library(WDI)
df = WDI(indicator=c(un='SL.UEM.TOTL.ZS', enf='FP.CPI.TOTL.ZG' ), country=c('TR'),  start=1992, end=2020)
library(dynlm)
## Zorunlu paket yükleniyor: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
df.ts <- ts(df, start=c(1992), end=c(2020),frequency=1)
head(df.ts)
##      iso2c country year   un       enf
## [1,]     1       1 1992 8.51  70.07610
## [2,]     1       1 1993 8.96  66.09384
## [3,]     1       1 1994 8.58 105.21499
## [4,]     1       1 1995 7.64  89.11332
## [5,]     1       1 1996 6.63  80.41215
## [6,]     1       1 1997 6.84  85.66936
plot(df.ts[,"un"], ylab="iÅŸsizlik")

plot(df.ts[,"enf"], ylab="enflasyon")

library(WDI)
df = WDI(indicator=c(nüfus='SP.POP.TOTL', gsyih='NY.GDP.MKTP.CD' ), country=c('TR'),  start=2000, end=2020)
library(dynlm)
df.ts <- ts(df, start=c(2000), end=c(2020),frequency=1)
df.ts<-df.ts[,c("nüfus","gsyih")]
df.ts<-df.ts[,c("nüfus","gsyih")]
plot.ts(df.ts[, "nüfus"], ylab = "nüfus buyume orani")

plot(df.ts[,"gsyih"], ylab="gayri safi yurtiçi hasıla")

library(WDI)
df = WDI(indicator=c(buyume='NY.GDP.MKTP.KD.ZG', enf='FP.CPI.TOTL.ZG' ), country=c('TR'),  start=1992, end=2020)
library(dynlm)
df.ts <- ts(df, start=c(1992), end=c(2020),frequency=1)
df.ts<-df.ts[,c("buyume","enf")]
plot.ts(df.ts[, "buyume"], ylab = "buyumeorani")

plot(df.ts[,"enf"], ylab="enflasyon")

gecikmelibuyume <- data.frame(cbind(df.ts[,"buyume"], lag(df.ts[,"buyume"],-1)))
names(gecikmelibuyume) <- c("buyume","buyume1gec")
head(gecikmelibuyume)
##      buyume buyume1gec
## 1  5.035635         NA
## 2  7.651265   5.035635
## 3 -4.668147   7.651265
## 4  7.878267  -4.668147
## 5  7.379664   7.878267
## 6  7.577664   7.379664
acf(df.ts[,"buyume"])

acf(df.ts[,"enf"])

enflasyon <- df.ts[,"enf"]
deltabuyumeorani <- diff(df.ts[,"buyume"])
plot(enflasyon)

plot(deltabuyumeorani)