title: “WJS2 WORLD COMPARISION 2022 March
output: html_notebook

MFA ROLES AND INFLUENCES, WORLD

rolesinfluences<-mfadata[,c(225:242,246:270,201,1)]
rolesinfluences<-droplevels(rolesinfluences)
rolesinfluences<-rolesinfluences %>% filter(complete.cases(.)) 
roles<-rolesinfluences[,1:18]
influences<-rolesinfluences[,19:43]
nrow(rolesinfluences)
## [1] 1158
rolesinfluences<-rolesinfluences %>% filter(complete.cases(.)) 
nrow(rolesinfluences)
## [1] 1158
res<-MFA(rolesinfluences, group=c(18, 25,1,1), type=c("n", "n","s","n"), ncp=5, 
  name.group=c("ROLES", "INFLUENCES", "WEIGHT", "COUNTRY"), num.group.sup=c(3,4), graph=FALSE, row.w = rolesinfluences$nworldweight)

eig.val <- get_eigenvalue(res)
head(eig.val)
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  1.4265966        16.666926                    16.66693
## Dim.2  0.6635307         7.752028                    24.41895
## Dim.3  0.4878224         5.699228                    30.11818
## Dim.4  0.4156238         4.855732                    34.97391
## Dim.5  0.3658409         4.274119                    39.24803
## Dim.6  0.2869441         3.352367                    42.60040
fviz_screeplot(res)

# Contribution to dimensions
stargazer(res$group$contrib, type="text", digits=2)
## 
## ========================================
##            Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## ----------------------------------------
## ROLES      49.61 68.23 59.95 50.91 74.13
## INFLUENCES 50.39 31.77 40.05 49.09 25.87
## ----------------------------------------
stargazer(res$quali.var$contrib, type="text", digits=2)
## 
## =====================================================
##                       Dim.1 Dim.2  Dim.3  Dim.4 Dim.5
## -----------------------------------------------------
## notDetachedObserver   0.01   1.03   2.58  0.23  18.02
## DetachedObserver      0.004  0.38   0.96  0.08  6.72 
## notReportReality      0.07   3.95   6.17  0.04  7.99 
## ReportReality         0.01   0.41   0.64  0.004 0.83 
## notAnalysCurrAffairs  0.65   3.64   0.72  0.22  5.01 
## AnalysCurrAffairs     0.21   1.16   0.23  0.07  1.59 
## notMonPolLeaders      1.20   7.88   1.53  2.27  1.45 
## MonPolLeaders         0.68   4.46   0.87  1.28  0.82 
## notMonBusiness        0.83   4.32   1.16  3.12  0.03 
## MonBusiness           0.71   3.70   0.99  2.67  0.03 
## notSetPolAgenda       1.43   1.81   0.35  0.08  2.10 
## SetPolAgenda          2.24   2.83   0.54  0.12  3.30 
## notInflPublOpinion    2.02   0.95   1.13  1.41  1.07 
## InflPublOpinion       1.96   0.92   1.10  1.37  1.03 
## notAdvSocialChange    2.40   2.32   0.51  2.49  0.79 
## AdvSocialChange       1.61   1.55   0.34  1.67  0.53 
## notAdvGoverment       0.57   0.53   0.27  0.76  0.33 
## AdvGoverment          1.84   1.70   0.88  2.43  1.07 
## notSupNatDevelop      2.72   0.99   0.60  2.38  0.32 
## SupNatDevelop         2.66   0.97   0.59  2.32  0.32 
## notPosImagePolit      0.61  0.0002  1.82  0.30  0.26 
## PosImagePolit         3.38  0.001  10.18  1.66  1.44 
## notSupGovPolicy       0.76    0     1.63  0.29  0.18 
## SupGovPolicy          3.92    0     8.34  1.48  0.91 
## notEntertainment      0.81   0.65   2.69  3.36  3.23 
## Entertainment         1.22   0.98   4.06  5.06  4.87 
## notLargeAudience      1.98   0.37   1.79  3.21  2.82 
## LargeAudience         1.58   0.29   1.43  2.57  2.25 
## notAdvDailyLife       1.50   0.03   1.98  1.75  1.20 
## AdvDailyLife          1.52   0.03   2.02  1.77  1.22 
## notInfoMakePolDec     2.00   5.60   0.35  0.05  0.70 
## InfoMakePolDec        1.02   2.87   0.18  0.03  0.36 
## notMotivPolPart       1.48   2.84   0.19  0.13  0.42 
## MotivPolPart          1.72   3.29   0.22  0.15  0.49 
## notLetPeopleExpr      1.67   4.15   0.66  2.96  0.32 
## LetPeopleExpr         0.64   1.60   0.25  1.14  0.12 
## PersonalValues0       0.16   0.03   0.34  0.62  0.72 
## PersonalValues        0.12   0.02   0.26  0.48  0.56 
## PeersOnStaff0         0.27   0.48   0.14  0.04  0.19 
## PeersOnStaff          0.69   1.22   0.37  0.09  0.48 
## EditSupervis0         0.81   1.16   1.59  0.50  2.44 
## EditSupervis          0.68   0.96   1.32  0.42  2.03 
## Managers0             1.08   0.79   0.45  0.16  2.45 
## Managers              1.48   1.08   0.61  0.21  3.34 
## Owners0               1.05   0.69   0.16  0.09  1.76 
## Owners                1.87   1.22   0.28  0.16  3.13 
## EdPolicy0             0.84   0.37   1.79  0.77  1.19 
## EdPolicy              0.59   0.26   1.26  0.54  0.84 
## AdvertCons0           0.62   0.55   0.02  0.01  0.004
## AdvertCons            1.93   1.71   0.06  0.02  0.01 
## ProfitExp0            0.50   0.71   0.03  0.02  0.08 
## ProfitExp             1.46   2.08   0.10  0.05  0.24 
## AudienceRes0          0.60   0.51   0.50  0.45  0.58 
## AudienceRes           1.03   0.88   0.85  0.76  1.00 
## AvailResour0          0.53   0.34   3.75  1.15  0.54 
## AvailResour           0.35   0.22   2.48  0.76  0.36 
## TimeLimits0           0.33   0.20   3.41  0.28  1.03 
## TimeLimits            0.18   0.11   1.85  0.15  0.56 
## JournEthics0          0.29   0.42   3.22  1.04  0.58 
## JournEthics           0.08   0.12   0.94  0.30  0.17 
## FriendsPeerFamily0    0.38   0.22  0.0001 0.37  0.002
## FriendsPeerFamily     1.66   0.94  0.001  1.62  0.01 
## ColleaguesOtherMedia0 0.37   0.33  0.0005 0.10  0.01 
## ColleaguesOtherMedia  1.71   1.49  0.002  0.46  0.05 
## AudienceFeedb0        1.06   0.83   0.47  0.94  0.002
## AudienceFeedb         1.28   1.01   0.57  1.14  0.002
## CompetingNewsorg0     0.95   0.56   0.50  0.04  0.03 
## CompetingNewsorg      1.68   1.00   0.89  0.07  0.06 
## MediaLawsRegul0       1.01   0.05   1.77  0.51  0.14 
## MediaLawsRegul        0.84   0.04   1.47  0.42  0.11 
## InformAccess0         0.81   0.13   3.71  0.50  0.04 
## InformAccess          0.37   0.06   1.71  0.23  0.02 
## Censorshp0            1.33   0.28   0.02  0.08  0.08 
## Censorshp             2.79   0.58   0.05  0.16  0.17 
## GovOfficials0         0.72   0.19   0.01  1.55  0.02 
## GovOfficials          2.90   0.77   0.05  6.26  0.08 
## Politician0           0.61   0.12  0.003  1.61  0.01 
## Politician            2.90   0.55   0.02  7.63  0.03 
## PressureGroups0       0.44   0.14   0.01  1.19  0.01 
## PressureGroups        2.61   0.81   0.07  7.09  0.04 
## BusinessPeople0       0.39   0.32   0.02  0.94  0.05 
## BusinessPeople        2.22   1.83   0.12  5.30  0.29 
## PublRelat0            0.47   0.53  0.0004 0.34  0.02 
## PublRelat             1.82   2.05  0.001  1.30  0.07 
## RelationshSources0    0.70   0.36   1.27  0.09  0.12 
## RelationshSources     0.83   0.43   1.51  0.10  0.15 
## -----------------------------------------------------
#stargazer(res$partial.axes$cor.between, type="text", digits=2)
res$group$RV
##                 ROLES INFLUENCES     WEIGHT    COUNTRY        MFA
## ROLES      1.00000000 0.13712512 0.03092037 0.09049198 0.78007073
## INFLUENCES 0.13712512 1.00000000 0.05217540 0.07699509 0.72674819
## WEIGHT     0.03092037 0.05217540 1.00000000 0.12500000 0.05439889
## COUNTRY    0.09049198 0.07699509 0.12500000 1.00000000 0.11138665
## MFA        0.78007073 0.72674819 0.05439889 0.11138665 1.00000000
res$group$correlation
##                Dim.1     Dim.2    Dim.3     Dim.4     Dim.5
## ROLES      0.8460466 0.7628701 0.718328 0.7427509 0.8960130
## INFLUENCES 0.8497983 0.4815977 0.567806 0.7305044 0.5758713
fviz_contrib(res, choice = "quali.var", axes = 1, top = 30, palette = "jco")

fviz_contrib(res, choice = "quali.var", axes = 2, top = 30, palette = "jco")

fviz_contrib(res, choice = "quali.var", axes = 3, top = 30, palette = "jco")

MFA First dimension: Domination by elites (political, economic) MFA Second dimension: Political / interventionist role MFA Third dimension: Variant of second, emphasise goverment support (seems unstable)

# individuals, axes and groups
print(plot.MFA(res, axes=c(1, 2), choix="ind", new.plot=TRUE, lab.ind=FALSE,
   lab.par=FALSE, lab.var=FALSE, habillage="group", title=""))

print(plot.MFA(res, axes=c(1, 2), choix="axes", new.plot=TRUE, 
  habillage="group", title=""))

print(plot.MFA(res, axes=c(1, 2), choix="group", new.plot=TRUE, 
  lab.grpe=TRUE, title=""))

# active variables
fviz_mfa_var(res, "quali.var", palette = "jco", 
             col.var.sup = "violet", repel = TRUE, labelsize=3,
             geom = c("point", "text"), legend = "bottom") + ylab("2: NONPOLITICAL/NONMONITORAL ROLE --->") + 
    xlab("1: SUBJUGATION BY ELITES --->") 

fviz_mfa_var(res, "quali.var", palette = "jco", 
             col.var.sup = "violet", repel = TRUE, labelsize=3, axes = c(1,3), select.var=list(contrib=50), 
             geom = c("point", "text"), legend = "bottom") 

fviz_mfa_var(res, "quali.var", axes=c(1,2), col.var = "contrib", 
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), 
             col.var.sup = "violet", repel = TRUE,
             geom = c("point", "text"), select.var=list(contrib=30))

fviz_mfa_var(res, "quali.var", axes=c(1,3), col.var = "contrib", 
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), 
             col.var.sup = "violet", repel = TRUE,
             geom = c("point", "text"), select.var=list(contrib=30))

# COUNTRIES / SUPPLEMENTARY
fviz_mfa_ind(res, geom="pint", repel=TRUE) # pint is a typo, but it works

plot(res)

PCA ROLES AND INFLUENCES, WORLD (equal country weight)

# https://f0nzie.github.io/machine_learning_compilation/detailed-study-of-principal-component-analysis.html
roleinflnum<-wjs2000[,c(38:55,75:86, 88:100,201,1)]
roleinflnum<-roleinflnum %>% filter(complete.cases(.)) 

x<-c(1:43) # convert factors to numeric
roleinflnum[x] = lapply(roleinflnum[x], FUN = function(y){as.numeric(y)})

res.pca<-PCA(roleinflnum, quanti.sup=44, quali.sup=45, scale.unit=TRUE, ncp=3, graph = FALSE, row.w = roleinflnum$nworldweight)

fviz_pca_ind(res.pca, geom="point") # individuals

fviz_pca_var(res.pca, geom = c("point", "text"), col.var = "contrib", repel=TRUE) # active variables

fviz_pca_var(res.pca, geom = c("point", "text"), col.var = "contrib", repel=TRUE, axes=c(1,3)) # active variables

fviz_pca_var(res.pca, geom = c("point", "text"), col.var = "contrib", repel=TRUE, select.var=list(contrib=20), axes=c(1,2))

fviz_pca_var(res.pca, geom = c("point", "text"), col.var = "contrib", repel=TRUE, select.var=list(contrib=20), axes=c(1,3))

fviz_pca_var(res.pca, geom = c("point", "text"), col.var = "contrib", repel=TRUE, select.var=list(contrib=20), axes=c(3,2))

p<-fviz_pca_ind(res.pca, invisible = "ind") # countries
p<-fviz_add(p, res.pca$quali.sup$coord, labelsize = 2, pointsize = 1, repel = TRUE)
p

stargazer(res.pca$var$contrib, type="text", digits=2)
## 
## =================================================
##                               Dim.1  Dim.2  Dim.3
## -------------------------------------------------
## Detached.observer             0.0001  1.51  2.03 
## Report.reality                0.002   4.80  5.41 
## Analyse.current.affairs        0.37   5.80  1.02 
## Monitor.political.leaders      0.95  11.55  0.03 
## Monitor.business               1.04   7.98  0.03 
## Set.political.agenda           1.92   5.62  2.66 
## Influence.public.opinion       2.07   2.90  0.80 
## Advocate.for.social.change     1.80   6.18  0.27 
## Adversary.government           1.37   2.86  1.67 
## Sup.national.development       2.97   4.23  0.07 
## Pos.image.politicians          3.33   0.19  6.85 
## Sup.gov.policy                 4.08   0.08  5.43 
## Entertain                      1.52   0.40  0.26 
## Large.audience                 2.20   0.09  0.02 
## Advice.for.daily.life          2.18   0.08  1.09 
## Info.people.pol.decisions      1.15   9.52  0.10 
## Motivate.pol.particip.         1.88   4.95  2.34 
## Let.people.express.themselves  0.97   6.47  0.81 
## Personal.values                0.42  0.0004 2.68 
## Peers.on.staff                 1.37   1.38  1.47 
## Editorial.supervisors          2.13   1.31  4.09 
## Managers.of.news.org           3.49   1.02  0.91 
## Owners                         3.81   0.57  0.12 
## Editorial.policy               1.90   0.05  6.45 
## Advertising.considerations     3.62   1.86  0.06 
## Profit.expectations            3.00   2.66  0.11 
## Audience.research              2.45   0.26  3.10 
## Availability.of.resources      1.24   0.01  8.98 
## Time.limits                    0.58  0.0003 9.37 
## Journalism.ethics              0.14   3.43  7.68 
## Friends.peers.family           2.34   1.58  0.30 
## Colleagues.other.media         2.82   1.95  0.01 
## Audience.feedback              3.00   0.75  1.81 
## Competing.newsorg              3.30   0.97  1.27 
## Media.laws.and.regul           2.05   0.14  4.06 
## Information.acceess            1.39   0.21  6.65 
## Censorship                     5.04   0.23  0.08 
## Government.officials           5.58   0.35  2.06 
## Politicians                    5.21   0.26  2.10 
## Pressure.groups                4.76   0.88  2.22 
## Business.people                4.67   1.71  1.47 
## Public.relations               3.87   2.83  0.31 
## Relationships.sources          2.04   0.40  1.75 
## -------------------------------------------------
stargazer(res.pca$quali.sup$v.test, type="text", digits=2)
## 
## =======================================
##                      Dim.1 Dim.2 Dim.3 
## ---------------------------------------
## Albania              -0.51 0.26   0.62 
## Argentina            -0.20 1.00  -1.97 
## Australia            -0.88 -2.40  3.38 
## Austria              -4.07 0.56  -0.54 
## Bangladesh           2.03  -1.11 -2.59 
## Belgium              -4.05 -1.33 -0.16 
## Bhutan               7.73  -0.72 -1.67 
## Botswana             4.14  2.80   3.30 
## Brazil               -0.59 -0.76  0.03 
## Bulgaria             -0.18 -0.09  1.91 
## Canada               -2.13 1.14   2.88 
## Chile                1.45  -0.91  0.87 
## China                1.95  -2.00 -3.19 
## Colombia             2.69  1.65  -1.54 
## Croatia              1.42  2.27   1.12 
## Cyprus               -0.07 1.42   3.96 
## Czech Republic       -2.84 -0.91  4.23 
## Denmark              -2.98 0.45  -0.18 
## Ecuador              3.09  -0.26 -1.56 
## Egypt                3.85  1.55   0.39 
## El Salvador          3.35  0.001 -0.63 
## Estonia              -1.26 -0.10  0.29 
## Ethiopia             1.54  -2.60 -4.15 
## Finland              -3.40 1.29   3.25 
## France               -6.04 1.54  -0.17 
## Germany              -3.26 -1.34  0.41 
## Greece               -2.45 2.19   0.90 
## Hong Kong            -1.08 -1.66 -1.74 
## Hungary              -0.54 -3.98  0.02 
## Iceland              -3.62 -3.12  1.23 
## India                2.05  0.22  -0.19 
## Indonesia            0.07  0.69  -2.80 
## Ireland              -1.97 0.01   2.14 
## Israel               -2.26 0.89   1.06 
## Italy                -4.88 -1.77  1.68 
## Kenya                3.31  0.68  -1.12 
## Kosovo               -0.85 3.69  -2.95 
## Latvia               -0.17 0.77   2.13 
## Malawi               4.08  3.15  -1.11 
## Malaysia             4.32  -2.64 -4.11 
## Mexico               1.61  2.79  -2.65 
## Moldova              -0.74 0.55   2.23 
## Netherlands          -2.58 -1.67 -1.51 
## New Zealand          -1.44 -1.02  1.59 
## Norway               -1.74 0.14  0.0001
## Oman                 3.06  -0.12 -2.83 
## Philippines          1.94  2.00   1.74 
## Qatar                0.42  1.59  -1.25 
## Romania              -0.90 -0.10  1.92 
## Russia               -0.23 -1.91 -3.33 
## Serbia               1.84  2.25   0.61 
## Sierra Leone         3.39  0.01   0.29 
## Singapore            -2.83 -4.60 -11.44
## South Africa         -0.47 -2.32  3.82 
## South Korea          1.47  -0.27 -0.34 
## Spain                0.54  2.82   1.53 
## Sudan                2.25  -1.56  0.66 
## Sweden               -2.39 2.37   0.75 
## Switzerland          -4.04 -1.04 -1.88 
## Tanzania             1.01  0.87  -1.88 
## Thailand             6.79  -1.07 -2.20 
## Turkey               -2.02 1.57  -0.47 
## United Arab Emirates 5.19  -0.57 -1.04 
## UK                   -1.64 -1.96  3.70 
## USA                  -2.98 -0.66  1.07 
## ---------------------------------------
fviz_contrib(res.pca, choice = "var", axes = 1, top = 30, palette = "jco")

fviz_contrib(res.pca, choice = "var", axes = 2, top = 30, palette = "jco")

fviz_contrib(res.pca, choice = "var", axes = 3, top = 30, palette = "jco")

PCA 1: Pressure PCA 2: POLITICAL vs MARKET PCA 3: INTERNAL vs. EXTERNAL

MCA ROLES AND INFLUENCES, WORLD (equal country weight)

mca <- speMCA(mcadata[,225:270], row.w=mcadata$nworldweight) #weighted for equal country weight
mca<-flip.mca(mca,dim=c(1,2)) # reverse axes

# Eigenvalues
mca$eig$eigen[1:10]
##  [1] 0.15784289 0.06813965 0.05515366 0.04613312 0.03926188 0.03389422
##  [7] 0.03169028 0.02869685 0.02752477 0.02514639
plot(mca$eig$eigen[1:10])

mca$eig$rate[1:10]
##  [1] 14.953064  6.455131  5.224918  4.370368  3.719429  3.210930  3.002142
##  [8]  2.718563  2.607527  2.382214
modif.rate(mca)$modif #Benzecri
##           mrate cum.mrate
## 1  80.401307918  80.40131
## 2   9.344769365  89.74608
## 3   4.846113140  94.59219
## 4   2.582787029  97.17498
## 5   1.332685176  98.50766
## 6   0.641267437  99.14893
## 7   0.429802590  99.57873
## 8   0.210114878  99.78885
## 9   0.145286532  99.93413
## 10  0.050388730  99.98452
## 11  0.013255413  99.99778
## 12  0.002221792 100.00000
# Contributions first four axes
tabcontrib(mca, dim=1)
##                     var                 moda  ctr1 ctr2 weight ctrtot cumctrtot
## 8             Censorshp           Censorshp0  -1.4      1329.0   4.66      4.66
## 9                                  Censorshp       3.26  574.7                 
## 27               Owners              Owners0 -1.34      1184.7   3.98      8.64
## 28                                    Owners       2.64  646.5                 
## 23             Managers            Managers0 -1.43      1112.7    3.7     12.34
## 24                                  Managers       2.27  764.5                 
## 29           Politician           Politician       3.46  334.5   3.46      15.8
## 17         GovOfficials         GovOfficials       3.45  368.3   3.45     19.25
## 31       PressureGroups       PressureGroups       3.41  263.2   3.41     22.66
## 37        SupNatDevelop     notSupNatDevelop -1.67       923.4   3.27     25.93
## 38                             SupNatDevelop        1.6 1009.4                 
## 4         AudienceFeedb       AudienceFeedb0 -1.44      1099.1   3.23     29.16
## 5                              AudienceFeedb       1.79  854.5                 
## 11     CompetingNewsorg    CompetingNewsorg0 -1.15      1265.9   3.22     32.38
## 12                          CompetingNewsorg       2.07  669.9                 
## 7        BusinessPeople       BusinessPeople       3.08  282.5   3.08     35.46
## 25       MediaLawsRegul      MediaLawsRegul0 -1.42       877.4   2.58     38.04
## 26                            MediaLawsRegul       1.16 1055.8                 
## 1            AdvertCons           AdvertCons       2.56  432.8   2.56      40.6
## 33            PublRelat            PublRelat        2.5  384.7    2.5      43.1
## 22        LargeAudience     notLargeAudience -1.33       877.9   2.44     45.54
## 21                             LargeAudience       1.11 1075.3                 
## 18      InflPublOpinion   notInflPublOpinion  -1.2       960.3   2.43     47.97
## 19                           InflPublOpinion       1.23  961.8                 
## 14         EditSupervis        EditSupervis0 -1.13       914.9    2.3     50.27
## 13                              EditSupervis       1.17  982.5                 
## 32            ProfitExp            ProfitExp       2.23  439.1   2.23      52.5
## 36         SupGovPolicy         SupGovPolicy       2.22  327.9   2.22     54.72
## 10 ColleaguesOtherMedia ColleaguesOtherMedia       2.19  346.3   2.19     56.91
## 16    FriendsPeerFamily    FriendsPeerFamily       1.98  336.1   1.98     58.89
## 30        PosImagePolit        PosImagePolit       1.77  279.3   1.77     60.66
## 6           AudienceRes          AudienceRes       1.61  694.2   1.61     62.27
## 3       AdvSocialChange   notAdvSocialChange -1.38       774.9   1.38     63.65
## 34    RelationshSources    RelationshSources       1.24  828.6   1.24     64.89
## 15             EdPolicy            EdPolicy0  -1.2       807.4    1.2     66.09
## 20         InformAccess        InformAccess0 -1.14       645.1   1.14     67.23
## 35         SetPolAgenda         SetPolAgenda       1.12  706.7   1.12     68.35
## 2          AdvGoverment         AdvGoverment        1.1  450.4    1.1     69.45
tabcontrib(mca, dim=2)
##                     var                 moda  ctr1 ctr2 weight ctrtot cumctrtot
## 19        MonPolLeaders        MonPolLeaders  -3.3      1206.0   8.46      8.46
## 20                          notMonPolLeaders       5.16  739.2                 
## 13       InfoMakePolDec       InfoMakePolDec -2.91      1284.8   8.39     16.85
## 14                         notInfoMakePolDec       5.48  666.1                 
## 15        LetPeopleExpr        LetPeopleExpr  -1.8      1411.9   6.29     23.14
## 16                          notLetPeopleExpr       4.49  541.7                 
## 21         MotivPolPart         MotivPolPart -3.53       858.3   6.23     29.37
## 22                           notMotivPolPart        2.7 1077.3                 
## 3       AdvSocialChange      AdvSocialChange -2.36      1155.6   5.99     35.36
## 4                         notAdvSocialChange       3.63  774.9                 
## 26        PromTolerance        PromTolerance  -1.9      1116.9   5.91     41.27
## 27                          notPromTolerance       4.01  420.2                 
## 18          MonBusiness          MonBusiness -2.42      1012.6   5.09     46.36
## 17                            notMonBusiness       2.67  934.8                 
## 30         SetPolAgenda         SetPolAgenda  -2.9       706.7   4.69     51.05
## 31                           notSetPolAgenda       1.79 1193.2                 
## 32        SupNatDevelop        SupNatDevelop -1.67      1009.4   3.57     54.62
## 33                          notSupNatDevelop        1.9  923.4                 
## 8           EduAudience          EduAudience -1.12      1079.6   3.29     57.91
## 9                             notEduAudience       2.17  461.5                 
## 5     AnalysCurrAffairs notAnalysCurrAffairs        3.1  477.7    3.1     61.01
## 11      InflPublOpinion      InflPublOpinion  -1.5       961.8   3.03     64.04
## 12                        notInflPublOpinion       1.53  960.3                 
## 28            PublRelat            PublRelat        2.6  384.7    2.6     66.64
## 6        BusinessPeople       BusinessPeople       2.53  282.5   2.53     69.17
## 29        ReportReality     notReportReality       2.25  179.7   2.25     71.42
## 24       PressureGroups       PressureGroups       1.67  263.2   1.67     73.09
## 25            ProfitExp            ProfitExp       1.65  439.1   1.65     74.74
## 34          TellStories       notTellStories       1.42  450.0   1.42     76.16
## 7  ColleaguesOtherMedia ColleaguesOtherMedia       1.39  346.3   1.39     77.55
## 1            AdvertCons           AdvertCons       1.36  432.8   1.36     78.91
## 23           Politician           Politician       1.28  334.5   1.28     80.19
## 2          AdvGoverment         AdvGoverment -1.23       450.4   1.23     81.42
## 10         GovOfficials         GovOfficials       1.13  368.3   1.13     82.55
tabcontrib(mca, dim=3)
##               var            moda  ctr1 ctr2 weight ctrtot cumctrtot
## 17    JournEthics     JournEthics -2.07      1481.6    7.9       7.9
## 16                   JournEthics0       5.83  445.4                 
## 5     AvailResour     AvailResour -3.26      1124.7   7.57     15.47
## 6                    AvailResour0       4.31  783.4                 
## 28     TimeLimits      TimeLimits -2.49      1244.9   6.54     22.01
## 27                    TimeLimits0       4.05  705.3                 
## 11       EdPolicy        EdPolicy -2.59      1120.3   5.92     27.93
## 10                      EdPolicy0       3.33  807.4                 
## 14   InformAccess    InformAccess -1.98      1289.3   5.84     33.77
## 15                  InformAccess0       3.86  645.1                 
## 21     Politician     Politician0 -1.16      1555.6   5.79     39.56
## 22                     Politician       4.63  334.5                 
## 12   GovOfficials   GovOfficials0 -1.22      1556.6   5.72     45.28
## 13                   GovOfficials        4.5  368.3                 
## 24 PressureGroups  PressureGroups       5.15  263.2   5.15     50.43
## 8    EditSupervis    EditSupervis -2.57       982.5   5.11     55.54
## 9                   EditSupervis0       2.54  914.9                 
## 23  PosImagePolit   PosImagePolit       4.36  279.3   4.36      59.9
## 3     AudienceRes     AudienceRes -2.77       694.2   4.14     64.04
## 4                    AudienceRes0       1.37 1187.6                 
## 19 MediaLawsRegul  MediaLawsRegul -1.91      1055.8    3.9     67.94
## 20                MediaLawsRegul0       1.99  877.4                 
## 26   SupGovPolicy    SupGovPolicy       3.58  327.9   3.58     71.52
## 7  BusinessPeople  BusinessPeople        3.5  282.5    3.5     75.02
## 1    AdvGoverment    AdvGoverment          2  450.4      2     77.02
## 2   AudienceFeedb   AudienceFeedb -1.49       854.5   1.49     78.51
## 25      PublRelat       PublRelat       1.47  384.7   1.47     79.98
## 18       Managers        Managers -1.17       764.5   1.17     81.15
tabcontrib(mca, dim=4)
##                  var                 moda  ctr1 ctr2 weight ctrtot cumctrtot
## 8      Entertainment        Entertainment -5.49       753.3   9.21      9.21
## 9                        notEntertainment       3.72 1186.3                 
## 17       MonBusiness       notMonBusiness -3.84       934.8   7.48     16.69
## 18                            MonBusiness       3.64 1012.6                 
## 20     MonPolLeaders     notMonPolLeaders -3.87       739.2   6.26     22.95
## 19                          MonPolLeaders       2.39 1206.0                 
## 15     LargeAudience        LargeAudience -2.56      1075.3   5.87     28.82
## 16                       notLargeAudience       3.31  877.9                 
## 6   DetachedObserver  notDetachedObserver -3.93       510.6   5.61     34.43
## 7                        DetachedObserver       1.68 1414.1                 
## 2       AdvDailyLife         AdvDailyLife -2.76       956.3   5.45     39.88
## 1                         notAdvDailyLife       2.69  999.9                 
## 25 RelationshSources   RelationshSources0 -1.64      1055.3    3.8     43.68
## 24                      RelationshSources       2.16  828.6                 
## 21        Politician           Politician       3.65  334.5   3.65     47.33
## 26     ReportReality     notReportReality -3.62       179.7   3.62     50.95
## 23    PressureGroups       PressureGroups       3.45  263.2   3.45      54.4
## 12      InformAccess        InformAccess0 -2.24       645.1   3.41     57.81
## 13                           InformAccess       1.17 1289.3                 
## 28     SupNatDevelop        SupNatDevelop  -1.6      1009.4   3.27     61.08
## 29                       notSupNatDevelop       1.67  923.4                 
## 30        TimeLimits          TimeLimits0 -2.01       705.3   3.24     64.32
## 31                             TimeLimits       1.23 1244.9                 
## 22     PosImagePolit        PosImagePolit -2.82       279.3   2.82     67.14
## 5     BusinessPeople       BusinessPeople       2.57  282.5   2.57     69.71
## 27      SupGovPolicy         SupGovPolicy -2.33       327.9   2.33     72.04
## 10      GovOfficials         GovOfficials       2.29  368.3   2.29     74.33
## 4  AnalysCurrAffairs notAnalysCurrAffairs -1.61       477.7   1.61     75.94
## 14       JournEthics         JournEthics0 -1.27       445.4   1.27     77.21
## 3    AdvSocialChange   notAdvSocialChange       1.22  774.9   1.22     78.43
## 11   InflPublOpinion   notInflPublOpinion       1.19  960.3   1.19     79.62
#dimdescr(mca) # ETA-values for active variables

First axis= influences (owners, censorship, political etc) low - high Second axis = not vs. democratic/political roles (monitor, inform perople, adv. social change) Third axis = organisational constraints

# typicality tests 
v<-varsup(mca,wjs2000$COUNTRY)
v$typic
##                          dim.1     dim.2     dim.3     dim.4     dim.5
## Albania               0.609828  0.663252 -2.551328 -0.676752 -4.424477
## Argentina            -0.224331 -2.005458 -0.250931 -1.653963  3.063564
## Australia            -0.914457  1.599931 -4.699878  2.428158 -3.253063
## Austria              -3.930997 -0.767804  0.237187 -0.487637 -1.525401
## Bangladesh            1.604042  0.161284  1.557273 -2.717077  0.101500
## Belgium              -3.697298  1.009405 -0.111641  1.051393  0.385801
## Bhutan                8.736047  1.404584  3.219039  1.391624  0.122887
## Botswana              5.550916 -3.287107 -2.981638 -0.086983 -1.807872
## Brazil               -2.850628  0.776306 -0.280875  0.643533  1.769959
## Bulgaria             -0.876597 -0.254339 -2.879192  0.345927 -2.431951
## Canada               -2.527093 -1.573996 -2.378136  3.238444 -0.506966
## Chile                 1.071748  0.768381 -0.406135 -1.285955  1.063937
## China                 0.309544  2.813559  3.638063 -1.351320  0.253921
## Colombia              3.064435 -2.227432  1.264643 -1.621344  2.463111
## Croatia               1.839582 -1.231243 -0.360609  3.452478  1.268240
## Cyprus               -2.326569 -0.028783  0.162847 -0.774401  6.757890
## Czech Republic       -2.509833  3.194692 -4.871430  1.484541 -0.950213
## Denmark              -3.855453 -0.337816  1.170816  4.843987  4.001284
## Ecuador               4.259161 -1.105376  0.788240 -2.643388  0.285871
## Egypt                 3.184875 -2.018839  0.509806  0.717483  2.394440
## El Salvador           3.618075  0.005169 -1.371544 -3.139853  2.083282
## Estonia              -1.082006  0.718234 -2.353965 -0.530921 -3.812521
## Ethiopia              2.473004  1.304287  3.964313 -5.431667 -0.174354
## Finland              -4.372810 -0.612857 -2.069256  3.102049 -1.543948
## France               -6.181214 -2.577255  0.546311  3.574383  0.327392
## Germany              -3.674586  0.960279 -0.472563 -0.667901 -1.967458
## Greece               -2.285012 -0.856279 -0.621975  1.227137  0.966004
## Hong Kong            -2.528427  0.849758  1.363310  1.386931  5.582550
## Hungary              -0.679674  1.792487 -1.528892 -3.251551 -1.939819
## Iceland              -4.783529  2.831326 -0.823999  2.030891 -2.397918
## India                 2.598837  1.456459 -1.345399 -1.347925 -2.473532
## Indonesia             0.660227 -3.806421 -0.150628 -4.234880 -3.075496
## Ireland              -3.880102  0.227825 -1.595372  2.600478 -2.625982
## Israel               -0.688539 -0.000323 -0.396181 -0.371212  0.606909
## Italy                -3.897420  1.539592  0.197003  1.552255 -1.511533
## Japan                -3.091733 -0.050890  1.849367  1.689125  5.207404
## Kenya                 5.694185 -0.718654  0.277339 -1.805765 -0.783484
## Kosovo                0.255544 -2.763212  1.684084 -0.435968 -2.850092
## Latvia               -0.682890 -2.328119 -0.691134 -0.422198 -0.023717
## Malawi                5.929530 -2.998513 -1.052448 -3.154749 -1.866971
## Malaysia              3.753795  3.014223  4.402086 -0.756840 -2.261414
## Mexico                2.256923 -2.127282  0.928741 -3.529598  3.453338
## Moldova              -1.671119  1.227033 -1.037675  0.937554 -2.907322
## Netherlands          -4.723788  3.200242  1.433549 -2.145660 -1.624996
## New Zealand          -2.040422  0.517101 -1.068800  2.847952 -0.014971
## Norway               -3.681802 -0.830683  1.469396 -0.481305 -0.167012
## Oman                  3.015304  1.869339  3.980298  0.046602 -1.302410
## Philippines           2.086449 -2.796272 -2.692984  1.660671  2.168306
## Portugal             -2.173420 -0.587870 -2.156339  3.065882 -0.258017
## Qatar                -0.406566  4.024897  5.019980 -3.513129 -0.776026
## Romania              -1.392792  0.505232 -1.581415 -1.223642 -4.276938
## Russia               -1.180949  3.237722  2.937171 -5.129861  0.533957
## Serbia                1.519831 -2.874639 -1.281133 -0.939324 -0.074130
## Sierra Leone          5.220685 -0.089616  1.635575 -2.518079 -1.252434
## Singapore            -2.626126  2.661922  5.962137 -4.397940  0.798882
## South Africa          0.953228  2.117831 -3.617431 -1.058435 -1.220297
## South Korea          -0.484267  0.681882 -0.387492  3.380015  5.651889
## Spain                -0.048048 -2.427911 -1.971024  1.727637  1.592363
## Sudan                 8.529316  0.701838  1.624086  1.071977  0.255744
## Sweden               -2.486159 -3.433786 -0.273943  3.743290  2.508055
## Switzerland          -4.962584 -0.037619  1.543442  0.717441 -1.398526
## Tanzania              2.284270 -3.589940 -2.940453 -6.190206  6.059554
## Thailand              7.624189  2.213144  4.909783  1.106424  2.006325
## Turkey                0.599707 -0.258797  3.395834  7.406748  1.872051
## United Arab Emirates  4.787283  2.652538  5.073883 -3.333576 -0.730361
## UK                   -2.602564  2.332126 -3.939730  2.931470 -2.899410
## USA                  -2.703941 -0.773690 -0.500668  2.140347  0.814074
ggcloud_indiv(mca) # cloud of individuals
## Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
## "none")` instead.

ggcloud_variables(mca, shapes=FALSE, legend="none",vlab=FALSE) # cloud of active vars

#Countries
plot(mca,col='white')
textvarsup(mca,wjs2000$COUNTRY,col='black',vname='COUNTRY',app=1)