The chapter began with the problem of overfitting, a universal phenomenon by which models with more parameters fit a sample better, even when the additional parameters are meaningless. Two common tools were introduced to address overfitting: regularizing priors and estimates of out-of-sample accuracy (WAIC and PSIS). Regularizing priors reduce overfitting during estimation, and WAIC and PSIS help estimate the degree of overfitting. Practical functions compare in the rethinking package were introduced to help analyze collections of models fit to the same data. If you are after causal estimates, then these tools will mislead you. So models must be designed through some other method, not selected on the basis of out-of-sample predictive accuracy. But any causal estimate will still overfit the sample. So you always have to worry about overfitting, measuring it with WAIC/PSIS and reducing it with regularization.
Place each answer inside the code chunk (grey box). The code chunks should contain a text response or a code that completes/answers the question or activity requested. Make sure to include plots if the question requests them.
Finally, upon completion, name your final output .html file as: YourName_ANLY505-Year-Semester.html and publish the assignment to your R Pubs account and submit the link to Canvas. Each question is worth 5 points.
7-1. When comparing models with an information criterion, why must all models be fit to exactly the same observations? What would happen to the information criterion values, if the models were fit to different numbers of observations? Perform some experiments.
#Information criteria are based on deviance, which is accrued over observations without being divided by the #number of observations (page 182). Thus, it is a sum and not an average. So, all else being equal, a model #with more observations will have a higher deviance and thus worse accuracy according to information criteria. #It would be an unfair comparison to contrast models fit to different numbers of observations.
#As an experiment, we can calculate WAIC for models fit to increasingly small subsamples of the same data. The #information criteria should decrease alongside the sample size. In order to get a large sample to begin with, #I will return to the Howell1 database from last chapter.
library(maps)
library(rethinking)
data(Howell1)
str(Howell1)
## 'data.frame': 544 obs. of 4 variables:
## $ height: num 152 140 137 157 145 ...
## $ weight: num 47.8 36.5 31.9 53 41.3 ...
## $ age : num 63 63 65 41 51 35 32 27 19 54 ...
## $ male : int 1 0 0 1 0 1 0 1 0 1 ...
d <- Howell1[complete.cases(Howell1), ]
d
## height weight age male
## 1 151.7650 47.825606 63.00 1
## 2 139.7000 36.485807 63.00 0
## 3 136.5250 31.864838 65.00 0
## 4 156.8450 53.041914 41.00 1
## 5 145.4150 41.276872 51.00 0
## 6 163.8300 62.992589 35.00 1
## 7 149.2250 38.243476 32.00 0
## 8 168.9100 55.479971 27.00 1
## 9 147.9550 34.869885 19.00 0
## 10 165.1000 54.487739 54.00 1
## 11 154.3050 49.895120 47.00 0
## 12 151.1300 41.220173 66.00 1
## 13 144.7800 36.032215 73.00 0
## 14 149.9000 47.700000 20.00 0
## 15 150.4950 33.849303 65.30 0
## 16 163.1950 48.562694 36.00 1
## 17 157.4800 42.325803 44.00 1
## 18 143.9418 38.356873 31.00 0
## 19 121.9200 19.617854 12.00 1
## 20 105.4100 13.947954 8.00 0
## 21 86.3600 10.489315 6.50 0
## 22 161.2900 48.987936 39.00 1
## 23 156.2100 42.722696 29.00 0
## 24 129.5400 23.586784 13.00 1
## 25 109.2200 15.989118 7.00 0
## 26 146.4000 35.493574 56.00 1
## 27 148.5900 37.903281 45.00 0
## 28 147.3200 35.465224 19.00 0
## 29 137.1600 27.328918 17.00 1
## 30 125.7300 22.679600 16.00 0
## 31 114.3000 17.860185 11.00 1
## 32 147.9550 40.312989 29.00 1
## 33 161.9250 55.111428 30.00 1
## 34 146.0500 37.506388 24.00 0
## 35 146.0500 38.498621 35.00 0
## 36 152.7048 46.606578 33.00 0
## 37 142.8750 38.838815 27.00 0
## 38 142.8750 35.578623 32.00 0
## 39 147.9550 47.400364 36.00 0
## 40 160.6550 47.882306 24.00 1
## 41 151.7650 49.413179 30.00 1
## 42 162.8648 49.384829 24.00 1
## 43 171.4500 56.557252 52.00 1
## 44 147.3200 39.122310 42.00 0
## 45 147.9550 49.895120 19.00 0
## 46 144.7800 28.803092 17.00 0
## 47 121.9200 20.411640 8.00 1
## 48 128.9050 23.359988 12.00 0
## 49 97.7900 13.267566 5.00 0
## 50 154.3050 41.248522 55.00 1
## 51 143.5100 38.555320 43.00 0
## 52 146.7000 42.400000 20.00 1
## 53 157.4800 44.650463 18.00 1
## 54 127.0000 22.010552 13.00 1
## 55 110.4900 15.422128 9.00 0
## 56 97.7900 12.757275 5.00 0
## 57 165.7350 58.598416 42.00 1
## 58 152.4000 46.719976 44.00 0
## 59 141.6050 44.225220 60.00 0
## 60 158.8000 50.900000 20.00 0
## 61 155.5750 54.317642 37.00 0
## 62 164.4650 45.897841 50.00 1
## 63 151.7650 48.024053 50.00 0
## 64 161.2900 52.219779 31.00 1
## 65 154.3050 47.627160 25.00 0
## 66 145.4150 45.642695 23.00 0
## 67 145.4150 42.410852 52.00 0
## 68 152.4000 36.485807 79.30 1
## 69 163.8300 55.933563 35.00 1
## 70 144.1450 37.194544 27.00 0
## 71 129.5400 24.550667 13.00 1
## 72 129.5400 25.627948 14.00 0
## 73 153.6700 48.307548 38.00 1
## 74 142.8750 37.336292 39.00 0
## 75 146.0500 29.596878 12.00 0
## 76 167.0050 47.173568 30.00 1
## 77 158.4198 47.286966 24.00 0
## 78 91.4400 12.927372 0.60 1
## 79 165.7350 57.549485 51.00 1
## 80 149.8600 37.931631 46.00 0
## 81 147.9550 41.900561 17.00 0
## 82 137.7950 27.584063 12.00 0
## 83 154.9400 47.201918 22.00 0
## 84 160.9598 43.204638 29.00 1
## 85 161.9250 50.263663 38.00 1
## 86 147.9550 39.377456 30.00 0
## 87 113.6650 17.463292 6.00 1
## 88 159.3850 50.689000 45.00 1
## 89 148.5900 39.434154 47.00 0
## 90 136.5250 36.287360 79.00 0
## 91 158.1150 46.266384 45.00 1
## 92 144.7800 42.269104 54.00 0
## 93 156.8450 47.627160 31.00 1
## 94 179.0700 55.706767 23.00 1
## 95 118.7450 18.824068 9.00 0
## 96 170.1800 48.562694 41.00 1
## 97 146.0500 42.807745 23.00 0
## 98 147.3200 35.068331 36.00 0
## 99 113.0300 17.888534 5.00 1
## 100 162.5600 56.755699 30.00 0
## 101 133.9850 27.442316 12.00 1
## 102 152.4000 51.255896 34.00 0
## 103 160.0200 47.230267 44.00 1
## 104 149.8600 40.936678 43.00 0
## 105 142.8750 32.715323 73.30 0
## 106 167.0050 57.067543 38.00 1
## 107 159.3850 42.977842 43.00 1
## 108 154.9400 39.944446 33.00 0
## 109 148.5900 32.460178 16.00 0
## 110 111.1250 17.123098 11.00 1
## 111 111.7600 16.499409 6.00 1
## 112 162.5600 45.954540 35.00 1
## 113 152.4000 41.106775 29.00 0
## 114 124.4600 18.257078 12.00 0
## 115 111.7600 15.081934 9.00 1
## 116 86.3600 11.481547 7.60 1
## 117 170.1800 47.598810 58.00 1
## 118 146.0500 37.506388 53.00 0
## 119 159.3850 45.019006 51.00 1
## 120 151.1300 42.269104 48.00 0
## 121 160.6550 54.856282 29.00 1
## 122 169.5450 53.523856 41.00 1
## 123 158.7500 52.191429 81.75 1
## 124 74.2950 9.752228 1.00 1
## 125 149.8600 42.410852 35.00 0
## 126 153.0350 49.583275 46.00 0
## 127 96.5200 13.097469 5.00 1
## 128 161.9250 41.730464 29.00 1
## 129 162.5600 56.018612 42.00 1
## 130 149.2250 42.155707 27.00 0
## 131 116.8400 19.391058 8.00 0
## 132 100.0760 15.081934 6.00 1
## 133 163.1950 53.098613 22.00 1
## 134 161.9250 50.235314 43.00 1
## 135 145.4150 42.524250 53.00 0
## 136 163.1950 49.101334 43.00 1
## 137 151.1300 38.498621 41.00 0
## 138 150.4950 49.810071 50.00 0
## 139 141.6050 29.313383 15.00 1
## 140 170.8150 59.760746 33.00 1
## 141 91.4400 11.708343 3.00 0
## 142 157.4800 47.939005 62.00 1
## 143 152.4000 39.292407 49.00 0
## 144 149.2250 38.130077 17.00 1
## 145 129.5400 21.999212 12.00 0
## 146 147.3200 36.882700 22.00 0
## 147 145.4150 42.127357 29.00 0
## 148 121.9200 19.787951 8.00 0
## 149 113.6650 16.782904 5.00 1
## 150 157.4800 44.565414 33.00 1
## 151 154.3050 47.853956 34.00 0
## 152 120.6500 21.177076 12.00 0
## 153 115.6000 18.900000 7.00 1
## 154 167.0050 55.196477 42.00 1
## 155 142.8750 32.998818 40.00 0
## 156 152.4000 40.879979 27.00 0
## 157 96.5200 13.267566 3.00 0
## 158 160.0000 51.200000 25.00 1
## 159 159.3850 49.044635 29.00 1
## 160 149.8600 53.438808 45.00 0
## 161 160.6550 54.090846 26.00 1
## 162 160.6550 55.366574 45.00 1
## 163 149.2250 42.240755 45.00 0
## 164 125.0950 22.367756 11.00 0
## 165 140.9700 40.936678 85.60 0
## 166 154.9400 49.696674 26.00 1
## 167 141.6050 44.338618 24.00 0
## 168 160.0200 45.954540 57.00 1
## 169 150.1648 41.957260 22.00 0
## 170 155.5750 51.482692 24.00 0
## 171 103.5050 12.757275 6.00 0
## 172 94.6150 13.012420 4.00 0
## 173 156.2100 44.111822 21.00 0
## 174 153.0350 32.205032 79.00 0
## 175 167.0050 56.755699 50.00 1
## 176 149.8600 52.673371 40.00 0
## 177 147.9550 36.485807 64.00 0
## 178 159.3850 48.846188 32.00 1
## 179 161.9250 56.954146 38.70 1
## 180 155.5750 42.099007 26.00 0
## 181 159.3850 50.178615 63.00 1
## 182 146.6850 46.549879 62.00 0
## 183 172.7200 61.801910 22.00 1
## 184 166.3700 48.987936 41.00 1
## 185 141.6050 31.524644 19.00 1
## 186 142.8750 32.205032 17.00 0
## 187 133.3500 23.756881 14.00 0
## 188 127.6350 24.408919 9.00 1
## 189 119.3800 21.517270 7.00 1
## 190 151.7650 35.295127 74.00 0
## 191 156.8450 45.642695 41.00 1
## 192 148.5900 43.885026 33.00 0
## 193 157.4800 45.557646 53.00 0
## 194 149.8600 39.008912 18.00 0
## 195 147.9550 41.163474 37.00 0
## 196 102.2350 13.125818 6.00 0
## 197 153.0350 45.245802 61.00 0
## 198 160.6550 53.637254 44.00 1
## 199 149.2250 52.304828 35.00 0
## 200 114.3000 18.342126 7.00 1
## 201 100.9650 13.749507 4.00 1
## 202 138.4300 39.093961 23.00 0
## 203 91.4400 12.530479 4.00 1
## 204 162.5600 45.699394 55.00 1
## 205 149.2250 40.398038 53.00 0
## 206 158.7500 51.482692 59.00 1
## 207 149.8600 38.668718 57.00 0
## 208 158.1150 39.235708 35.00 1
## 209 156.2100 44.338618 29.00 0
## 210 148.5900 39.519203 62.00 1
## 211 143.5100 31.071052 18.00 0
## 212 154.3050 46.776675 51.00 0
## 213 131.4450 22.509503 14.00 0
## 214 157.4800 40.624834 19.00 1
## 215 157.4800 50.178615 42.00 1
## 216 154.3050 41.276872 25.00 0
## 217 107.9500 17.576690 6.00 1
## 218 168.2750 54.600000 41.00 1
## 219 145.4150 44.990657 37.00 0
## 220 147.9550 44.735511 16.00 0
## 221 100.9650 14.401546 5.00 1
## 222 113.0300 19.050864 9.00 1
## 223 149.2250 35.805419 82.00 1
## 224 154.9400 45.217453 28.00 1
## 225 162.5600 48.109102 50.00 1
## 226 156.8450 45.671045 43.00 0
## 227 123.1900 20.808533 8.00 1
## 228 161.0106 48.420946 31.00 1
## 229 144.7800 41.191823 67.00 0
## 230 143.5100 38.413573 39.00 0
## 231 149.2250 42.127357 18.00 0
## 232 110.4900 17.661738 11.00 0
## 233 149.8600 38.243476 48.00 0
## 234 165.7350 48.335898 30.00 1
## 235 144.1450 38.923864 64.00 0
## 236 157.4800 40.029494 72.00 1
## 237 154.3050 50.206964 68.00 0
## 238 163.8300 54.289293 44.00 1
## 239 156.2100 45.600000 43.00 0
## 240 153.6700 40.766581 16.00 0
## 241 134.6200 27.130471 13.00 0
## 242 144.1450 39.434154 34.00 0
## 243 114.3000 20.496689 10.00 0
## 244 162.5600 43.204638 62.00 1
## 245 146.0500 31.864838 44.00 0
## 246 120.6500 20.893581 11.00 1
## 247 154.9400 45.444249 31.00 1
## 248 144.7800 38.045029 29.00 0
## 249 106.6800 15.989118 8.00 0
## 250 146.6850 36.088913 62.00 0
## 251 152.4000 40.879979 67.00 0
## 252 163.8300 47.910655 57.00 1
## 253 165.7350 47.712209 32.00 1
## 254 156.2100 46.379782 24.00 0
## 255 152.4000 41.163474 77.00 1
## 256 140.3350 36.599204 62.00 0
## 257 158.1150 43.091240 17.00 1
## 258 163.1950 48.137451 67.00 1
## 259 151.1300 36.712603 70.00 0
## 260 171.1198 56.557252 37.00 1
## 261 149.8600 38.697068 58.00 0
## 262 163.8300 47.485413 35.00 1
## 263 141.6050 36.202312 30.00 0
## 264 93.9800 14.288148 5.00 0
## 265 149.2250 41.276872 26.00 0
## 266 105.4100 15.223681 5.00 0
## 267 146.0500 44.763860 21.00 0
## 268 161.2900 50.433760 41.00 1
## 269 162.5600 55.281525 46.00 1
## 270 145.4150 37.931631 49.00 0
## 271 145.4150 35.493574 15.00 1
## 272 170.8150 58.456669 28.00 1
## 273 127.0000 21.488921 12.00 0
## 274 159.3850 44.423667 83.00 0
## 275 159.4000 44.400000 54.00 1
## 276 153.6700 44.565414 54.00 0
## 277 160.0200 44.622113 68.00 1
## 278 150.4950 40.483086 68.00 0
## 279 149.2250 44.083472 56.00 0
## 280 127.0000 24.408919 15.00 0
## 281 142.8750 34.416293 57.00 0
## 282 142.1130 32.772022 22.00 0
## 283 147.3200 35.947166 40.00 0
## 284 162.5600 49.554900 19.00 1
## 285 164.4650 53.183662 41.00 1
## 286 160.0200 37.081146 75.90 1
## 287 153.6700 40.511435 73.90 0
## 288 167.0050 50.603857 49.00 1
## 289 151.1300 43.970075 26.00 1
## 290 147.9550 33.792604 17.00 0
## 291 125.3998 21.375523 13.00 0
## 292 111.1250 16.669506 8.00 0
## 293 153.0350 49.890000 88.00 1
## 294 139.0650 33.594158 68.00 0
## 295 152.4000 43.856676 33.00 1
## 296 154.9400 48.137451 26.00 0
## 297 147.9550 42.751046 56.00 0
## 298 143.5100 34.841535 16.00 1
## 299 117.9830 24.097075 13.00 0
## 300 144.1450 33.906002 34.00 0
## 301 92.7100 12.076887 5.00 0
## 302 147.9550 41.276872 17.00 0
## 303 155.5750 39.717650 74.00 1
## 304 150.4950 35.947166 69.00 0
## 305 155.5750 50.915702 50.00 1
## 306 154.3050 45.756093 44.00 0
## 307 130.6068 25.259404 15.00 0
## 308 101.6000 15.337079 5.00 0
## 309 157.4800 49.214732 18.00 0
## 310 168.9100 58.825212 41.00 1
## 311 150.4950 43.459784 27.00 0
## 312 111.7600 17.831836 8.90 1
## 313 160.0200 51.964633 38.00 1
## 314 167.6400 50.688906 57.00 1
## 315 144.1450 34.246196 64.50 0
## 316 145.4150 39.377456 42.00 0
## 317 160.0200 59.562300 24.00 1
## 318 147.3200 40.312989 16.00 1
## 319 164.4650 52.163080 71.00 1
## 320 153.0350 39.972795 49.50 0
## 321 149.2250 43.941725 33.00 1
## 322 160.0200 54.601137 28.00 0
## 323 149.2250 45.075705 47.00 0
## 324 85.0900 11.453198 3.00 1
## 325 84.4550 11.765042 1.00 1
## 326 59.6138 5.896696 1.00 0
## 327 92.7100 12.105237 3.00 1
## 328 111.1250 18.313777 6.00 0
## 329 90.8050 11.368149 5.00 0
## 330 153.6700 41.333571 27.00 0
## 331 99.6950 16.244263 5.00 0
## 332 62.4840 6.803880 1.00 0
## 333 81.9150 11.878440 2.00 1
## 334 96.5200 14.968536 2.00 0
## 335 80.0100 9.865626 1.00 1
## 336 150.4950 41.900561 55.00 0
## 337 151.7650 42.524000 83.40 1
## 338 140.6398 28.859791 12.00 1
## 339 88.2650 12.785625 2.00 0
## 340 158.1150 43.147939 63.00 1
## 341 149.2250 40.823280 52.00 0
## 342 151.7650 42.864444 49.00 1
## 343 154.9400 46.209685 31.00 0
## 344 123.8250 20.581737 9.00 0
## 345 104.1400 15.875720 6.00 0
## 346 161.2900 47.853956 35.00 1
## 347 148.5900 42.524250 35.00 0
## 348 97.1550 17.066399 7.00 0
## 349 93.3450 13.182517 5.00 1
## 350 160.6550 48.505994 24.00 1
## 351 157.4800 45.869491 41.00 1
## 352 167.0050 52.900167 32.00 1
## 353 157.4800 47.570461 43.00 1
## 354 91.4400 12.927372 6.00 0
## 355 60.4520 5.669900 1.00 1
## 356 137.1600 28.916490 15.00 1
## 357 152.4000 43.544832 63.00 0
## 358 152.4000 43.431434 21.00 0
## 359 81.2800 11.509897 1.00 1
## 360 109.2200 11.708343 2.00 0
## 361 71.1200 7.540967 1.00 1
## 362 89.2048 12.700576 3.00 0
## 363 67.3100 7.200773 1.00 0
## 364 85.0900 12.360382 1.00 1
## 365 69.8500 7.796112 1.00 0
## 366 161.9250 53.212012 55.00 0
## 367 152.4000 44.678812 38.00 0
## 368 88.9000 12.558829 3.00 1
## 369 90.1700 12.700576 3.00 1
## 370 71.7550 7.370870 1.00 0
## 371 83.8200 9.213587 1.00 0
## 372 159.3850 47.201918 28.00 1
## 373 142.2400 28.632995 16.00 0
## 374 142.2400 31.666391 36.00 0
## 375 168.9100 56.443855 38.00 1
## 376 123.1900 20.014747 12.00 1
## 377 74.9300 8.504850 1.00 1
## 378 74.2950 8.306404 1.00 0
## 379 90.8050 11.623295 3.00 0
## 380 160.0200 55.791816 48.00 1
## 381 67.9450 7.966209 1.00 0
## 382 135.8900 27.215520 15.00 0
## 383 158.1150 47.485413 45.00 1
## 384 85.0900 10.801160 3.00 1
## 385 93.3450 14.004653 3.00 0
## 386 152.4000 45.160753 38.00 0
## 387 155.5750 45.529297 21.00 0
## 388 154.3050 48.874538 50.00 0
## 389 156.8450 46.578229 41.00 1
## 390 120.0150 20.128145 13.00 0
## 391 114.3000 18.143680 8.00 1
## 392 83.8200 10.914558 3.00 1
## 393 156.2100 43.885026 30.00 0
## 394 137.1600 27.158821 12.00 1
## 395 114.3000 19.050864 7.00 1
## 396 93.9800 13.834556 4.00 0
## 397 168.2750 56.046962 21.00 1
## 398 147.9550 40.086193 38.00 0
## 399 139.7000 26.563482 15.00 1
## 400 157.4800 50.802304 19.00 0
## 401 76.2000 9.213587 1.00 1
## 402 66.0400 7.569317 1.00 1
## 403 160.7000 46.300000 31.00 1
## 404 114.3000 19.419407 8.00 0
## 405 146.0500 37.903281 16.00 1
## 406 161.2900 49.356479 21.00 1
## 407 69.8500 7.314171 0.00 0
## 408 133.9850 28.151053 13.00 1
## 409 67.9450 7.824462 0.00 1
## 410 150.4950 44.111822 50.00 0
## 411 163.1950 51.029100 39.00 1
## 412 148.5900 40.766581 44.00 1
## 413 148.5900 37.563088 36.00 0
## 414 161.9250 51.596090 36.00 1
## 415 153.6700 44.820560 18.00 0
## 416 68.5800 8.022908 0.00 0
## 417 151.1300 43.403084 58.00 0
## 418 163.8300 46.719976 58.00 1
## 419 153.0350 39.547553 33.00 0
## 420 151.7650 34.784836 21.50 0
## 421 132.0800 22.792998 11.00 1
## 422 156.2100 39.292407 26.00 1
## 423 140.3350 37.449689 22.00 0
## 424 158.7500 48.676091 28.00 1
## 425 142.8750 35.606972 42.00 0
## 426 84.4550 9.383684 2.00 1
## 427 151.9428 43.714929 21.00 1
## 428 161.2900 48.194150 19.00 1
## 429 127.9906 29.852024 13.00 1
## 430 160.9852 50.972401 48.00 1
## 431 144.7800 43.998424 46.00 0
## 432 132.0800 28.292801 11.00 1
## 433 117.9830 20.354941 8.00 1
## 434 160.0200 48.194150 25.00 1
## 435 154.9400 39.179009 16.00 1
## 436 160.9852 46.691626 51.00 1
## 437 165.9890 56.415505 25.00 1
## 438 157.9880 48.591043 28.00 1
## 439 154.9400 48.222499 26.00 0
## 440 97.9932 13.295915 5.00 1
## 441 64.1350 6.662133 1.00 0
## 442 160.6550 47.485413 54.00 1
## 443 147.3200 35.550273 66.00 0
## 444 146.7000 36.600000 20.00 0
## 445 147.3200 48.959587 25.00 0
## 446 172.9994 51.255896 38.00 1
## 447 158.1150 46.521529 51.00 1
## 448 147.3200 36.967748 48.00 0
## 449 124.9934 25.117657 13.00 1
## 450 106.0450 16.272613 6.00 1
## 451 165.9890 48.647742 27.00 1
## 452 149.8600 38.045029 22.00 0
## 453 76.2000 8.504850 1.00 0
## 454 161.9250 47.286966 60.00 1
## 455 140.0048 28.349500 15.00 0
## 456 66.6750 8.136306 0.00 0
## 457 62.8650 7.200773 0.00 1
## 458 163.8300 55.394923 43.00 1
## 459 147.9550 32.488527 12.00 1
## 460 160.0200 54.204244 27.00 1
## 461 154.9400 48.477645 30.00 1
## 462 152.4000 43.062891 29.00 0
## 463 62.2300 7.257472 0.00 0
## 464 146.0500 34.189497 23.00 0
## 465 151.9936 49.951819 30.00 0
## 466 157.4800 41.305222 17.00 1
## 467 55.8800 4.847765 0.00 0
## 468 60.9600 6.236890 0.00 1
## 469 151.7650 44.338618 41.00 0
## 470 144.7800 33.452410 42.00 0
## 471 118.1100 16.896302 7.00 0
## 472 78.1050 8.221355 3.00 0
## 473 160.6550 47.286966 43.00 1
## 474 151.1300 46.124637 35.00 0
## 475 121.9200 20.184844 10.00 0
## 476 92.7100 12.757275 3.00 1
## 477 153.6700 47.400364 75.50 1
## 478 147.3200 40.851630 64.00 0
## 479 139.7000 50.348712 38.00 1
## 480 157.4800 45.132404 24.20 0
## 481 91.4400 11.623295 4.00 0
## 482 154.9400 42.240755 26.00 1
## 483 143.5100 41.645415 19.00 0
## 484 83.1850 9.156889 2.00 1
## 485 158.1150 45.217453 43.00 1
## 486 147.3200 51.255896 38.00 0
## 487 123.8250 21.205426 10.00 1
## 488 88.9000 11.594945 3.00 1
## 489 160.0200 49.271431 23.00 1
## 490 137.1600 27.952607 16.00 0
## 491 165.1000 51.199197 49.00 1
## 492 154.9400 43.856676 41.00 0
## 493 111.1250 17.690088 6.00 1
## 494 153.6700 35.521923 23.00 0
## 495 145.4150 34.246196 14.00 0
## 496 141.6050 42.885420 43.00 0
## 497 144.7800 32.545226 15.00 0
## 498 163.8300 46.776675 21.00 1
## 499 161.2900 41.872211 24.00 1
## 500 154.9000 38.200000 20.00 1
## 501 161.3000 43.300000 20.00 1
## 502 170.1800 53.637254 34.00 1
## 503 149.8600 42.977842 29.00 0
## 504 123.8250 21.545620 11.00 1
## 505 85.0900 11.424848 3.00 0
## 506 160.6550 39.774349 65.00 1
## 507 154.9400 43.346385 46.00 0
## 508 106.0450 15.478827 8.00 0
## 509 126.3650 21.914164 15.00 1
## 510 166.3700 52.673371 43.00 1
## 511 148.2852 38.441922 39.00 0
## 512 124.4600 19.277660 12.00 0
## 513 89.5350 11.113004 3.00 1
## 514 101.6000 13.494362 4.00 0
## 515 151.7650 42.807745 43.00 0
## 516 148.5900 35.890467 70.00 0
## 517 153.6700 44.225220 26.00 0
## 518 53.9750 4.252425 0.00 0
## 519 146.6850 38.073378 48.00 0
## 520 56.5150 5.159609 0.00 0
## 521 100.9650 14.316498 5.00 1
## 522 121.9200 23.218241 8.00 1
## 523 81.5848 10.659412 3.00 0
## 524 154.9400 44.111822 44.00 1
## 525 156.2100 44.026773 33.00 0
## 526 132.7150 24.975910 15.00 1
## 527 125.0950 22.594552 12.00 0
## 528 101.6000 14.344847 5.00 0
## 529 160.6550 47.882306 41.00 1
## 530 146.0500 39.405805 37.40 0
## 531 132.7150 24.777463 13.00 0
## 532 87.6300 10.659412 6.00 0
## 533 156.2100 41.050076 53.00 1
## 534 152.4000 40.823280 49.00 0
## 535 162.5600 47.031821 27.00 0
## 536 114.9350 17.519991 7.00 1
## 537 67.9450 7.229122 1.00 0
## 538 142.8750 34.246196 31.00 0
## 539 76.8350 8.022908 1.00 1
## 540 145.4150 31.127751 17.00 1
## 541 162.5600 52.163080 31.00 1
## 542 156.2100 54.062497 21.00 0
## 543 71.1200 8.051258 0.00 1
## 544 158.7500 52.531624 68.00 1
d_550 <- d[sample(1:nrow(d), size = 200, replace = FALSE), ]
d_450 <- d[sample(1:nrow(d), size = 300, replace = FALSE), ]
d_350 <- d[sample(1:nrow(d), size = 400, replace = FALSE), ]
m_550 <- map(
alist(
height ~ dnorm(mu, sigma),
mu <- a + b * log(weight)
),
data = d_550,
start = list(a = mean(d_550$height), b = 0, sigma = sd(d_550$height))
)
m_450 <- map(
alist(
height ~ dnorm(mu, sigma),
mu <- a + b * log(weight)
),
data = d_450,
start = list(a = mean(d_450$height), b = 0, sigma = sd(d_450$height))
)
m_350 <- map(
alist(
height ~ dnorm(mu, sigma),
mu <- a + b * log(weight)
),
data = d_350,
start = list(a = mean(d_350$height), b = 0, sigma = sd(d_350$height))
)
(model.compare <- compare(m_550, m_450, m_350))
## WAIC SE dWAIC dSE pWAIC weight
## m_550 1232.439 20.30732 0.0000 NA 2.929953 1.000000e+00
## m_450 1847.189 30.02313 614.7493 31.22239 3.489963 3.227676e-134
## m_350 2452.368 32.89998 1219.9290 30.69325 3.463851 1.246770e-265
#Different numbers of observations found for at least two models.
#Information criteria only valid for comparing models fit to exactly same observations.
#Number of observations for each model:
#m_550 250
#m_450 350
#m_350 450
#longer object length is not a multiple of shorter object lengthlonger object length is not a multiple of #shorter object lengthlonger object length is not a multiple of shorter object length
7-2. What happens to the effective number of parameters, as measured by PSIS or WAIC, as a prior becomes more concentrated? Why? Perform some experiments.
d <- Howell1[complete.cases(Howell1), ]
d$height.log <- log(d$height)
d$height.log.z <- (d$height.log - mean(d$height.log)) / sd(d$height.log)
d$weight.log <- log(d$weight)
d$weight.log.z <- (d$weight.log - mean(d$weight.log)) / sd(d$weight.log)
m_wide <- map(
alist(
height.log.z ~ dnorm(mu, sigma),
mu <- a + b * weight.log.z,
a ~ dnorm(0, 10),
b ~ dnorm(1, 10),
sigma ~ dunif(0, 10)
),
data = d
)
m_narrow <- map(
alist(
height.log.z ~ dnorm(mu, sigma),
mu <- a + b * weight.log.z,
a ~ dnorm(0, 0.10),
b ~ dnorm(1, 0.10),
sigma ~ dunif(0, 1)
),
data = d
)
WAIC(m_wide, refresh = 0)
## WAIC lppd penalty std_err
## 1 -102.5901 55.66528 4.370222 36.59395
7-3. Consider three fictional Polynesian islands. On each there is a Royal Ornithologist charged by the king with surveying the bird population. They have each found the following proportions of 5 important bird species:
| height | weight | age | male | height.log | height.log.z | weight.log | weight.log.z |
|---|---|---|---|---|---|---|---|
| 151.7650 | 47.825606 | 63.00 | 1 | 5.022333 | 0.4910353 | 3.867561 | 0.7383006 |
| 139.7000 | 36.485807 | 63.00 | 0 | 4.939497 | 0.1484141 | 3.596923 | 0.2684103 |
| 136.5250 | 31.864838 | 65.00 | 0 | 4.916508 | 0.0533263 | 3.461503 | 0.0332893 |
| 156.8450 | 53.041914 | 41.00 | 1 | 5.055258 | 0.6272167 | 3.971082 | 0.9180376 |
| 145.4150 | 41.276872 | 51.00 | 0 | 4.979592 | 0.3142503 | 3.720302 | 0.4826249 |
| 163.8300 | 62.992589 | 35.00 | 1 | 5.098829 | 0.8074334 | 4.143017 | 1.2165561 |
| 149.2250 | 38.243476 | 32.00 | 0 | 5.005455 | 0.4212254 | 3.643973 | 0.3500994 |
| 168.9100 | 55.479971 | 27.00 | 1 | 5.129366 | 0.9337375 | 4.016022 | 0.9960632 |
| 147.9550 | 34.869885 | 19.00 | 0 | 4.996908 | 0.3858736 | 3.551624 | 0.1897593 |
| 165.1000 | 54.487739 | 54.00 | 1 | 5.106551 | 0.8393729 | 3.997976 | 0.9647305 |
| 154.3050 | 49.895120 | 47.00 | 0 | 5.038931 | 0.5596864 | 3.909923 | 0.8118509 |
| 151.1300 | 41.220173 | 66.00 | 1 | 5.018140 | 0.4736930 | 3.718928 | 0.4802384 |
| 144.7800 | 36.032215 | 73.00 | 0 | 4.975215 | 0.2961490 | 3.584413 | 0.2466901 |
| 149.9000 | 47.700000 | 20.00 | 0 | 5.009968 | 0.4398925 | 3.864931 | 0.7337346 |
| 150.4950 | 33.849303 | 65.30 | 0 | 5.013930 | 0.4562776 | 3.521918 | 0.1381843 |
| 163.1950 | 48.562694 | 36.00 | 1 | 5.094946 | 0.7913707 | 3.882856 | 0.7648553 |
| 157.4800 | 42.325803 | 44.00 | 1 | 5.059298 | 0.6439284 | 3.745397 | 0.5261950 |
| 143.9418 | 38.356873 | 31.00 | 0 | 4.969409 | 0.2721334 | 3.646934 | 0.3552400 |
| 121.9200 | 19.617854 | 12.00 | 1 | 4.803365 | -0.4146473 | 2.976440 | -0.8088931 |
| 105.4100 | 13.947954 | 8.00 | 0 | 4.657858 | -1.0164868 | 2.635333 | -1.4011346 |
| 86.3600 | 10.489315 | 6.50 | 0 | 4.458525 | -1.8409552 | 2.350357 | -1.8959188 |
| 161.2900 | 48.987936 | 39.00 | 1 | 5.083204 | 0.7428050 | 3.891574 | 0.7799925 |
| 156.2100 | 42.722696 | 29.00 | 0 | 5.051201 | 0.6104372 | 3.754730 | 0.5423999 |
| 129.5400 | 23.586784 | 13.00 | 1 | 4.863990 | -0.1638955 | 3.160687 | -0.4889983 |
| 109.2200 | 15.989118 | 7.00 | 0 | 4.693364 | -0.8696262 | 2.771908 | -1.1640077 |
| 146.4000 | 35.493574 | 56.00 | 1 | 4.986343 | 0.3421729 | 3.569352 | 0.2205394 |
| 148.5900 | 37.903281 | 45.00 | 0 | 5.001191 | 0.4035872 | 3.635038 | 0.3345857 |
| 147.3200 | 35.465224 | 19.00 | 0 | 4.992607 | 0.3680837 | 3.568553 | 0.2191521 |
| 137.1600 | 27.328918 | 17.00 | 1 | 4.921148 | 0.0725195 | 3.307945 | -0.2333227 |
| 125.7300 | 22.679600 | 16.00 | 0 | 4.834137 | -0.2873715 | 3.121466 | -0.5570946 |
| 114.3000 | 17.860185 | 11.00 | 1 | 4.738827 | -0.6815876 | 2.882574 | -0.9718665 |
| 147.9550 | 40.312989 | 29.00 | 1 | 4.996908 | 0.3858736 | 3.696674 | 0.4416002 |
| 161.9250 | 55.111428 | 30.00 | 1 | 5.087133 | 0.7590570 | 4.009357 | 0.9844913 |
| 146.0500 | 37.506388 | 24.00 | 0 | 4.983949 | 0.3322727 | 3.624511 | 0.3163094 |
| 146.0500 | 38.498621 | 35.00 | 0 | 4.983949 | 0.3322727 | 3.650622 | 0.3616444 |
| 152.7048 | 46.606578 | 33.00 | 0 | 5.028507 | 0.5165692 | 3.841742 | 0.6934719 |
| 142.8750 | 38.838815 | 27.00 | 0 | 4.961970 | 0.2413650 | 3.659420 | 0.3769193 |
| 142.8750 | 35.578623 | 32.00 | 0 | 4.961970 | 0.2413650 | 3.571745 | 0.2246948 |
| 147.9550 | 47.400364 | 36.00 | 0 | 4.996908 | 0.3858736 | 3.858630 | 0.7227938 |
| 160.6550 | 47.882306 | 24.00 | 1 | 5.079259 | 0.7264888 | 3.868746 | 0.7403577 |
| 151.7650 | 49.413179 | 30.00 | 1 | 5.022333 | 0.4910353 | 3.900217 | 0.7949989 |
| 162.8648 | 49.384829 | 24.00 | 1 | 5.092920 | 0.7829934 | 3.899643 | 0.7940025 |
| 171.4500 | 56.557252 | 52.00 | 1 | 5.144292 | 0.9954721 | 4.035253 | 1.0294534 |
| 147.3200 | 39.122310 | 42.00 | 0 | 4.992607 | 0.3680837 | 3.666693 | 0.3895465 |
| 147.9550 | 49.895120 | 19.00 | 0 | 4.996908 | 0.3858736 | 3.909923 | 0.8118509 |
| 144.7800 | 28.803092 | 17.00 | 0 | 4.975215 | 0.2961490 | 3.360483 | -0.1421056 |
| 121.9200 | 20.411640 | 8.00 | 1 | 4.803365 | -0.4146473 | 3.016105 | -0.7400250 |
| 128.9050 | 23.359988 | 12.00 | 0 | 4.859076 | -0.1842206 | 3.151025 | -0.5057736 |
| 97.7900 | 13.267566 | 5.00 | 0 | 4.582822 | -1.3268427 | 2.585322 | -1.4879644 |
| 154.3050 | 41.248522 | 55.00 | 1 | 5.038931 | 0.5596864 | 3.719615 | 0.4814321 |
| 143.5100 | 38.555320 | 43.00 | 0 | 4.966405 | 0.2597071 | 3.652094 | 0.3641996 |
| 146.7000 | 42.400000 | 20.00 | 1 | 4.988390 | 0.3506399 | 3.747148 | 0.5292359 |
| 157.4800 | 44.650463 | 18.00 | 1 | 5.059298 | 0.6439284 | 3.798865 | 0.6190274 |
| 127.0000 | 22.010552 | 13.00 | 1 | 4.844187 | -0.2458019 | 3.091522 | -0.6090841 |
| 110.4900 | 15.422128 | 9.00 | 0 | 4.704925 | -0.8218091 | 2.735803 | -1.2266944 |
| 97.7900 | 12.757275 | 5.00 | 0 | 4.582822 | -1.3268427 | 2.546102 | -1.5560607 |
| 165.7350 | 58.598416 | 42.00 | 1 | 5.110390 | 0.8552506 | 4.070708 | 1.0910102 |
| 152.4000 | 46.719976 | 44.00 | 0 | 5.026509 | 0.5083052 | 3.844172 | 0.6976912 |
| 141.6050 | 44.225220 | 60.00 | 0 | 4.953042 | 0.2044349 | 3.789295 | 0.6024126 |
| 158.8000 | 50.900000 | 20.00 | 0 | 5.067646 | 0.6784531 | 3.929863 | 0.8464709 |
| 155.5750 | 54.317642 | 37.00 | 0 | 5.047128 | 0.5935894 | 3.994849 | 0.9593020 |
| 164.4650 | 45.897841 | 50.00 | 1 | 5.102698 | 0.8234340 | 3.826418 | 0.6668665 |
| 151.7650 | 48.024053 | 50.00 | 0 | 5.022333 | 0.4910353 | 3.871702 | 0.7454900 |
| 161.2900 | 52.219779 | 31.00 | 1 | 5.083204 | 0.7428050 | 3.955461 | 0.8909157 |
| 154.3050 | 47.627160 | 25.00 | 0 | 5.038931 | 0.5596864 | 3.863403 | 0.7310813 |
| 145.4150 | 45.642695 | 23.00 | 0 | 4.979592 | 0.3142503 | 3.820844 | 0.6571879 |
| 145.4150 | 42.410852 | 52.00 | 0 | 4.979592 | 0.3142503 | 3.747404 | 0.5296802 |
| 152.4000 | 36.485807 | 79.30 | 1 | 5.026509 | 0.5083052 | 3.596923 | 0.2684103 |
| 163.8300 | 55.933563 | 35.00 | 1 | 5.098829 | 0.8074334 | 4.024165 | 1.0102006 |
| 144.1450 | 37.194544 | 27.00 | 0 | 4.970820 | 0.2779682 | 3.616162 | 0.3018132 |
| 129.5400 | 24.550667 | 13.00 | 1 | 4.863990 | -0.1638955 | 3.200739 | -0.4194579 |
| 129.5400 | 25.627948 | 14.00 | 0 | 4.863990 | -0.1638955 | 3.243683 | -0.3448963 |
| 153.6700 | 48.307548 | 38.00 | 1 | 5.034807 | 0.5426302 | 3.877588 | 0.7557091 |
| 142.8750 | 37.336292 | 39.00 | 0 | 4.961970 | 0.2413650 | 3.619966 | 0.3084174 |
| 146.0500 | 29.596878 | 12.00 | 0 | 4.983949 | 0.3322727 | 3.387669 | -0.0949042 |
| 167.0050 | 47.173568 | 30.00 | 1 | 5.118024 | 0.8868243 | 3.853834 | 0.7144665 |
| 158.4198 | 47.286966 | 24.00 | 0 | 5.065249 | 0.6685385 | 3.856235 | 0.7186352 |
| 91.4400 | 12.927372 | 0.60 | 1 | 4.515683 | -1.6045401 | 2.559347 | -1.5330639 |
| 165.7350 | 57.549485 | 51.00 | 1 | 5.110390 | 0.8552506 | 4.052645 | 1.0596495 |
| 149.8600 | 37.931631 | 46.00 | 0 | 5.009702 | 0.4387886 | 3.635785 | 0.3358838 |
| 147.9550 | 41.900561 | 17.00 | 0 | 4.996908 | 0.3858736 | 3.735299 | 0.5086630 |
| 137.7950 | 27.584063 | 12.00 | 0 | 4.925767 | 0.0916241 | 3.317238 | -0.2171882 |
| 154.9400 | 47.201918 | 22.00 | 0 | 5.043038 | 0.5766727 | 3.854434 | 0.7155096 |
| 160.9598 | 43.204638 | 29.00 | 1 | 5.081155 | 0.7343286 | 3.765948 | 0.5618762 |
| 161.9250 | 50.263663 | 38.00 | 1 | 5.087133 | 0.7590570 | 3.917282 | 0.8246282 |
| 147.9550 | 39.377456 | 30.00 | 0 | 4.996908 | 0.3858736 | 3.673194 | 0.4008330 |
| 113.6650 | 17.463292 | 6.00 | 1 | 4.733256 | -0.7046302 | 2.860101 | -1.0108847 |
| 159.3850 | 50.689000 | 45.00 | 1 | 5.071323 | 0.6936621 | 3.925709 | 0.8392586 |
| 148.5900 | 39.434154 | 47.00 | 0 | 5.001191 | 0.4035872 | 3.674632 | 0.4033311 |
| 136.5250 | 36.287360 | 79.00 | 0 | 4.916508 | 0.0533263 | 3.591470 | 0.2589411 |
| 158.1150 | 46.266384 | 45.00 | 1 | 5.063323 | 0.6605729 | 3.834416 | 0.6807522 |
| 144.7800 | 42.269104 | 54.00 | 0 | 4.975215 | 0.2961490 | 3.744056 | 0.5238676 |
| 156.8450 | 47.627160 | 31.00 | 1 | 5.055258 | 0.6272167 | 3.863403 | 0.7310813 |
| 179.0700 | 55.706767 | 23.00 | 1 | 5.187777 | 1.1753325 | 4.020102 | 1.0031463 |
| 118.7450 | 18.824068 | 9.00 | 0 | 4.776978 | -0.5237866 | 2.935136 | -0.8806061 |
| 170.1800 | 48.562694 | 41.00 | 1 | 5.136857 | 0.9647200 | 3.882856 | 0.7648553 |
| 146.0500 | 42.807745 | 23.00 | 0 | 4.983949 | 0.3322727 | 3.756719 | 0.5458528 |
| 147.3200 | 35.068331 | 36.00 | 0 | 4.992607 | 0.3680837 | 3.557298 | 0.1996123 |
| 113.0300 | 17.888534 | 5.00 | 1 | 4.727653 | -0.7278019 | 2.884160 | -0.9691128 |
| 162.5600 | 56.755699 | 30.00 | 0 | 5.091047 | 0.7752454 | 4.038756 | 1.0355347 |
| 133.9850 | 27.442316 | 12.00 | 1 | 4.897728 | -0.0243499 | 3.312086 | -0.2261333 |
| 152.4000 | 51.255896 | 34.00 | 0 | 5.026509 | 0.5083052 | 3.936831 | 0.8585685 |
| 160.0200 | 47.230267 | 44.00 | 1 | 5.075299 | 0.7101080 | 3.855035 | 0.7165521 |
| 149.8600 | 40.936678 | 43.00 | 0 | 5.009702 | 0.4387886 | 3.712026 | 0.4682560 |
| 142.8750 | 32.715323 | 73.30 | 0 | 4.961970 | 0.2413650 | 3.487844 | 0.0790224 |
| 167.0050 | 57.067543 | 38.00 | 1 | 5.118024 | 0.8868243 | 4.044236 | 1.0450484 |
| 159.3850 | 42.977842 | 43.00 | 1 | 5.071323 | 0.6936621 | 3.760685 | 0.5527381 |
| 154.9400 | 39.944446 | 33.00 | 0 | 5.043038 | 0.5766727 | 3.687490 | 0.4256544 |
| 148.5900 | 32.460178 | 16.00 | 0 | 5.001191 | 0.4035872 | 3.480014 | 0.0654285 |
| 111.1250 | 17.123098 | 11.00 | 1 | 4.710656 | -0.7981062 | 2.840428 | -1.0450412 |
| 111.7600 | 16.499409 | 6.00 | 1 | 4.716354 | -0.7745384 | 2.803325 | -1.1094619 |
| 162.5600 | 45.954540 | 35.00 | 1 | 5.091047 | 0.7752454 | 3.827653 | 0.6690100 |
| 152.4000 | 41.106775 | 29.00 | 0 | 5.026509 | 0.5083052 | 3.716173 | 0.4754554 |
| 124.4600 | 18.257078 | 12.00 | 0 | 4.823984 | -0.3293631 | 2.904553 | -0.9337061 |
| 111.7600 | 15.081934 | 9.00 | 1 | 4.716354 | -0.7745384 | 2.713498 | -1.2654224 |
| 86.3600 | 11.481547 | 7.60 | 1 | 4.458525 | -1.8409552 | 2.440741 | -1.7389910 |
| 170.1800 | 47.598810 | 58.00 | 1 | 5.136857 | 0.9647200 | 3.862808 | 0.7300475 |
| 146.0500 | 37.506388 | 53.00 | 0 | 4.983949 | 0.3322727 | 3.624511 | 0.3163094 |
| 159.3850 | 45.019006 | 51.00 | 1 | 5.071323 | 0.6936621 | 3.807085 | 0.6332994 |
| 151.1300 | 42.269104 | 48.00 | 0 | 5.018140 | 0.4736930 | 3.744056 | 0.5238676 |
| 160.6550 | 54.856282 | 29.00 | 1 | 5.079259 | 0.7264888 | 4.004717 | 0.9764345 |
| 169.5450 | 53.523856 | 41.00 | 1 | 5.133118 | 0.9492578 | 3.980128 | 0.9337418 |
| 158.7500 | 52.191429 | 81.75 | 1 | 5.067331 | 0.6771506 | 3.954918 | 0.8899728 |
| 74.2950 | 9.752228 | 1.00 | 1 | 4.308044 | -2.4633652 | 2.277496 | -2.0224231 |
| 149.8600 | 42.410852 | 35.00 | 0 | 5.009702 | 0.4387886 | 3.747404 | 0.5296802 |
| 153.0350 | 49.583275 | 46.00 | 0 | 5.030667 | 0.5255033 | 3.903654 | 0.8009654 |
| 96.5200 | 13.097469 | 5.00 | 1 | 4.569750 | -1.3809106 | 2.572419 | -1.5103677 |
| 161.9250 | 41.730464 | 29.00 | 1 | 5.087133 | 0.7590570 | 3.731231 | 0.5016004 |
| 162.5600 | 56.018612 | 42.00 | 1 | 5.091047 | 0.7752454 | 4.025684 | 1.0128386 |
| 149.2250 | 42.155707 | 27.00 | 0 | 5.005455 | 0.4212254 | 3.741370 | 0.5192034 |
| 116.8400 | 19.391058 | 8.00 | 0 | 4.760806 | -0.5906798 | 2.964812 | -0.8290821 |
| 100.0760 | 15.081934 | 6.00 | 1 | 4.605930 | -1.2312666 | 2.713498 | -1.2654224 |
| 163.1950 | 53.098613 | 22.00 | 1 | 5.094946 | 0.7913707 | 3.972151 | 0.9198925 |
| 161.9250 | 50.235314 | 43.00 | 1 | 5.087133 | 0.7590570 | 3.916718 | 0.8236487 |
| 145.4150 | 42.524250 | 53.00 | 0 | 4.979592 | 0.3142503 | 3.750075 | 0.5343163 |
| 163.1950 | 49.101334 | 43.00 | 1 | 5.094946 | 0.7913707 | 3.893886 | 0.7840069 |
| 151.1300 | 38.498621 | 41.00 | 0 | 5.018140 | 0.4736930 | 3.650622 | 0.3616444 |
| 150.4950 | 49.810071 | 50.00 | 0 | 5.013930 | 0.4562776 | 3.908217 | 0.8088889 |
| 141.6050 | 29.313383 | 15.00 | 1 | 4.953042 | 0.2044349 | 3.378044 | -0.1116149 |
| 170.8150 | 59.760746 | 33.00 | 1 | 5.140581 | 0.9801246 | 4.090349 | 1.1251121 |
| 91.4400 | 11.708343 | 3.00 | 0 | 4.515683 | -1.6045401 | 2.460302 | -1.7050294 |
| 157.4800 | 47.939005 | 62.00 | 1 | 5.059298 | 0.6439284 | 3.869930 | 0.7424125 |
| 152.4000 | 39.292407 | 49.00 | 0 | 5.026509 | 0.5083052 | 3.671031 | 0.3970789 |
| 149.2250 | 38.130077 | 17.00 | 1 | 5.005455 | 0.4212254 | 3.641003 | 0.3449435 |
| 129.5400 | 21.999212 | 12.00 | 0 | 4.863990 | -0.1638955 | 3.091007 | -0.6099789 |
| 147.3200 | 36.882700 | 22.00 | 0 | 4.992607 | 0.3680837 | 3.607743 | 0.2871950 |
| 145.4150 | 42.127357 | 29.00 | 0 | 4.979592 | 0.3142503 | 3.740697 | 0.5180354 |
| 121.9200 | 19.787951 | 8.00 | 0 | 4.803365 | -0.4146473 | 2.985073 | -0.7939039 |
| 113.6650 | 16.782904 | 5.00 | 1 | 4.733256 | -0.7046302 | 2.820361 | -1.0798831 |
| 157.4800 | 44.565414 | 33.00 | 1 | 5.059298 | 0.6439284 | 3.796958 | 0.6157172 |
| 154.3050 | 47.853956 | 34.00 | 0 | 5.038931 | 0.5596864 | 3.868154 | 0.7393295 |
| 120.6500 | 21.177076 | 12.00 | 0 | 4.792894 | -0.4579581 | 3.052919 | -0.6761073 |
| 115.6000 | 18.900000 | 7.00 | 1 | 4.750136 | -0.6348104 | 2.939162 | -0.8736166 |
| 167.0050 | 55.196477 | 42.00 | 1 | 5.118024 | 0.8868243 | 4.010899 | 0.9871686 |
| 142.8750 | 32.998818 | 40.00 | 0 | 4.961970 | 0.2413650 | 3.496472 | 0.0940029 |
| 152.4000 | 40.879979 | 27.00 | 0 | 5.026509 | 0.5083052 | 3.710640 | 0.4658496 |
| 96.5200 | 13.267566 | 3.00 | 0 | 4.569750 | -1.3809106 | 2.585322 | -1.4879644 |
| 160.0000 | 51.200000 | 25.00 | 1 | 5.075174 | 0.7095911 | 3.935739 | 0.8566741 |
| 159.3850 | 49.044635 | 29.00 | 1 | 5.071323 | 0.6936621 | 3.892731 | 0.7820009 |
| 149.8600 | 53.438808 | 45.00 | 0 | 5.009702 | 0.4387886 | 3.978537 | 0.9309808 |
| 160.6550 | 54.090846 | 26.00 | 1 | 5.079259 | 0.7264888 | 3.990665 | 0.9520374 |
| 160.6550 | 55.366574 | 45.00 | 1 | 5.079259 | 0.7264888 | 4.013976 | 0.9925108 |
| 149.2250 | 42.240755 | 45.00 | 0 | 5.005455 | 0.4212254 | 3.743386 | 0.5227027 |
| 125.0950 | 22.367756 | 11.00 | 0 | 4.829073 | -0.3083140 | 3.107620 | -0.5811334 |
| 140.9700 | 40.936678 | 85.60 | 0 | 4.948547 | 0.1858455 | 3.712026 | 0.4682560 |
| 154.9400 | 49.696674 | 26.00 | 1 | 5.043038 | 0.5766727 | 3.905938 | 0.8049317 |
| 141.6050 | 44.338618 | 24.00 | 0 | 4.953042 | 0.2044349 | 3.791856 | 0.6068588 |
| 160.0200 | 45.954540 | 57.00 | 1 | 5.075299 | 0.7101080 | 3.827653 | 0.6690100 |
| 150.1648 | 41.957260 | 22.00 | 0 | 5.011733 | 0.4471926 | 3.736651 | 0.5110109 |
| 155.5750 | 51.482692 | 24.00 | 0 | 5.047128 | 0.5935894 | 3.941246 | 0.8662340 |
| 103.5050 | 12.757275 | 6.00 | 0 | 4.639620 | -1.0919200 | 2.546102 | -1.5560607 |
| 94.6150 | 13.012420 | 4.00 | 0 | 4.549816 | -1.4633613 | 2.565904 | -1.5216787 |
| 156.2100 | 44.111822 | 21.00 | 0 | 5.051201 | 0.6104372 | 3.786728 | 0.5979550 |
| 153.0350 | 32.205032 | 79.00 | 0 | 5.030667 | 0.5255033 | 3.472123 | 0.0517273 |
| 167.0050 | 56.755699 | 50.00 | 1 | 5.118024 | 0.8868243 | 4.038756 | 1.0355347 |
| 149.8600 | 52.673371 | 40.00 | 0 | 5.009702 | 0.4387886 | 3.964110 | 0.9059318 |
| 147.9550 | 36.485807 | 64.00 | 0 | 4.996908 | 0.3858736 | 3.596923 | 0.2684103 |
| 159.3850 | 48.846188 | 32.00 | 1 | 5.071323 | 0.6936621 | 3.888676 | 0.7749614 |
| 161.9250 | 56.954146 | 38.70 | 1 | 5.087133 | 0.7590570 | 4.042247 | 1.0415949 |
| 155.5750 | 42.099007 | 26.00 | 0 | 5.047128 | 0.5935894 | 3.740024 | 0.5168666 |
| 159.3850 | 50.178615 | 63.00 | 1 | 5.071323 | 0.6936621 | 3.915589 | 0.8216879 |
| 146.6850 | 46.549879 | 62.00 | 0 | 4.988287 | 0.3502170 | 3.840524 | 0.6913584 |
| 172.7200 | 61.801910 | 22.00 | 1 | 5.151672 | 1.0259972 | 4.123934 | 1.1834239 |
| 166.3700 | 48.987936 | 41.00 | 1 | 5.114214 | 0.8710676 | 3.891574 | 0.7799925 |
| 141.6050 | 31.524644 | 19.00 | 1 | 4.953042 | 0.2044349 | 3.450770 | 0.0146534 |
| 142.8750 | 32.205032 | 17.00 | 0 | 4.961970 | 0.2413650 | 3.472123 | 0.0517273 |
| 133.3500 | 23.756881 | 14.00 | 0 | 4.892977 | -0.0439991 | 3.167872 | -0.4765223 |
| 127.6350 | 24.408919 | 9.00 | 1 | 4.849175 | -0.2251728 | 3.194949 | -0.4295114 |
| 119.3800 | 21.517270 | 7.00 | 1 | 4.782312 | -0.5017272 | 3.068856 | -0.6484377 |
| 151.7650 | 35.295127 | 74.00 | 0 | 5.022333 | 0.4910353 | 3.563745 | 0.2108048 |
| 156.8450 | 45.642695 | 41.00 | 1 | 5.055258 | 0.6272167 | 3.820844 | 0.6571879 |
| 148.5900 | 43.885026 | 33.00 | 0 | 5.001191 | 0.4035872 | 3.781573 | 0.5890054 |
| 157.4800 | 45.557646 | 53.00 | 0 | 5.059298 | 0.6439284 | 3.818979 | 0.6539497 |
| 149.8600 | 39.008912 | 18.00 | 0 | 5.009702 | 0.4387886 | 3.663790 | 0.3845066 |
| 147.9550 | 41.163474 | 37.00 | 0 | 4.996908 | 0.3858736 | 3.717551 | 0.4778485 |
| 102.2350 | 13.125818 | 6.00 | 0 | 4.627274 | -1.1429841 | 2.574581 | -1.5066137 |
| 153.0350 | 45.245802 | 61.00 | 0 | 5.030667 | 0.5255033 | 3.812110 | 0.6420242 |
| 160.6550 | 53.637254 | 44.00 | 1 | 5.079259 | 0.7264888 | 3.982244 | 0.9374164 |
| 149.2250 | 52.304828 | 35.00 | 0 | 5.005455 | 0.4212254 | 3.957089 | 0.8937411 |
| 114.3000 | 18.342126 | 7.00 | 1 | 4.738827 | -0.6815876 | 2.909200 | -0.9256368 |
| 100.9650 | 13.749507 | 4.00 | 1 | 4.614774 | -1.1946865 | 2.621003 | -1.4260146 |
| 138.4300 | 39.093961 | 23.00 | 0 | 4.930365 | 0.1106409 | 3.665968 | 0.3882879 |
| 91.4400 | 12.530479 | 4.00 | 1 | 4.515683 | -1.6045401 | 2.528164 | -1.5872047 |
| 162.5600 | 45.699394 | 55.00 | 1 | 5.091047 | 0.7752454 | 3.822085 | 0.6593434 |
| 149.2250 | 40.398038 | 53.00 | 0 | 5.005455 | 0.4212254 | 3.698781 | 0.4452592 |
| 158.7500 | 51.482692 | 59.00 | 1 | 5.067331 | 0.6771506 | 3.941246 | 0.8662340 |
| 149.8600 | 38.668718 | 57.00 | 0 | 5.009702 | 0.4387886 | 3.655031 | 0.3692986 |
| 158.1150 | 39.235708 | 35.00 | 1 | 5.063323 | 0.6605729 | 3.669587 | 0.3945717 |
| 156.2100 | 44.338618 | 29.00 | 0 | 5.051201 | 0.6104372 | 3.791856 | 0.6068588 |
| 148.5900 | 39.519203 | 62.00 | 1 | 5.001191 | 0.4035872 | 3.676787 | 0.4070717 |
| 143.5100 | 31.071052 | 18.00 | 0 | 4.966405 | 0.2597071 | 3.436277 | -0.0105099 |
| 154.3050 | 46.776675 | 51.00 | 0 | 5.038931 | 0.5596864 | 3.845385 | 0.6997970 |
| 131.4450 | 22.509503 | 14.00 | 0 | 4.878589 | -0.1035129 | 3.113938 | -0.5701654 |
| 157.4800 | 40.624834 | 19.00 | 1 | 5.059298 | 0.6439284 | 3.704379 | 0.4549793 |
| 157.4800 | 50.178615 | 42.00 | 1 | 5.059298 | 0.6439284 | 3.915589 | 0.8216879 |
| 154.3050 | 41.276872 | 25.00 | 0 | 5.038931 | 0.5596864 | 3.720302 | 0.4826249 |
| 107.9500 | 17.576690 | 6.00 | 1 | 4.681668 | -0.9180027 | 2.866574 | -0.9996469 |
| 168.2750 | 54.600000 | 41.00 | 1 | 5.125599 | 0.9181588 | 4.000034 | 0.9683040 |
| 145.4150 | 44.990657 | 37.00 | 0 | 4.979592 | 0.3142503 | 3.806455 | 0.6322057 |
| 147.9550 | 44.735511 | 16.00 | 0 | 4.996908 | 0.3858736 | 3.800768 | 0.6223314 |
| 100.9650 | 14.401546 | 5.00 | 1 | 4.614774 | -1.1946865 | 2.667336 | -1.3455705 |
| 113.0300 | 19.050864 | 9.00 | 1 | 4.727653 | -0.7278019 | 2.947112 | -0.8598127 |
| 149.2250 | 35.805419 | 82.00 | 1 | 5.005455 | 0.4212254 | 3.578099 | 0.2357273 |
| 154.9400 | 45.217453 | 28.00 | 1 | 5.043038 | 0.5766727 | 3.811483 | 0.6409360 |
| 162.5600 | 48.109102 | 50.00 | 1 | 5.091047 | 0.7752454 | 3.873471 | 0.7485620 |
| 156.8450 | 45.671045 | 43.00 | 0 | 5.055258 | 0.6272167 | 3.821464 | 0.6582660 |
| 123.1900 | 20.808533 | 8.00 | 1 | 4.813728 | -0.3717854 | 3.035363 | -0.7065889 |
| 161.0106 | 48.420946 | 31.00 | 1 | 5.081470 | 0.7356338 | 3.879932 | 0.7597800 |
| 144.7800 | 41.191823 | 67.00 | 0 | 4.975215 | 0.2961490 | 3.718240 | 0.4790439 |
| 143.5100 | 38.413573 | 39.00 | 0 | 4.966405 | 0.2597071 | 3.648411 | 0.3578046 |
| 149.2250 | 42.127357 | 18.00 | 0 | 5.005455 | 0.4212254 | 3.740697 | 0.5180354 |
| 110.4900 | 17.661738 | 11.00 | 0 | 4.704925 | -0.8218091 | 2.871401 | -0.9912660 |
| 149.8600 | 38.243476 | 48.00 | 0 | 5.009702 | 0.4387886 | 3.643973 | 0.3500994 |
| 165.7350 | 48.335898 | 30.00 | 1 | 5.110390 | 0.8552506 | 3.878175 | 0.7567278 |
| 144.1450 | 38.923864 | 64.00 | 0 | 4.970820 | 0.2779682 | 3.661608 | 0.3807171 |
| 157.4800 | 40.029494 | 72.00 | 1 | 5.059298 | 0.6439284 | 3.689617 | 0.4293472 |
| 154.3050 | 50.206964 | 68.00 | 0 | 5.038931 | 0.5596864 | 3.916154 | 0.8226686 |
| 163.8300 | 54.289293 | 44.00 | 1 | 5.098829 | 0.8074334 | 3.994327 | 0.9583956 |
| 156.2100 | 45.600000 | 43.00 | 0 | 5.051201 | 0.6104372 | 3.819908 | 0.6555631 |
| 153.6700 | 40.766581 | 16.00 | 0 | 5.034807 | 0.5426302 | 3.707863 | 0.4610268 |
| 134.6200 | 27.130471 | 13.00 | 0 | 4.902456 | -0.0047937 | 3.300657 | -0.2459762 |
| 144.1450 | 39.434154 | 34.00 | 0 | 4.970820 | 0.2779682 | 3.674632 | 0.4033311 |
| 114.3000 | 20.496689 | 10.00 | 0 | 4.738827 | -0.6815876 | 3.020263 | -0.7328057 |
| 162.5600 | 43.204638 | 62.00 | 1 | 5.091047 | 0.7752454 | 3.765948 | 0.5618762 |
| 146.0500 | 31.864838 | 44.00 | 0 | 4.983949 | 0.3322727 | 3.461503 | 0.0332893 |
| 120.6500 | 20.893581 | 11.00 | 1 | 4.792894 | -0.4579581 | 3.039442 | -0.6995071 |
| 154.9400 | 45.444249 | 31.00 | 1 | 5.043038 | 0.5766727 | 3.816486 | 0.6496226 |
| 144.7800 | 38.045029 | 29.00 | 0 | 4.975215 | 0.2961490 | 3.638770 | 0.3410666 |
| 106.6800 | 15.989118 | 8.00 | 0 | 4.669834 | -0.9669516 | 2.771908 | -1.1640077 |
| 146.6850 | 36.088913 | 62.00 | 0 | 4.988287 | 0.3502170 | 3.585986 | 0.2494200 |
| 152.4000 | 40.879979 | 67.00 | 0 | 5.026509 | 0.5083052 | 3.710640 | 0.4658496 |
| 163.8300 | 47.910655 | 57.00 | 1 | 5.098829 | 0.8074334 | 3.869338 | 0.7413854 |
| 165.7350 | 47.712209 | 32.00 | 1 | 5.110390 | 0.8552506 | 3.865187 | 0.7341790 |
| 156.2100 | 46.379782 | 24.00 | 0 | 5.051201 | 0.6104372 | 3.836864 | 0.6850025 |
| 152.4000 | 41.163474 | 77.00 | 1 | 5.026509 | 0.5083052 | 3.717551 | 0.4778485 |
| 140.3350 | 36.599204 | 62.00 | 0 | 4.944032 | 0.1671721 | 3.600026 | 0.2737981 |
| 158.1150 | 43.091240 | 17.00 | 1 | 5.063323 | 0.6605729 | 3.763320 | 0.5573131 |
| 163.1950 | 48.137451 | 67.00 | 1 | 5.094946 | 0.7913707 | 3.874061 | 0.7495849 |
| 151.1300 | 36.712603 | 70.00 | 0 | 5.018140 | 0.4736930 | 3.603120 | 0.2791693 |
| 171.1198 | 56.557252 | 37.00 | 1 | 5.142364 | 0.9874985 | 4.035253 | 1.0294534 |
| 149.8600 | 38.697068 | 58.00 | 0 | 5.009702 | 0.4387886 | 3.655764 | 0.3705711 |
| 163.8300 | 47.485413 | 35.00 | 1 | 5.098829 | 0.8074334 | 3.860423 | 0.7259063 |
| 141.6050 | 36.202312 | 30.00 | 0 | 4.953042 | 0.2044349 | 3.589123 | 0.2548670 |
| 93.9800 | 14.288148 | 5.00 | 0 | 4.543082 | -1.4912142 | 2.659430 | -1.3592957 |
| 149.2250 | 41.276872 | 26.00 | 0 | 5.005455 | 0.4212254 | 3.720302 | 0.4826249 |
| 105.4100 | 15.223681 | 5.00 | 0 | 4.657858 | -1.0164868 | 2.722852 | -1.2491806 |
| 146.0500 | 44.763860 | 21.00 | 0 | 4.983949 | 0.3322727 | 3.801401 | 0.6234313 |
| 161.2900 | 50.433760 | 41.00 | 1 | 5.083204 | 0.7428050 | 3.920661 | 0.8304939 |
| 162.5600 | 55.281525 | 46.00 | 1 | 5.091047 | 0.7752454 | 4.012439 | 0.9898418 |
| 145.4150 | 37.931631 | 49.00 | 0 | 4.979592 | 0.3142503 | 3.635785 | 0.3358838 |
| 145.4150 | 35.493574 | 15.00 | 1 | 4.979592 | 0.3142503 | 3.569352 | 0.2205394 |
| 170.8150 | 58.456669 | 28.00 | 1 | 5.140581 | 0.9801246 | 4.068286 | 1.0868052 |
| 127.0000 | 21.488921 | 12.00 | 0 | 4.844187 | -0.2458019 | 3.067537 | -0.6507267 |
| 159.3850 | 44.423667 | 83.00 | 0 | 5.071323 | 0.6936621 | 3.793772 | 0.6101860 |
| 159.4000 | 44.400000 | 54.00 | 1 | 5.071417 | 0.6940514 | 3.793239 | 0.6092608 |
| 153.6700 | 44.565414 | 54.00 | 0 | 5.034807 | 0.5426302 | 3.796958 | 0.6157172 |
| 160.0200 | 44.622113 | 68.00 | 1 | 5.075299 | 0.7101080 | 3.798230 | 0.6179247 |
| 150.4950 | 40.483086 | 68.00 | 0 | 5.013930 | 0.4562776 | 3.700884 | 0.4489106 |
| 149.2250 | 44.083472 | 56.00 | 0 | 5.005455 | 0.4212254 | 3.786085 | 0.5968388 |
| 127.0000 | 24.408919 | 15.00 | 0 | 4.844187 | -0.2458019 | 3.194949 | -0.4295114 |
| 142.8750 | 34.416293 | 57.00 | 0 | 4.961970 | 0.2413650 | 3.538530 | 0.1670260 |
| 142.1130 | 32.772022 | 22.00 | 0 | 4.956622 | 0.2192465 | 3.489575 | 0.0820289 |
| 147.3200 | 35.947166 | 40.00 | 0 | 4.992607 | 0.3680837 | 3.582050 | 0.2425871 |
| 162.5600 | 49.554900 | 19.00 | 1 | 5.091047 | 0.7752454 | 3.903081 | 0.7999715 |
| 164.4650 | 53.183662 | 41.00 | 1 | 5.102698 | 0.8234340 | 3.973751 | 0.9226712 |
| 160.0200 | 37.081146 | 75.90 | 1 | 5.075299 | 0.7101080 | 3.613109 | 0.2965117 |
| 153.6700 | 40.511435 | 73.90 | 0 | 5.034807 | 0.5426302 | 3.701584 | 0.4501261 |
| 167.0050 | 50.603857 | 49.00 | 1 | 5.118024 | 0.8868243 | 3.924028 | 0.8363398 |
| 151.1300 | 43.970075 | 26.00 | 1 | 5.018140 | 0.4736930 | 3.783509 | 0.5923669 |
| 147.9550 | 33.792604 | 17.00 | 0 | 4.996908 | 0.3858736 | 3.520242 | 0.1352736 |
| 125.3998 | 21.375523 | 13.00 | 0 | 4.831507 | -0.2982484 | 3.062247 | -0.6599132 |
| 111.1250 | 16.669506 | 8.00 | 0 | 4.710656 | -0.7981062 | 2.813581 | -1.0916542 |
| 153.0350 | 49.890000 | 88.00 | 1 | 5.030667 | 0.5255033 | 3.909821 | 0.8116727 |
| 139.0650 | 33.594158 | 68.00 | 0 | 4.934941 | 0.1295706 | 3.514352 | 0.1250475 |
| 152.4000 | 43.856676 | 33.00 | 1 | 5.026509 | 0.5083052 | 3.780927 | 0.5878834 |
| 154.9400 | 48.137451 | 26.00 | 0 | 5.043038 | 0.5766727 | 3.874061 | 0.7495849 |
| 147.9550 | 42.751046 | 56.00 | 0 | 4.996908 | 0.3858736 | 3.755394 | 0.5435516 |
| 143.5100 | 34.841535 | 16.00 | 1 | 4.966405 | 0.2597071 | 3.550810 | 0.1883472 |
| 117.9830 | 24.097075 | 13.00 | 0 | 4.770541 | -0.5504142 | 3.182091 | -0.4518361 |
| 144.1450 | 33.906002 | 34.00 | 0 | 4.970820 | 0.2779682 | 3.523592 | 0.1410901 |
| 92.7100 | 12.076887 | 5.00 | 0 | 4.529476 | -1.5474890 | 2.491293 | -1.6512205 |
| 147.9550 | 41.276872 | 17.00 | 0 | 4.996908 | 0.3858736 | 3.720302 | 0.4826249 |
| 155.5750 | 39.717650 | 74.00 | 1 | 5.047128 | 0.5935894 | 3.681796 | 0.4157684 |
| 150.4950 | 35.947166 | 69.00 | 0 | 5.013930 | 0.4562776 | 3.582050 | 0.2425871 |
| 155.5750 | 50.915702 | 50.00 | 1 | 5.047128 | 0.5935894 | 3.930171 | 0.8470064 |
| 154.3050 | 45.756093 | 44.00 | 0 | 5.038931 | 0.5596864 | 3.823325 | 0.6614962 |
| 130.6068 | 25.259404 | 15.00 | 0 | 4.872191 | -0.1299727 | 3.229198 | -0.3700456 |
| 101.6000 | 15.337079 | 5.00 | 0 | 4.621043 | -1.1687545 | 2.730273 | -1.2362957 |
| 157.4800 | 49.214732 | 18.00 | 0 | 5.059298 | 0.6439284 | 3.896193 | 0.7880121 |
| 168.9100 | 58.825212 | 41.00 | 1 | 5.129366 | 0.9337375 | 4.074571 | 1.0977170 |
| 150.4950 | 43.459784 | 27.00 | 0 | 5.013930 | 0.4562776 | 3.771836 | 0.5720994 |
| 111.7600 | 17.831836 | 8.90 | 1 | 4.716354 | -0.7745384 | 2.880985 | -0.9746247 |
| 160.0200 | 51.964633 | 38.00 | 1 | 5.075299 | 0.7101080 | 3.950563 | 0.8824117 |
| 167.6400 | 50.688906 | 57.00 | 1 | 5.121819 | 0.9025213 | 3.925707 | 0.8392554 |
| 144.1450 | 34.246196 | 64.50 | 0 | 4.970820 | 0.2779682 | 3.533575 | 0.1584237 |
| 145.4150 | 39.377456 | 42.00 | 0 | 4.979592 | 0.3142503 | 3.673194 | 0.4008330 |
| 160.0200 | 59.562300 | 24.00 | 1 | 5.075299 | 0.7101080 | 4.087023 | 1.1193370 |
| 147.3200 | 40.312989 | 16.00 | 1 | 4.992607 | 0.3680837 | 3.696674 | 0.4416002 |
| 164.4650 | 52.163080 | 71.00 | 1 | 5.102698 | 0.8234340 | 3.954375 | 0.8890295 |
| 153.0350 | 39.972795 | 49.50 | 0 | 5.030667 | 0.5255033 | 3.688199 | 0.4268862 |
| 149.2250 | 43.941725 | 33.00 | 1 | 5.005455 | 0.4212254 | 3.782864 | 0.5912471 |
| 160.0200 | 54.601137 | 28.00 | 0 | 5.075299 | 0.7101080 | 4.000055 | 0.9683402 |
| 149.2250 | 45.075705 | 47.00 | 0 | 5.005455 | 0.4212254 | 3.808343 | 0.6354847 |
| 85.0900 | 11.453198 | 3.00 | 1 | 4.443709 | -1.9022325 | 2.438269 | -1.7432833 |
| 84.4550 | 11.765042 | 1.00 | 1 | 4.436219 | -1.9332149 | 2.465133 | -1.6966418 |
| 59.6138 | 5.896696 | 1.00 | 0 | 4.087887 | -3.3739632 | 1.774392 | -2.8959280 |
| 92.7100 | 12.105237 | 3.00 | 1 | 4.529476 | -1.5474890 | 2.493638 | -1.6471496 |
| 111.1250 | 18.313777 | 6.00 | 0 | 4.710656 | -0.7981062 | 2.907654 | -0.9283224 |
| 90.8050 | 11.368149 | 5.00 | 0 | 4.508714 | -1.6333635 | 2.430816 | -1.7562243 |
| 153.6700 | 41.333571 | 27.00 | 0 | 5.034807 | 0.5426302 | 3.721675 | 0.4850082 |
| 99.6950 | 16.244263 | 5.00 | 0 | 4.602116 | -1.2470433 | 2.787740 | -1.1365206 |
| 62.4840 | 6.803880 | 1.00 | 0 | 4.134911 | -3.1794677 | 1.917493 | -2.6474716 |
| 81.9150 | 11.878440 | 2.00 | 1 | 4.405682 | -2.0595190 | 2.474725 | -1.6799872 |
| 96.5200 | 14.968536 | 2.00 | 0 | 4.569750 | -1.3809106 | 2.705950 | -1.2785261 |
| 80.0100 | 9.865626 | 1.00 | 1 | 4.382152 | -2.1568444 | 2.289057 | -2.0023508 |
| 150.4950 | 41.900561 | 55.00 | 0 | 5.013930 | 0.4562776 | 3.735299 | 0.5086630 |
| 151.7650 | 42.524000 | 83.40 | 1 | 5.022333 | 0.4910353 | 3.750069 | 0.5343061 |
| 140.6398 | 28.859791 | 12.00 | 1 | 4.946202 | 0.1761459 | 3.362449 | -0.1386912 |
| 88.2650 | 12.785625 | 2.00 | 0 | 4.480344 | -1.7507086 | 2.548322 | -1.5522066 |
| 158.1150 | 43.147939 | 63.00 | 1 | 5.063323 | 0.6605729 | 3.764635 | 0.5595962 |
| 149.2250 | 40.823280 | 52.00 | 0 | 5.005455 | 0.4212254 | 3.709252 | 0.4634399 |
| 151.7650 | 42.864444 | 49.00 | 1 | 5.022333 | 0.4910353 | 3.758043 | 0.5481509 |
| 154.9400 | 46.209685 | 31.00 | 0 | 5.043038 | 0.5766727 | 3.833189 | 0.6786232 |
| 123.8250 | 20.581737 | 9.00 | 0 | 4.818869 | -0.3505199 | 3.024404 | -0.7256163 |
| 104.1400 | 15.875720 | 6.00 | 0 | 4.645736 | -1.0666224 | 2.764791 | -1.1763653 |
| 161.2900 | 47.853956 | 35.00 | 1 | 5.083204 | 0.7428050 | 3.868154 | 0.7393295 |
| 148.5900 | 42.524250 | 35.00 | 0 | 5.001191 | 0.4035872 | 3.750075 | 0.5343163 |
| 97.1550 | 17.066399 | 7.00 | 0 | 4.576308 | -1.3537883 | 2.837112 | -1.0507998 |
| 93.3450 | 13.182517 | 5.00 | 1 | 4.536302 | -1.5192559 | 2.578892 | -1.4991299 |
| 160.6550 | 48.505994 | 24.00 | 1 | 5.079259 | 0.7264888 | 3.881687 | 0.7628269 |
| 157.4800 | 45.869491 | 41.00 | 1 | 5.059298 | 0.6439284 | 3.825800 | 0.6657938 |
| 167.0050 | 52.900167 | 32.00 | 1 | 5.118024 | 0.8868243 | 3.968406 | 0.9133915 |
| 157.4800 | 47.570461 | 43.00 | 1 | 5.059298 | 0.6439284 | 3.862212 | 0.7290131 |
| 91.4400 | 12.927372 | 6.00 | 0 | 4.515683 | -1.6045401 | 2.559347 | -1.5330639 |
| 60.4520 | 5.669900 | 1.00 | 1 | 4.101850 | -3.3162120 | 1.735172 | -2.9640243 |
| 137.1600 | 28.916490 | 15.00 | 1 | 4.921148 | 0.0725195 | 3.364412 | -0.1352835 |
| 152.4000 | 43.544832 | 63.00 | 0 | 5.026509 | 0.5083052 | 3.773791 | 0.5754938 |
| 152.4000 | 43.431434 | 21.00 | 0 | 5.026509 | 0.5083052 | 3.771183 | 0.5709664 |
| 81.2800 | 11.509897 | 1.00 | 1 | 4.397900 | -2.0917070 | 2.443207 | -1.7347093 |
| 109.2200 | 11.708343 | 2.00 | 0 | 4.693364 | -0.8696262 | 2.460302 | -1.7050294 |
| 71.1200 | 7.540967 | 1.00 | 1 | 4.264369 | -2.6440113 | 2.020350 | -2.4688872 |
| 89.2048 | 12.700576 | 3.00 | 0 | 4.490935 | -1.7069020 | 2.541647 | -1.5637945 |
| 67.3100 | 7.200773 | 1.00 | 0 | 4.209309 | -2.8717461 | 1.974188 | -2.5490353 |
| 85.0900 | 12.360382 | 1.00 | 1 | 4.443709 | -1.9022325 | 2.514496 | -1.6109349 |
| 69.8500 | 7.796112 | 1.00 | 0 | 4.246350 | -2.7185383 | 2.053625 | -2.4111145 |
| 161.9250 | 53.212012 | 55.00 | 0 | 5.087133 | 0.7590570 | 3.974284 | 0.9235965 |
| 152.4000 | 44.678812 | 38.00 | 0 | 5.026509 | 0.5083052 | 3.799499 | 0.6201294 |
| 88.9000 | 12.558829 | 3.00 | 1 | 4.487512 | -1.7210588 | 2.530424 | -1.5832810 |
| 90.1700 | 12.700576 | 3.00 | 1 | 4.501697 | -1.6623892 | 2.541647 | -1.5637945 |
| 71.7550 | 7.370870 | 1.00 | 0 | 4.273257 | -2.6072454 | 1.997536 | -2.5084988 |
| 83.8200 | 9.213587 | 1.00 | 0 | 4.428672 | -1.9644312 | 2.220679 | -2.1210697 |
| 159.3850 | 47.201918 | 28.00 | 1 | 5.071323 | 0.6936621 | 3.854434 | 0.7155096 |
| 142.2400 | 28.632995 | 16.00 | 0 | 4.957516 | 0.2229411 | 3.354560 | -0.1523894 |
| 142.2400 | 31.666391 | 36.00 | 0 | 4.957516 | 0.2229411 | 3.455256 | 0.0224427 |
| 168.9100 | 56.443855 | 38.00 | 1 | 5.129366 | 0.9337375 | 4.033246 | 1.0259687 |
| 123.1900 | 20.014747 | 12.00 | 1 | 4.813728 | -0.3717854 | 2.996469 | -0.7741176 |
| 74.9300 | 8.504850 | 1.00 | 1 | 4.316554 | -2.4281638 | 2.140637 | -2.2600425 |
| 74.2950 | 8.306404 | 1.00 | 0 | 4.308044 | -2.4633652 | 2.117027 | -2.3010347 |
| 90.8050 | 11.623295 | 3.00 | 0 | 4.508714 | -1.6333635 | 2.453011 | -1.7176873 |
| 160.0200 | 55.791816 | 48.00 | 1 | 5.075299 | 0.7101080 | 4.021627 | 1.0057950 |
| 67.9450 | 7.966209 | 1.00 | 0 | 4.218699 | -2.8329089 | 2.075209 | -2.3736404 |
| 135.8900 | 27.215520 | 15.00 | 0 | 4.911846 | 0.0340436 | 3.303787 | -0.2405419 |
| 158.1150 | 47.485413 | 45.00 | 1 | 5.063323 | 0.6605729 | 3.860423 | 0.7259063 |
| 85.0900 | 10.801160 | 3.00 | 1 | 4.443709 | -1.9022325 | 2.379653 | -1.8450535 |
| 93.3450 | 14.004653 | 3.00 | 0 | 4.536302 | -1.5192559 | 2.639390 | -1.3940911 |
| 152.4000 | 45.160753 | 38.00 | 0 | 5.026509 | 0.5083052 | 3.810228 | 0.6387576 |
| 155.5750 | 45.529297 | 21.00 | 0 | 5.047128 | 0.5935894 | 3.818356 | 0.6528689 |
| 154.3050 | 48.874538 | 50.00 | 0 | 5.038931 | 0.5596864 | 3.889257 | 0.7759688 |
| 156.8450 | 46.578229 | 41.00 | 1 | 5.055258 | 0.6272167 | 3.841133 | 0.6924155 |
| 120.0150 | 20.128145 | 13.00 | 0 | 4.787617 | -0.4797847 | 3.002119 | -0.7643083 |
| 114.3000 | 18.143680 | 8.00 | 1 | 4.738827 | -0.6815876 | 2.898322 | -0.9445237 |
| 83.8200 | 10.914558 | 3.00 | 1 | 4.428672 | -1.9644312 | 2.390097 | -1.8269203 |
| 156.2100 | 43.885026 | 30.00 | 0 | 5.051201 | 0.6104372 | 3.781573 | 0.5890054 |
| 137.1600 | 27.158821 | 12.00 | 1 | 4.921148 | 0.0725195 | 3.301702 | -0.2441629 |
| 114.3000 | 19.050864 | 7.00 | 1 | 4.738827 | -0.6815876 | 2.947112 | -0.8598127 |
| 93.9800 | 13.834556 | 4.00 | 0 | 4.543082 | -1.4912142 | 2.627169 | -1.4153081 |
| 168.2750 | 56.046962 | 21.00 | 1 | 5.125599 | 0.9181588 | 4.026190 | 1.0137170 |
| 147.9550 | 40.086193 | 38.00 | 0 | 4.996908 | 0.3858736 | 3.691032 | 0.4318048 |
| 139.7000 | 26.563482 | 15.00 | 1 | 4.939497 | 0.1484141 | 3.279537 | -0.2826456 |
| 157.4800 | 50.802304 | 19.00 | 0 | 5.059298 | 0.6439284 | 3.927942 | 0.8431352 |
| 76.2000 | 9.213587 | 1.00 | 1 | 4.333361 | -2.3586473 | 2.220679 | -2.1210697 |
| 66.0400 | 7.569317 | 1.00 | 1 | 4.190261 | -2.9505321 | 2.024103 | -2.4623723 |
| 160.7000 | 46.300000 | 31.00 | 1 | 5.079539 | 0.7276472 | 3.835142 | 0.6820133 |
| 114.3000 | 19.419407 | 8.00 | 0 | 4.738827 | -0.6815876 | 2.966273 | -0.8265456 |
| 146.0500 | 37.903281 | 16.00 | 1 | 4.983949 | 0.3322727 | 3.635038 | 0.3345857 |
| 161.2900 | 49.356479 | 21.00 | 1 | 5.083204 | 0.7428050 | 3.899069 | 0.7930056 |
| 69.8500 | 7.314171 | 0.00 | 0 | 4.246350 | -2.7185383 | 1.989814 | -2.5219061 |
| 133.9850 | 28.151053 | 13.00 | 1 | 4.897728 | -0.0243499 | 3.337585 | -0.1818618 |
| 67.9450 | 7.824462 | 0.00 | 1 | 4.218699 | -2.8329089 | 2.057255 | -2.4048123 |
| 150.4950 | 44.111822 | 50.00 | 0 | 5.013930 | 0.4562776 | 3.786728 | 0.5979550 |
| 163.1950 | 51.029100 | 39.00 | 1 | 5.094946 | 0.7913707 | 3.932396 | 0.8508690 |
| 148.5900 | 40.766581 | 44.00 | 1 | 5.001191 | 0.4035872 | 3.707863 | 0.4610268 |
| 148.5900 | 37.563088 | 36.00 | 0 | 5.001191 | 0.4035872 | 3.626022 | 0.3189321 |
| 161.9250 | 51.596090 | 36.00 | 1 | 5.087133 | 0.7590570 | 3.943446 | 0.8700541 |
| 153.6700 | 44.820560 | 18.00 | 0 | 5.034807 | 0.5426302 | 3.802667 | 0.6256291 |
| 68.5800 | 8.022908 | 0.00 | 0 | 4.228001 | -2.7944329 | 2.082301 | -2.3613266 |
| 151.1300 | 43.403084 | 58.00 | 0 | 5.018140 | 0.4736930 | 3.770531 | 0.5698327 |
| 163.8300 | 46.719976 | 58.00 | 1 | 5.098829 | 0.8074334 | 3.844172 | 0.6976912 |
| 153.0350 | 39.547553 | 33.00 | 0 | 5.030667 | 0.5255033 | 3.677504 | 0.4083167 |
| 151.7650 | 34.784836 | 21.50 | 0 | 5.022333 | 0.4910353 | 3.549182 | 0.1855194 |
| 132.0800 | 22.792998 | 11.00 | 1 | 4.883408 | -0.0835797 | 3.126453 | -0.5484351 |
| 156.2100 | 39.292407 | 26.00 | 1 | 5.051201 | 0.6104372 | 3.671031 | 0.3970789 |
| 140.3350 | 37.449689 | 22.00 | 0 | 4.944032 | 0.1671721 | 3.622998 | 0.3136827 |
| 158.7500 | 48.676091 | 28.00 | 1 | 5.067331 | 0.6771506 | 3.885188 | 0.7689048 |
| 142.8750 | 35.606972 | 42.00 | 0 | 4.961970 | 0.2413650 | 3.572541 | 0.2260777 |
| 84.4550 | 9.383684 | 2.00 | 1 | 4.436219 | -1.9332149 | 2.238973 | -2.0893085 |
| 151.9428 | 43.714929 | 21.00 | 1 | 5.023504 | 0.4958781 | 3.777690 | 0.5822627 |
| 161.2900 | 48.194150 | 19.00 | 1 | 5.083204 | 0.7428050 | 3.875238 | 0.7516287 |
| 127.9906 | 29.852024 | 13.00 | 1 | 4.851957 | -0.2136652 | 3.396253 | -0.0800008 |
| 160.9852 | 50.972401 | 48.00 | 1 | 5.081312 | 0.7349812 | 3.931284 | 0.8489388 |
| 144.7800 | 43.998424 | 46.00 | 0 | 4.975215 | 0.2961490 | 3.784154 | 0.5934860 |
| 132.0800 | 28.292801 | 11.00 | 1 | 4.883408 | -0.0835797 | 3.342607 | -0.1731414 |
| 117.9830 | 20.354941 | 8.00 | 1 | 4.770541 | -0.5504142 | 3.013324 | -0.7448546 |
| 160.0200 | 48.194150 | 25.00 | 1 | 5.075299 | 0.7101080 | 3.875238 | 0.7516287 |
| 154.9400 | 39.179009 | 16.00 | 1 | 5.043038 | 0.5766727 | 3.668141 | 0.3920609 |
| 160.9852 | 46.691626 | 51.00 | 1 | 5.081312 | 0.7349812 | 3.843565 | 0.6966373 |
| 165.9890 | 56.415505 | 25.00 | 1 | 5.111922 | 0.8615846 | 4.032744 | 1.0250964 |
| 157.9880 | 48.591043 | 28.00 | 1 | 5.062519 | 0.6572493 | 3.883439 | 0.7658685 |
| 154.9400 | 48.222499 | 26.00 | 0 | 5.043038 | 0.5766727 | 3.875826 | 0.7526497 |
| 97.9932 | 13.295915 | 5.00 | 1 | 4.584898 | -1.3182570 | 2.587457 | -1.4842584 |
| 64.1350 | 6.662133 | 1.00 | 0 | 4.160990 | -3.0715984 | 1.896440 | -2.6840252 |
| 160.6550 | 47.485413 | 54.00 | 1 | 5.079259 | 0.7264888 | 3.860423 | 0.7259063 |
| 147.3200 | 35.550273 | 66.00 | 0 | 4.992607 | 0.3680837 | 3.570948 | 0.2233108 |
| 146.7000 | 36.600000 | 20.00 | 0 | 4.988390 | 0.3506399 | 3.600048 | 0.2738358 |
| 147.3200 | 48.959587 | 25.00 | 0 | 4.992607 | 0.3680837 | 3.890995 | 0.7789875 |
| 172.9994 | 51.255896 | 38.00 | 1 | 5.153288 | 1.0326826 | 3.936831 | 0.8585685 |
| 158.1150 | 46.521529 | 51.00 | 1 | 5.063323 | 0.6605729 | 3.839915 | 0.6903007 |
| 147.3200 | 36.967748 | 48.00 | 0 | 4.992607 | 0.3680837 | 3.610046 | 0.2911940 |
| 124.9934 | 25.117657 | 13.00 | 1 | 4.828261 | -0.3116747 | 3.223571 | -0.3798162 |
| 106.0450 | 16.272613 | 6.00 | 1 | 4.663863 | -0.9916451 | 2.789483 | -1.1334932 |
| 165.9890 | 48.647742 | 27.00 | 1 | 5.111922 | 0.8615846 | 3.884605 | 0.7678933 |
| 149.8600 | 38.045029 | 22.00 | 0 | 5.009702 | 0.4387886 | 3.638770 | 0.3410666 |
| 76.2000 | 8.504850 | 1.00 | 0 | 4.333361 | -2.3586473 | 2.140637 | -2.2600425 |
| 161.9250 | 47.286966 | 60.00 | 1 | 5.087133 | 0.7590570 | 3.856235 | 0.7186352 |
| 140.0048 | 28.349500 | 15.00 | 0 | 4.941677 | 0.1574286 | 3.344609 | -0.1696655 |
| 66.6750 | 8.136306 | 0.00 | 0 | 4.199830 | -2.9109515 | 2.096336 | -2.3369580 |
| 62.8650 | 7.200773 | 0.00 | 1 | 4.140990 | -3.1543240 | 1.974188 | -2.5490353 |
| 163.8300 | 55.394923 | 43.00 | 1 | 5.098829 | 0.8074334 | 4.014488 | 0.9933996 |
| 147.9550 | 32.488527 | 12.00 | 1 | 4.996908 | 0.3858736 | 3.480887 | 0.0669442 |
| 160.0200 | 54.204244 | 27.00 | 1 | 5.075299 | 0.7101080 | 3.992759 | 0.9556735 |
| 154.9400 | 48.477645 | 30.00 | 1 | 5.043038 | 0.5766727 | 3.881103 | 0.7618119 |
| 152.4000 | 43.062891 | 29.00 | 0 | 5.026509 | 0.5083052 | 3.762662 | 0.5561705 |
| 62.2300 | 7.257472 | 0.00 | 0 | 4.130837 | -3.1963156 | 1.982032 | -2.5354177 |
| 146.0500 | 34.189497 | 23.00 | 0 | 4.983949 | 0.3322727 | 3.531919 | 0.1555467 |
| 151.9936 | 49.951819 | 30.00 | 0 | 5.023838 | 0.4972608 | 3.911059 | 0.8138228 |
| 157.4800 | 41.305222 | 17.00 | 1 | 5.059298 | 0.6439284 | 3.720989 | 0.4838170 |
| 55.8800 | 4.847765 | 0.00 | 0 | 4.023206 | -3.6414909 | 1.578518 | -3.2360117 |
| 60.9600 | 6.236890 | 0.00 | 1 | 4.110218 | -3.2815998 | 1.830482 | -2.7985436 |
| 151.7650 | 44.338618 | 41.00 | 0 | 5.022333 | 0.4910353 | 3.791856 | 0.6068588 |
| 144.7800 | 33.452410 | 42.00 | 0 | 4.975215 | 0.2961490 | 3.510124 | 0.1177061 |
| 118.1100 | 16.896302 | 7.00 | 0 | 4.771616 | -0.5459643 | 2.827095 | -1.0681913 |
| 78.1050 | 8.221355 | 3.00 | 0 | 4.358054 | -2.2565152 | 2.106735 | -2.3189034 |
| 160.6550 | 47.286966 | 43.00 | 1 | 5.079259 | 0.7264888 | 3.856235 | 0.7186352 |
| 151.1300 | 46.124637 | 35.00 | 0 | 5.018140 | 0.4736930 | 3.831347 | 0.6754247 |
| 121.9200 | 20.184844 | 10.00 | 0 | 4.803365 | -0.4146473 | 3.004932 | -0.7594244 |
| 92.7100 | 12.757275 | 3.00 | 1 | 4.529476 | -1.5474890 | 2.546102 | -1.5560607 |
| 153.6700 | 47.400364 | 75.50 | 1 | 5.034807 | 0.5426302 | 3.858630 | 0.7227938 |
| 147.3200 | 40.851630 | 64.00 | 0 | 4.992607 | 0.3680837 | 3.709947 | 0.4646452 |
| 139.7000 | 50.348712 | 38.00 | 1 | 4.939497 | 0.1484141 | 3.918973 | 0.8275635 |
| 157.4800 | 45.132404 | 24.20 | 0 | 5.059298 | 0.6439284 | 3.809601 | 0.6376673 |
| 91.4400 | 11.623295 | 4.00 | 0 | 4.515683 | -1.6045401 | 2.453011 | -1.7176873 |
| 154.9400 | 42.240755 | 26.00 | 1 | 5.043038 | 0.5766727 | 3.743386 | 0.5227027 |
| 143.5100 | 41.645415 | 19.00 | 0 | 4.966405 | 0.2597071 | 3.729191 | 0.4980582 |
| 83.1850 | 9.156889 | 2.00 | 1 | 4.421067 | -1.9958849 | 2.214506 | -2.1317872 |
| 158.1150 | 45.217453 | 43.00 | 1 | 5.063323 | 0.6605729 | 3.811483 | 0.6409360 |
| 147.3200 | 51.255896 | 38.00 | 0 | 4.992607 | 0.3680837 | 3.936831 | 0.8585685 |
| 123.8250 | 21.205426 | 10.00 | 1 | 4.818869 | -0.3505199 | 3.054257 | -0.6737846 |
| 88.9000 | 11.594945 | 3.00 | 1 | 4.487512 | -1.7210588 | 2.450569 | -1.7219272 |
| 160.0200 | 49.271431 | 23.00 | 1 | 5.075299 | 0.7101080 | 3.897344 | 0.7900112 |
| 137.1600 | 27.952607 | 16.00 | 0 | 4.921148 | 0.0725195 | 3.330510 | -0.1941445 |
| 165.1000 | 51.199197 | 49.00 | 1 | 5.106551 | 0.8393729 | 3.935724 | 0.8566468 |
| 154.9400 | 43.856676 | 41.00 | 0 | 5.043038 | 0.5766727 | 3.780927 | 0.5878834 |
| 111.1250 | 17.690088 | 6.00 | 1 | 4.710656 | -0.7981062 | 2.873004 | -0.9884813 |
| 153.6700 | 35.521923 | 23.00 | 0 | 5.034807 | 0.5426302 | 3.570150 | 0.2219257 |
| 145.4150 | 34.246196 | 14.00 | 0 | 4.979592 | 0.3142503 | 3.533575 | 0.1584237 |
| 141.6050 | 42.885420 | 43.00 | 0 | 4.953042 | 0.2044349 | 3.758532 | 0.5490004 |
| 144.7800 | 32.545226 | 15.00 | 0 | 4.975215 | 0.2961490 | 3.482631 | 0.0699716 |
| 163.8300 | 46.776675 | 21.00 | 1 | 5.098829 | 0.8074334 | 3.845385 | 0.6997970 |
| 161.2900 | 41.872211 | 24.00 | 1 | 5.083204 | 0.7428050 | 3.734622 | 0.5074879 |
| 154.9000 | 38.200000 | 20.00 | 1 | 5.042780 | 0.5756047 | 3.642835 | 0.3481245 |
| 161.3000 | 43.300000 | 20.00 | 1 | 5.083266 | 0.7430614 | 3.768153 | 0.5657042 |
| 170.1800 | 53.637254 | 34.00 | 1 | 5.136857 | 0.9647200 | 3.982244 | 0.9374164 |
| 149.8600 | 42.977842 | 29.00 | 0 | 5.009702 | 0.4387886 | 3.760685 | 0.5527381 |
| 123.8250 | 21.545620 | 11.00 | 1 | 4.818869 | -0.3505199 | 3.070172 | -0.6461517 |
| 85.0900 | 11.424848 | 3.00 | 0 | 4.443709 | -1.9022325 | 2.435791 | -1.7475863 |
| 160.6550 | 39.774349 | 65.00 | 1 | 5.079259 | 0.7264888 | 3.683222 | 0.4182452 |
| 154.9400 | 43.346385 | 46.00 | 0 | 5.043038 | 0.5766727 | 3.769223 | 0.5675632 |
| 106.0450 | 15.478827 | 8.00 | 0 | 4.663863 | -0.9916451 | 2.739473 | -1.2203229 |
| 126.3650 | 21.914164 | 15.00 | 1 | 4.839175 | -0.2665345 | 3.087133 | -0.6167041 |
| 166.3700 | 52.673371 | 43.00 | 1 | 5.114214 | 0.8710676 | 3.964110 | 0.9059318 |
| 148.2852 | 38.441922 | 39.00 | 0 | 4.999137 | 0.3950941 | 3.649149 | 0.3590855 |
| 124.4600 | 19.277660 | 12.00 | 0 | 4.823984 | -0.3293631 | 2.958947 | -0.8392653 |
| 89.5350 | 11.113004 | 3.00 | 1 | 4.494630 | -1.6916199 | 2.408116 | -1.7956360 |
| 101.6000 | 13.494362 | 4.00 | 0 | 4.621043 | -1.1687545 | 2.602272 | -1.4585360 |
| 151.7650 | 42.807745 | 43.00 | 0 | 5.022333 | 0.4910353 | 3.756719 | 0.5458528 |
| 148.5900 | 35.890467 | 70.00 | 0 | 5.001191 | 0.4035872 | 3.580472 | 0.2398464 |
| 153.6700 | 44.225220 | 26.00 | 0 | 5.034807 | 0.5426302 | 3.789295 | 0.6024126 |
| 53.9750 | 4.252425 | 0.00 | 0 | 3.988521 | -3.7849551 | 1.447489 | -3.4635073 |
| 146.6850 | 38.073378 | 48.00 | 0 | 4.988287 | 0.3502170 | 3.639515 | 0.3423599 |
| 56.5150 | 5.159609 | 0.00 | 0 | 4.034506 | -3.5947543 | 1.640861 | -3.1277696 |
| 100.9650 | 14.316498 | 5.00 | 1 | 4.614774 | -1.1946865 | 2.661412 | -1.3558542 |
| 121.9200 | 23.218241 | 8.00 | 1 | 4.803365 | -0.4146473 | 3.144938 | -0.5163411 |
| 81.5848 | 10.659412 | 3.00 | 0 | 4.401643 | -2.0762255 | 2.366443 | -1.8679895 |
| 154.9400 | 44.111822 | 44.00 | 1 | 5.043038 | 0.5766727 | 3.786728 | 0.5979550 |
| 156.2100 | 44.026773 | 33.00 | 0 | 5.051201 | 0.6104372 | 3.784798 | 0.5946043 |
| 132.7150 | 24.975910 | 15.00 | 1 | 4.888204 | -0.0637420 | 3.217912 | -0.3896421 |
| 125.0950 | 22.594552 | 12.00 | 0 | 4.829073 | -0.3083140 | 3.117709 | -0.5636177 |
| 101.6000 | 14.344847 | 5.00 | 0 | 4.621043 | -1.1687545 | 2.663391 | -1.3524195 |
| 160.6550 | 47.882306 | 41.00 | 1 | 5.079259 | 0.7264888 | 3.868746 | 0.7403577 |
| 146.0500 | 39.405805 | 37.40 | 0 | 4.983949 | 0.3322727 | 3.673913 | 0.4020825 |
| 132.7150 | 24.777463 | 13.00 | 0 | 4.888204 | -0.0637420 | 3.209935 | -0.4034924 |
| 87.6300 | 10.659412 | 6.00 | 0 | 4.473123 | -1.7805726 | 2.366443 | -1.8679895 |
| 156.2100 | 41.050076 | 53.00 | 1 | 5.051201 | 0.6104372 | 3.714793 | 0.4730589 |
| 152.4000 | 40.823280 | 49.00 | 0 | 5.026509 | 0.5083052 | 3.709252 | 0.4634399 |
| 162.5600 | 47.031821 | 27.00 | 0 | 5.091047 | 0.7752454 | 3.850824 | 0.7092416 |
| 114.9350 | 17.519991 | 7.00 | 1 | 4.744367 | -0.6586726 | 2.863343 | -1.0052567 |
| 67.9450 | 7.229122 | 1.00 | 0 | 4.218699 | -2.8329089 | 1.978118 | -2.5422132 |
| 142.8750 | 34.246196 | 31.00 | 0 | 4.961970 | 0.2413650 | 3.533575 | 0.1584237 |
| 76.8350 | 8.022908 | 1.00 | 1 | 4.341660 | -2.3243223 | 2.082301 | -2.3613266 |
| 145.4150 | 31.127751 | 17.00 | 1 | 4.979592 | 0.3142503 | 3.438100 | -0.0073445 |
| 162.5600 | 52.163080 | 31.00 | 1 | 5.091047 | 0.7752454 | 3.954375 | 0.8890295 |
| 156.2100 | 54.062497 | 21.00 | 0 | 5.051201 | 0.6104372 | 3.990141 | 0.9511272 |
| 71.1200 | 8.051258 | 0.00 | 1 | 4.264369 | -2.6440113 | 2.085828 | -2.3552023 |
| 158.7500 | 52.531624 | 68.00 | 1 | 5.067331 | 0.6771506 | 3.961415 | 0.9012532 |
## [1] 1.609438
## [1] 0.7430039
## [1] 0.9836003
## Approximated Approximator
## Island 1 1.0024795 -0.5377298
## Island 2 -0.4136578 0.7218202
## Island 3 -0.1759094 0.7218202
Notice that each row sums to 1, all the birds. This problem has two parts. It is not computationally complicated. But it is conceptually tricky. First, compute the entropy of each island’s bird distribution. Interpret these entropy values. Second, use each island’s bird distribution to predict the other two. This means to compute the KL divergence of each island from the others, treating each island as if it were a statistical model of the other islands. You should end up with 6 different KL divergence values. Which island predicts the others best? Why?
#Island 1 is the best predictor for orger islands.
7-4. Recall the marriage, age, and happiness collider bias example from Chapter 6. Run models m6.9 and m6.10 again (page 178). Compare these two models using WAIC (or PSIS, they will produce identical results). Which model is expected to make better predictions? Which model provides the correct causal inference about the influence of age on happiness? Can you explain why the answers to these two questions disagree?
d <- sim_happiness(seed = 1977, N_years = 1000)
## R code 6.22
d2 <- d[d$age > 17, ] # only adults
d2$A <- (d2$age - 18) / (65 - 18)
## R code 6.23
d2$mid <- d2$married + 1
m6.9 <- quap(
alist(
happiness ~ dnorm(mu, sigma),
mu <- a[mid] + bA * A,
a[mid] ~ dnorm(0, 1),
bA ~ dnorm(0, 2),
sigma ~ dexp(1)
),
data = d2
)
## R code 6.24
m6.10 <- quap(
alist(
happiness ~ dnorm(mu, sigma),
mu <- a + bA * A,
a ~ dnorm(0, 1),
bA ~ dnorm(0, 2),
sigma ~ dexp(1)
),
data = d2
)
## Comparison
compare(m6.9, m6.10)
## WAIC SE dWAIC dSE pWAIC weight
## m6.9 2713.971 37.54465 0.0000 NA 3.738532 1.000000e+00
## m6.10 3101.906 27.74379 387.9347 35.40032 2.340445 5.768312e-85
#Based on this, it appears that mc.9 does a better job at predicting as it contains both age and marriage status.
#However, m6.10 is better as mc.9 fails to find casuality.
7-5. Revisit the urban fox data, data(foxes), from the previous chapter’s practice problems. Use WAIC or PSIS based model comparison on five different models, each using weight as the outcome, and containing these sets of predictor variables:
Can you explain the relative differences in WAIC scores, using the fox DAG from the previous chapter? Be sure to pay attention to the standard error of the score differences (dSE).
# data loading and prepping
data(foxes)
data = foxes
data$area = scale( data$area )
data$food = scale( data$avgfood )
data$groupsize = scale( data$groupsize )
data$weight = scale( data$weight)
## Model for`avgfood + groupsize + area`
m1 = quap(
alist(
weight ~ dnorm(mu, sigma),
mu <- a + bFood * avgfood + bGroup * groupsize + bArea * area,
a ~ dnorm(0, .2),
c(bFood, bGroup, bArea) ~ dnorm(0, 5),
sigma ~ dexp(1)
),
data = data
)
# Model for`avgfood + groupsize`
m2 = quap(
alist(
weight ~ dnorm(mu, sigma),
mu <- a + bFood * avgfood + bGroup * groupsize,
a ~ dnorm(0, .2),
c(bFood, bGroup) ~ dnorm(0, 5),
sigma ~ dexp(1)
),
data = data
)
# Model for`groupsize + area`
m3 = quap(
alist(
weight ~ dnorm(mu, sigma),
mu <- a + bGroup * groupsize + bArea * area,
a ~ dnorm(0, .2),
c(bGroup, bArea) ~ dnorm(0, 5),
sigma ~ dexp(1)
),
data = data
)
# `Model for avgfood`
m4 = quap(
alist(
weight ~ dnorm(mu, sigma),
mu <- a + bFood * avgfood,
a ~ dnorm(0, .2),
bFood ~ dnorm(0, 5),
sigma ~ dexp(1)
),
data = data
)
# Model for `area`
m5 = quap(
alist(
weight ~ dnorm(mu, sigma),
mu <- a + bArea * area,
a ~ dnorm(0, .2),
bArea ~ dnorm(0, 5),
sigma ~ dexp(1)
),
data = data
)
## Comparison
(model.compare=compare(m1, m2, m3, m4, m5))
## WAIC SE dWAIC dSE pWAIC weight
## m1 323.7983 16.03770 0.0000000 NA 3.961414 0.518084659
## m3 324.0666 16.18771 0.2682736 0.4015293 3.945774 0.453049710
## m2 330.4839 14.82790 6.6855673 6.5270897 3.105662 0.018308309
## m4 332.3905 13.78571 8.5922089 7.4951036 1.946376 0.007057100
## m5 333.7929 13.79707 9.9946241 7.4644674 2.684646 0.003500223
#DAG
library(dagitty)
library(tidygraph)
quest <- dagitty( "dag {area -> avgfood
avgfood -> groupsize
avgfood -> weight
groupsize -> weight
}")
coordinates (quest) <- list(x=c(area=1,avgfood=0,groupsize=2, weight=1),
y=c(area=0, avgfood=1, groupsize=1, weight=2))
drawdag(quest, lwd = 2)
#Thus from the above, we can see that WAIC scores all fall well within the 99% intervals of the differences. # Models m1, m2, and m3 are mostly identical in their out-of-sample deviance.All three models use groupsize and two of them use area and two use avgfood. From DAG, we can see that the effect of area while adjusting for groupsize is the same as the effect of avgfood while adjusting for groupsize, because the effect of area is routed entirely through avgfood.
#Model m4 and m5 are nearly identical because these two only contain area or avgfood in isolation and all information of area onto weight must pass through avgfood.