a <- c(TRUE, TRUE, TRUE, FALSE, FALSE)
b <- matrix(2,4,6,8)
c <- list("my", "list")
length(a)
## [1] 5
length(b)
## [1] 24
length(c)
## [1] 2
a <- c(TRUE, TRUE, TRUE, FALSE, FALSE)
b <- matrix(2,4,6,8)
c <- mtcars
length(a)
## [1] 5
length(b)
## [1] 24
length(c)
## [1] 11
summary(mtcars)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
plot(mtcars$mpg,mtcars$disp, xlab="MPG", ylab="disp")
Olympic Data Downloaded
olympic_data <- read.csv("olympic_athletes.csv")
athletes2 <- data.frame(olympic_data$athletes[,c("name", "sport")])
write.csv(athletes2, "olympic_athletes_name_sports.csv")
weight <- (olympic_data$Weight)
weight <- weight[is.na(weight)]
weight_min <- min(weight)
weight_med <- median(weight)
weight_sd <- sd(weight)
weight_stats <- list(weight_min, weight_med, weight_sd)
season_stats <- list(olympic_data$Season)
table(season_stats)
## season_stats
## Summer Winter
## 4137 863