data
## X-squared = 43.434, df = 4, p-value = 8.411e-09