Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Fakultas : Sains dan Teknologi

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflowjawa <- read_excel(path = "~/linear algebra/inflow jawa.xlsx")
library(readxl)
dataoutflowjawa <- read_excel(path = "~/linear algebra/outflow jawa.xlsx")
datainflowjawa
## # A tibble: 11 x 7
##    Keterangan    Jawa `Jawa Barat` `Jawa Tengah` Yogyakarta `Jawa Timur` Banten
##         <dbl>   <dbl>        <dbl>         <dbl>      <dbl>        <dbl>  <dbl>
##  1       2011 123917.       43775.        35137.      6490.       38515.     0 
##  2       2012 160482.       60629.        43298.      9173.       47383.     0 
##  3       2013 134998.       35190.        42182.      8939.       48687.     0 
##  4       2014 217303.       78660.        60476.     13890.       64276.     0 
##  5       2015 230141.       81303.        65198.     14831.       68808.     0 
##  6       2016 261607.       88036.        72782.     17350.       83439.     0 
##  7       2017 277609.       83220.        77031.     17483.       98380.  1495.
##  8       2018 306911.       87243.        87829.     20574.      106433.  4832.
##  9       2019 324624.       94846.        90751.     20899.      113651.  4477.
## 10       2020 259444.       76883.        84970.      7348.       86848.  3396.
## 11       2021 187816.       57295.        62024.      6714.       58986.  2798.
dataoutflowjawa
## # A tibble: 11 x 7
##    Keterangan    Jawa `Jawa Barat` `Jawa Tengah` Yogyakarta `Jawa Timur` Banten
##         <dbl>   <dbl>        <dbl>         <dbl>      <dbl>        <dbl>  <dbl>
##  1       2011  83511.       20782.        19975.      7538.       35217.     0 
##  2       2012 111363.       28895.        28493.      9486.       44489.     0 
##  3       2013  98969.       23067.        29529.      9708.       36665.     0 
##  4       2014 147069.       40857.        39110.     13171.       53931.     0 
##  5       2015 171568.       47063.        46840.     14080.       63585.     0 
##  6       2016 190568.       49405.        53659.     13013.       74491.     0 
##  7       2017 228905.       53825.        62761.     16810.       93396.  2113.
##  8       2018 253125.       61358.        69368.     20357.       97995.  4047.
##  9       2019 271957.       61692.        72363.     21353.      105514. 11035.
## 10       2020 251363.       57235.        72342.     16619.       93374. 11793.
## 11       2021 143340.       34763.        44455.      9652.       46029.  8441.

Visualisasi Prediksi Data Inflow Uang Kartal antara jawa barat dengan jawa timur setiap periode

plot(datainflowjawa$Keterangan,datainflowjawa$`Jawa Barat`,type = "l", col = "red")
lines(datainflowjawa$Keterangan, datainflowjawa$`Jawa Timur`,col = "blue")
legend("top", c("inflow jawa barat","inflow jawa timur"),fill = c("red","blue"))

Visualisasi Prediksi Data Outflow Uang Kartal antara jawa barat dengan jawa timur setiap periode

plot(dataoutflowjawa$Keterangan, dataoutflowjawa$`Jawa Barat`, type = "l", col = "red")
lines(dataoutflowjawa$Keterangan, dataoutflowjawa$`Jawa Timur`, col = "blue")
legend("top", c("Outflow jawa barat","Outflow jawa timur"), fill = c("red","blue"))

Visualisasi Prediksi Data Inflow-Outflow Uang Kartal antara jawa barat dengan jawa timur setiap periode

plot(datainflowjawa$Keterangan ,datainflowjawa$`Jawa Barat` ,type = "l", col = "red")
lines(datainflowjawa$Keterangan ,datainflowjawa$`Jawa Timur` ,col = "blue")
lines(dataoutflowjawa$Keterangan,dataoutflowjawa$`Jawa Barat` ,type = "l", col = "green")
lines(dataoutflowjawa$Keterangan,dataoutflowjawa$`Jawa Timur` ,col = "orange")
legend("top",c("Inflow jawa barat","Inflow jawa timur","Outflow jawa barat","Outflow jawa timur"),fill=c("red","blue","green","orange"))

Visualisasi Prediksi Data Inflow-Outflow Uang Kartal antara jawa barat dengan jawa timur Setiap Bulan

library(readxl)
inflowjawaperbulan <- read_excel(path = "~/linear algebra/inflow jawa perbulan.xlsx")
outflowjawaperbulan <- read_excel(path = "~/linear algebra/outflow jawa perbulan.xlsx")
inflowjawaperbulan
## # A tibble: 128 x 7
##    Keterangan            Jawa `Jawa Barat` `Jawa Tengah` Yogyakarta `Jawa Timur`
##    <dttm>               <dbl>        <dbl>         <dbl>      <dbl>        <dbl>
##  1 2011-01-01 00:00:00  7736.        1980.         2254.       431.        3071.
##  2 2011-02-01 00:00:00  6667.        1726.         1823.       186.        2932.
##  3 2011-03-01 00:00:00 10318.        3718.         3085.       461.        3054.
##  4 2011-04-01 00:00:00  7826.        2864.         2290.       291.        2381.
##  5 2011-05-01 00:00:00  8166.        3169.         2202.       375.        2419.
##  6 2011-06-01 00:00:00  7442.        2971.         2036.       436.        1998.
##  7 2011-07-01 00:00:00  9051.        3615.         2607.       499.        2330.
##  8 2011-08-01 00:00:00  6073.        2398.         1496.       293.        1887.
##  9 2011-09-01 00:00:00 28450.        9581.         8534.      1568.        8767.
## 10 2011-10-01 00:00:00 11368.        3975.         3340.       740.        3314.
## # ... with 118 more rows, and 1 more variable: Banten <dbl>
outflowjawaperbulan
## # A tibble: 128 x 7
##    Keterangan            Jawa `Jawa Barat` `Jawa Tengah` Yogyakarta `Jawa Timur`
##    <dttm>               <dbl>        <dbl>         <dbl>      <dbl>        <dbl>
##  1 2011-01-01 00:00:00  1113.         181.          123.       186.         622.
##  2 2011-02-01 00:00:00  2304.         445.          425.       272.        1161.
##  3 2011-03-01 00:00:00  3427.         762.          535.       312.        1819.
##  4 2011-04-01 00:00:00  5427.        1246.         1165.       467.        2548.
##  5 2011-05-01 00:00:00  5168.        1110.         1372.       485.        2202.
##  6 2011-06-01 00:00:00  6644.        1417.         1717.       629.        2882.
##  7 2011-07-01 00:00:00  8652.        2034.         2318.       597.        3703.
##  8 2011-08-01 00:00:00 26309.        6858.         7200.      2185.       10065.
##  9 2011-09-01 00:00:00  2440.         541.          427.       474.         998.
## 10 2011-10-01 00:00:00  5599.        1310.         1148.       694.        2447.
## # ... with 118 more rows, and 1 more variable: Banten <dbl>
plot(inflowjawaperbulan$`Jawa Barat` ,type = "l", col = "dark blue")
lines(inflowjawaperbulan$`Jawa Timur` ,col = "maroon")
lines(outflowjawaperbulan$`Jawa Barat` ,type = "l", col = "coral")
lines(outflowjawaperbulan$`Jawa Timur` ,col = "green")
legend("top",c("Inflow jawa barat","Inflow jawa timur","Outflow jawa barat","Outflow jawa timur"),fill=c("dark blue","maroon","coral","green"))

JawaBaratTimeSeries <- inflowjawaperbulan$`Jawa Barat`
JawaTimurTimeSeries <- inflowjawaperbulan$`Jawa Timur`
plot.ts(JawaBaratTimeSeries,type = "l", col = "red")
lines(JawaTimurTimeSeries, type = "l", col = "green" )
legend("top", c("jawa barat timeseries","jawa timur time series"),fill = c("red","green"))

logJawaBarat <- log(inflowjawaperbulan$`Jawa Barat`)
logJawaTimur <- log(inflowjawaperbulan$`Jawa Timur`)
plot.ts(logJawaBarat, type = "l",col = "grey")
lines(logJawaTimur, type = "l",col = "gold")
legend("top",c("logJawaBarat","logJawaTimur"),fill = c("grey","gold"))

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.3
JawaBaratSMA3 <- SMA(inflowjawaperbulan$`Jawa Barat`,n=3)
JawaTimurSMA3 <- SMA(inflowjawaperbulan$`Jawa Timur`,n=3)
plot.ts(JawaBaratSMA3, type = "l", col = "yellow")
lines(JawaTimurSMA3, type = "l", col = "purple")
legend("top",c("JawaBaratSMA3","JawaTimurSMA3"),fill = c("yellow","purple"))

library(TTR)
JawaBaratSMA3 <- SMA(inflowjawaperbulan$`Jawa Barat`,n=8)
JawaTimurSMA3 <- SMA(inflowjawaperbulan$`Jawa Timur`,n=8)
plot.ts(JawaBaratSMA3, type = "l", col = "yellow")
lines(JawaTimurSMA3, type = "l", col = "purple")
legend("top",c("JawaBaratSMA3","JawaTimurSMA3"),fill = c("yellow","purple"))

Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal antara Jawa Barat dengan Jawa Timur

jabarinflowtimeseries <- ts(inflowjawaperbulan$`Jawa Barat`, frequency = 12, start = c(2011,1))
jatiminflowtimeseries <- ts(inflowjawaperbulan$`Jawa Timur`, frequency = 12, start = c(2011,1))
jabarinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  1980.3285  1725.6485  3717.8929  2863.7244  3169.4339  2971.4317
## 2012  5873.0749  4426.0191  4118.2626  4002.5015  5021.0839  5048.4072
## 2013  3194.7520  1897.3730  1082.1137  1154.3214  1294.0395  1079.9000
## 2014  8242.0860  6263.4963  5187.0695  5671.1514  4998.1296  6342.6529
## 2015  9165.0026  5296.6565  5871.9311  5619.7098  5869.8295  6577.6708
## 2016 10045.8328  6526.1852  5732.3604  5444.5314  6784.8252  5126.5606
## 2017  9127.3547  5890.5899  6514.4821  5134.7993  5744.5843  3678.3763
## 2018 10507.9216  5620.3161  6049.8859  6479.1871  5531.4095 12534.4088
## 2019 11412.1770  6589.9532  5984.6745  6411.5937  5175.4092 17164.0014
## 2020 12119.6656  6232.4385  5176.8003  5506.2201  4694.7020  9985.0523
## 2021 12965.3448  5678.6530  6112.9267  5177.0146 11698.7809  6319.1959
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  3615.0001  2398.0288  9580.5553  3974.8051  4328.1571  3449.9416
## 2012  5402.5484  6685.0025  6179.0816  4405.0095  5583.0107  3884.9810
## 2013   996.9936  2424.2419  5775.2391  6370.3939  5662.7978  4257.7023
## 2014  3590.2782 13318.3519  6910.4652  7101.1196  5999.9334  5035.7368
## 2015  9821.6711  8958.7368  6227.7674  6697.1780  6106.1231  5090.4833
## 2016 14735.1467  7634.4139  7089.3179  6883.6591  5985.4179  6047.8950
## 2017 15872.1572  7310.8588  6978.3334  6589.7235  6083.1940  4295.8605
## 2018  9793.0746  6545.6836  6878.1089  7198.3731  5660.9146  4443.9625
## 2019  8678.2620  8129.2421  7007.8905  7236.5522  6532.2064  4523.6976
## 2020  5496.5412  6253.7269  6667.8679  4578.6309  7019.8521  3151.9279
## 2021  3754.6179  5588.0980
jatiminflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  3071.011  2932.262  3054.203  2381.178  2418.761  1998.229  2329.895
## 2012  5551.676  4091.862  3249.951  3193.361  3851.132  2673.787  3945.991
## 2013  6189.613  3389.515  2937.854  3256.841  3189.894  2975.463  3470.218
## 2014  8821.191  5411.171  3789.147  3889.709  3960.321  4229.178  1784.529
## 2015  9302.214  4610.568  4528.315  4299.768  5006.318  4808.087 10719.480
## 2016  9802.295  7060.086  5170.786  4770.902  6282.794  4496.823 14403.892
## 2017 10336.152  6777.860  6750.998  6386.411  7526.697  3332.357 19702.729
## 2018 13187.621  7417.607  6096.684  7509.484  6441.516 15185.729 12618.539
## 2019 13282.646  7529.556  7036.191  7362.127  6503.036 19381.085  9575.539
## 2020 14488.880  8426.676  6497.389  6243.143  7031.218  9908.713  5461.708
## 2021 14673.916  7171.052  5813.241  5305.827 11546.156  6446.963  2922.981
##            Aug       Sep       Oct       Nov       Dec
## 2011  1886.602  8767.383  3314.239  3747.879  2613.509
## 2012  5367.956  5415.970  3291.799  4143.024  2606.021
## 2013  7713.398  4588.796  4117.679  4097.263  2760.064
## 2014 14339.480  4988.205  5031.002  4545.631  3486.724
## 2015  6885.894  4549.856  5109.469  5009.577  3978.902
## 2016  7197.173  5917.749  6556.520  5873.714  5905.975
## 2017  8271.746  7553.481  7754.196  7510.503  6477.016
## 2018  8495.113  7821.194  8461.978  7774.122  5423.020
## 2019  8845.822  7792.708  9314.393  8651.688  8375.968
## 2020  6323.179  6604.377  5057.451  7289.093  3515.972
## 2021  5105.404
jabaroutflowtimeseries <- ts(outflowjawaperbulan$`Jawa Barat`, frequency = 12, start = c(2011,1))
jatimoutflowtimeseries <- ts(outflowjawaperbulan$`Jawa Timur`, frequency = 12, start = c(2011,1))
jabaroutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   181.3603   445.1327   761.6186  1246.3934  1109.7649  1416.8661
## 2012   671.6212  1002.3632  2281.1244  2467.0254  2280.4243  2765.4863
## 2013   528.7625   627.3964  1356.0477  1158.8957  1646.7584  1734.9389
## 2014  1713.3662  1914.5702  2636.1710  2143.6532  3177.4604  2777.8832
## 2015  1791.3128  2447.9196  2343.6130  4638.1146  2987.5062  4744.5294
## 2016  1286.9910  2572.6527  3143.0140  3315.2421  4207.0365 14050.5141
## 2017  1412.5942  2631.2139  4296.7833  3499.5846  4532.7897 15286.1204
## 2018  1228.3730  3600.8229  5533.7218  4389.9407 11385.8521 10835.2683
## 2019  1062.0100  3230.6399  5001.2904  5486.7615 19573.1629   866.4689
## 2020  2022.6886  2761.6234  4091.0903  5412.6772 10271.4852  1325.4509
## 2021   680.3810  2248.8929  3247.0141 10573.2876  9548.9282  2255.6891
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  2034.1084  6858.3309   541.0612  1310.1216  1177.5762  3699.4895
## 2012  2598.9985  5510.8284   962.2777  1909.7261  2056.9649  4388.0579
## 2013  3272.1964  1707.8440  1713.5428  2564.9296  2360.6920  4394.6459
## 2014 10216.9924  1338.9065  2783.6008  3779.0261  3121.3091  5253.5617
## 2015 10250.2900  1832.8051  3156.7885  3433.4900  3132.0420  6304.2540
## 2016  2984.5153  1662.4221  3825.6385  2754.3698  3495.3434  6107.0954
## 2017  1319.8764  4072.1924  2251.3678  3184.0253  5454.6336  5883.4930
## 2018  2045.8298  4308.3747  2820.9496  3262.5906  4737.7032  7208.4220
## 2019  3845.6894  4560.5874  2168.6492  3908.8675  4580.5862  7407.6064
## 2020  4706.1033  3583.1857  3279.5102  7565.6162  3408.9003  8806.6301
## 2021  4237.2599  1971.0936
jatimoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   622.2843  1161.2019  1818.9743  2548.3076  2202.0508  2881.6643
## 2012   972.6386  2107.9733  3537.5574  3385.7392  3330.3175  5276.1881
## 2013  1042.6989  1416.3046  1956.8638  1501.3800  2436.5230  2548.4787
## 2014  2292.6490  2337.3901  4341.3923  3259.1932  3762.0541  3671.3338
## 2015  1477.3586  2466.3076  3691.7979  6112.8089  3701.0538  7691.4778
## 2016  2028.4451  3699.0597  4496.5522  5539.6423  7636.9558 18111.9600
## 2017  2443.7613  4603.4441  7882.3392  6755.4780  8700.5238 22447.4045
## 2018  2578.4385  5969.9665  9790.7112  6163.5930 14484.9670 15809.8892
## 2019  2272.9352  5545.4638  8593.6906  9438.6568 24122.3944  2418.9280
## 2020  3789.6870  5644.7356  9175.4920  9057.1774 11911.2719  2584.3144
## 2021  1339.2973  4063.6639  5911.6155 12153.3435 10258.7903  3478.7340
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  3703.3381 10065.1388   997.5488  2446.9332  2002.5094  4766.7289
## 2012  4999.0124  7700.9961  1600.9659  3363.9058  2929.6925  5283.8016
## 2013  5133.5144  3883.1844  2330.9637  4056.2800  3496.0878  6862.7322
## 2014 14441.2175  1421.8224  3508.4894  4449.9358  4017.4337  6428.3864
## 2015 13456.5557  2901.5841  5135.6666  3915.9097  4379.8290  8654.3655
## 2016  3438.6223  3697.4495  6212.4006  4866.6283  5763.2763  8999.8004
## 2017  2421.0292  8428.1973  5489.6827  5071.8714  8510.9058 10641.2201
## 2018  4579.9448  9148.7061  5728.7680  6591.1663  7346.6019  9802.3189
## 2019  7869.8703  8757.2044  6624.0955  6896.2513  8618.8669 14355.7462
## 2020  8544.1231  5712.7574  6949.3088 10935.1122  5170.0166 13900.2427
## 2021  5906.8317  2917.2180
plot.ts(jabarinflowtimeseries,type = "l", col = "blue")
lines(jatiminflowtimeseries,type = "l", col = "red")
legend("top", c("Jabarinflowtimeseries","jatiminflowtimeseries"),fill = c("blue","red"))

plot.ts(jabaroutflowtimeseries,type = "l", col = "blue")
lines(jatimoutflowtimeseries,type = "l", col = "red")
legend("top", c("Jabaroutflowtimeseries","jatimoutflowtimeseries"),fill = c("blue","red"))

jabarintimeseriescomponents <- decompose(jabarinflowtimeseries)
jatimintimeseriescomponents <- decompose(jatiminflowtimeseries)
jabarintimeseriescomponents
## $x
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  1980.3285  1725.6485  3717.8929  2863.7244  3169.4339  2971.4317
## 2012  5873.0749  4426.0191  4118.2626  4002.5015  5021.0839  5048.4072
## 2013  3194.7520  1897.3730  1082.1137  1154.3214  1294.0395  1079.9000
## 2014  8242.0860  6263.4963  5187.0695  5671.1514  4998.1296  6342.6529
## 2015  9165.0026  5296.6565  5871.9311  5619.7098  5869.8295  6577.6708
## 2016 10045.8328  6526.1852  5732.3604  5444.5314  6784.8252  5126.5606
## 2017  9127.3547  5890.5899  6514.4821  5134.7993  5744.5843  3678.3763
## 2018 10507.9216  5620.3161  6049.8859  6479.1871  5531.4095 12534.4088
## 2019 11412.1770  6589.9532  5984.6745  6411.5937  5175.4092 17164.0014
## 2020 12119.6656  6232.4385  5176.8003  5506.2201  4694.7020  9985.0523
## 2021 12965.3448  5678.6530  6112.9267  5177.0146 11698.7809  6319.1959
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  3615.0001  2398.0288  9580.5553  3974.8051  4328.1571  3449.9416
## 2012  5402.5484  6685.0025  6179.0816  4405.0095  5583.0107  3884.9810
## 2013   996.9936  2424.2419  5775.2391  6370.3939  5662.7978  4257.7023
## 2014  3590.2782 13318.3519  6910.4652  7101.1196  5999.9334  5035.7368
## 2015  9821.6711  8958.7368  6227.7674  6697.1780  6106.1231  5090.4833
## 2016 14735.1467  7634.4139  7089.3179  6883.6591  5985.4179  6047.8950
## 2017 15872.1572  7310.8588  6978.3334  6589.7235  6083.1940  4295.8605
## 2018  9793.0746  6545.6836  6878.1089  7198.3731  5660.9146  4443.9625
## 2019  8678.2620  8129.2421  7007.8905  7236.5522  6532.2064  4523.6976
## 2020  5496.5412  6253.7269  6667.8679  4578.6309  7019.8521  3151.9279
## 2021  3754.6179  5588.0980                                            
## 
## $seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2012  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2013  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2014  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2015  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2016  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2017  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2018  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2019  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2020  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
## 2021  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2012  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2013  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2014  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2015  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2016  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2017  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2018  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2019  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2020  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 2021  1671.0902   774.5099                                            
## 
## $trend
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2011       NA       NA       NA       NA       NA       NA 3810.110 4084.823
## 2012 4727.468 4980.573 5017.469 4893.666 4963.876 5034.289 4940.818 4723.861
## 2013 3303.280 2942.183 2747.825 2812.889 2898.104 2916.959 3142.795 3535.022
## 2014 5290.716 5852.691 6353.913 6431.661 6476.156 6522.621 6593.494 6591.664
## 2015 6956.032 7034.023 6823.926 6778.650 6766.243 6772.949 6811.931 6899.863
## 2016 7084.916 7234.464 7215.182 7258.850 7261.591 7296.453 7298.076 7233.323
## 2017 7086.212 7120.106 7102.000 7085.128 7076.955 7008.028 6992.550 7038.812
## 2018 7567.810 7282.632 7246.574 7267.758 7275.524 7264.100 7307.948 7386.027
## 2019 7725.043 7744.574 7815.964 7822.962 7860.857 7900.483 7933.284 7947.866
## 2020 7019.322 6808.604 6716.290 6591.376 6500.948 6464.109 6442.189 6454.351
## 2021 6687.458 6587.144       NA       NA       NA       NA       NA       NA
##           Sep      Oct      Nov      Dec
## 2011 4214.021 4278.152 4402.753 4566.446
## 2012 4491.995 4246.815 3972.847 3652.199
## 2013 3887.984 4247.225 4589.763 4963.381
## 2014 6579.915 6606.307 6640.485 6686.598
## 2015 6945.278 6932.163 6962.989 6940.651
## 2016 7239.428 7259.111 7202.862 7099.177
## 2017 7008.192 7044.850 7091.984 7452.103
## 2018 7423.711 7418.178 7400.528 7578.594
## 2019 7899.308 7827.923 7770.169 7451.017
## 2020 6470.282 6495.570 6773.690 6912.783
## 2021                                    
## 
## $random
##               Jan          Feb          Mar          Apr          May
## 2011           NA           NA           NA           NA           NA
## 2012 -1773.130504   363.735377   360.503126   390.473972  1388.547422
## 2013 -3027.265518  -126.521199  -406.002029  -376.929403  -272.725012
## 2014    32.631825  1329.094151    92.864989   521.128012  -146.686109
## 2015  -709.767064  -819.077090   307.713985   122.698336   434.926211
## 2016    42.178850   210.010054  -223.112497  -532.680367   854.574614
## 2017  -877.594956  -311.226958   672.191120  -668.690910    -1.030799
## 2018    21.374166  -744.027084    63.021042   493.067009  -412.774240
## 2019   768.395864  -236.332189  -571.580055  -129.730143 -1354.107437
## 2020  2181.605313   342.123224  -279.780811   196.482363  -474.905782
## 2021  3359.148544     9.798234           NA           NA           NA
##               Jun          Jul          Aug          Sep          Oct
## 2011           NA -1866.200208 -2461.304414  4654.840758  -169.504317
## 2012 -1134.905987 -1209.360317  1186.631218   975.392892   292.037472
## 2013 -2986.083582 -3816.891194 -1885.290021  1175.561779  2257.011681
## 2014 -1328.992828 -4674.306160  5952.178073  -381.143424   628.654709
## 2015 -1344.302652  1338.649627  1284.364053 -1429.204112  -101.142748
## 2016 -3318.917350  5765.980896  -373.418563  -861.803679  -241.609084
## 2017 -4478.675914  7208.517127  -502.463078  -741.552768  -321.284396
## 2018  4121.284606   814.036511 -1614.853030 -1257.295882   -85.961942
## 2019  8114.494081  -926.111907  -593.133713 -1603.111312  -457.528009
## 2020  2371.918495 -2616.737854  -975.134006  -514.107732 -1783.096847
## 2021           NA           NA           NA                          
##               Nov          Dec
## 2011   311.807955   797.329578
## 2012  1996.567737  2146.615868
## 2013  1459.438751  1208.154569
## 2014  -254.147469   262.972534
## 2015  -470.461975    63.666168
## 2016  -831.039987   862.551331
## 2017  -622.386311 -1242.409046
## 2018 -1353.209314 -1220.797891
## 2019  -851.558981 -1013.485662
## 2020   632.566116 -1847.020928
## 2021                          
## 
## $figure
##  [1]  2918.7378  -918.2890 -1259.7090 -1281.6381 -1331.3400  1149.0246
##  [7]  1671.0902   774.5099   711.6937  -133.8425  -386.4039 -1913.8338
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
jatimintimeseriescomponents
## $x
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  3071.011  2932.262  3054.203  2381.178  2418.761  1998.229  2329.895
## 2012  5551.676  4091.862  3249.951  3193.361  3851.132  2673.787  3945.991
## 2013  6189.613  3389.515  2937.854  3256.841  3189.894  2975.463  3470.218
## 2014  8821.191  5411.171  3789.147  3889.709  3960.321  4229.178  1784.529
## 2015  9302.214  4610.568  4528.315  4299.768  5006.318  4808.087 10719.480
## 2016  9802.295  7060.086  5170.786  4770.902  6282.794  4496.823 14403.892
## 2017 10336.152  6777.860  6750.998  6386.411  7526.697  3332.357 19702.729
## 2018 13187.621  7417.607  6096.684  7509.484  6441.516 15185.729 12618.539
## 2019 13282.646  7529.556  7036.191  7362.127  6503.036 19381.085  9575.539
## 2020 14488.880  8426.676  6497.389  6243.143  7031.218  9908.713  5461.708
## 2021 14673.916  7171.052  5813.241  5305.827 11546.156  6446.963  2922.981
##            Aug       Sep       Oct       Nov       Dec
## 2011  1886.602  8767.383  3314.239  3747.879  2613.509
## 2012  5367.956  5415.970  3291.799  4143.024  2606.021
## 2013  7713.398  4588.796  4117.679  4097.263  2760.064
## 2014 14339.480  4988.205  5031.002  4545.631  3486.724
## 2015  6885.894  4549.856  5109.469  5009.577  3978.902
## 2016  7197.173  5917.749  6556.520  5873.714  5905.975
## 2017  8271.746  7553.481  7754.196  7510.503  6477.016
## 2018  8495.113  7821.194  8461.978  7774.122  5423.020
## 2019  8845.822  7792.708  9314.393  8651.688  8375.968
## 2020  6323.179  6604.377  5057.451  7289.093  3515.972
## 2021  5105.404                                        
## 
## $seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2012  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2013  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2014  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2015  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2016  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2017  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2018  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2019  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2020  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2021  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2012  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2013  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2014  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2015  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2016  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2017  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2018  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2019  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2020  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2021  2040.31129  1105.68863                                                
## 
## $trend
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2011       NA       NA       NA       NA       NA       NA 3312.957 3464.635
## 2012 3839.944 4052.337 4057.752 3917.174 3932.704 3948.856 3975.125 3972.441
## 2013 3872.671 3950.574 4013.835 4013.781 4046.286 4050.798 4166.866 4360.750
## 2014 4667.107 4872.957 5165.686 5220.383 5277.120 5326.080 5376.400 5363.084
## 2015 5933.193 5994.916 5666.086 5651.091 5673.691 5713.530 5754.874 5877.774
## 2016 6306.589 6473.076 6543.042 6660.331 6756.631 6872.931 6975.470 6985.955
## 2017 7467.910 7733.468 7846.398 7964.456 8082.559 8174.552 8317.157 8462.624
## 2018 9130.518 8844.650 8865.112 8905.758 8946.233 8913.300 8873.343 8881.967
## 2019 9180.592 9068.414 9081.840 9116.170 9188.252 9347.857 9521.156 9608.796
## 2020 8591.269 8314.749 8160.125 7933.239 7699.091 7439.816 7245.027 7200.419
## 2021 6994.964 6838.443       NA       NA       NA       NA       NA       NA
##           Sep      Oct      Nov      Dec
## 2011 3521.108 3563.105 3656.628 3744.458
## 2012 3930.173 3919.814 3894.907 3879.925
## 2013 4480.457 4542.297 4600.767 4685.106
## 2014 5360.524 5408.409 5469.078 5536.782
## 2015 6006.607 6053.007 6125.824 6166.041
## 2016 7040.037 7173.192 7292.334 7295.644
## 2017 8462.017 8481.549 8483.127 8931.802
## 2018 8925.778 8958.784 8955.208 9132.578
## 2019 9623.726 9554.652 9530.035 9157.360
## 2020 7119.595 7052.034 7201.101 7244.984
## 2021                                    
## 
## $random
##               Jan          Feb          Mar          Apr          May
## 2011           NA           NA           NA           NA           NA
## 2012 -2244.309058   474.391149   683.809248   670.916112  1017.491630
## 2013 -1639.099577  -126.192201   415.628746   637.789506   242.671363
## 2014   198.042248   973.080379   115.070827    64.055080  -217.735987
## 2015  -587.020075  -949.481851   353.838587    43.406374   431.690289
## 2016  -460.336046  1021.876110   119.354354  -494.699275   625.226933
## 2017 -1087.798676  -520.742372   396.210519  -183.315740   543.201122
## 2018   101.061929  -992.176675 -1276.818362    -1.544325 -1405.653262
## 2019   146.012499 -1103.991055  -554.038302  -359.312784 -1586.153289
## 2020  1941.569669   546.793999  -171.126138  -295.365471   431.190679
## 2021  3722.909842   767.475271           NA           NA           NA
##               Jun          Jul          Aug          Sep          Oct
## 2011           NA -3023.372854 -2683.721186  5302.409066   430.049197
## 2012 -2066.355069 -2069.445387   289.826687  1541.930744    50.900368
## 2013 -1866.620850 -2736.959216  2246.958942   164.472816   254.297253
## 2014 -1888.187394 -5632.182101  7870.707019  -316.186307   301.508409
## 2015 -1696.728488  2924.294358   -97.568330 -1400.617184  -264.623551
## 2016 -3167.393248  5388.111140  -894.469710 -1066.154883    62.242103
## 2017 -5633.480950  9345.261013 -1296.566687  -852.402698   -48.438313
## 2018  5481.142532  1704.884187 -1492.542641 -1048.450411   182.109039
## 2019  9241.942490 -1985.929050 -1868.662927 -1774.884400   438.656135
## 2020  1677.610456 -3823.629336 -1982.928413  -459.083988 -1315.667887
## 2021           NA           NA           NA                          
##               Nov          Dec
## 2011   757.006484   941.304745
## 2012   913.871754   798.349784
## 2013   162.250680   147.212093
## 2014  -257.691777    22.195974
## 2015  -450.492140  -114.885284
## 2016  -752.865679   682.584822
## 2017  -306.869889  -382.531424
## 2018  -515.331073 -1637.302865
## 2019  -212.591701  1290.862300
## 2020   753.746095 -1656.757390
## 2021                          
## 
## $figure
##  [1]  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
##  [7]  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
jabarouttimeseriescomponents <- decompose(jabaroutflowtimeseries)
jatimouttimeseriescomponents <- decompose(jatimoutflowtimeseries)
jabarouttimeseriescomponents
## $x
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   181.3603   445.1327   761.6186  1246.3934  1109.7649  1416.8661
## 2012   671.6212  1002.3632  2281.1244  2467.0254  2280.4243  2765.4863
## 2013   528.7625   627.3964  1356.0477  1158.8957  1646.7584  1734.9389
## 2014  1713.3662  1914.5702  2636.1710  2143.6532  3177.4604  2777.8832
## 2015  1791.3128  2447.9196  2343.6130  4638.1146  2987.5062  4744.5294
## 2016  1286.9910  2572.6527  3143.0140  3315.2421  4207.0365 14050.5141
## 2017  1412.5942  2631.2139  4296.7833  3499.5846  4532.7897 15286.1204
## 2018  1228.3730  3600.8229  5533.7218  4389.9407 11385.8521 10835.2683
## 2019  1062.0100  3230.6399  5001.2904  5486.7615 19573.1629   866.4689
## 2020  2022.6886  2761.6234  4091.0903  5412.6772 10271.4852  1325.4509
## 2021   680.3810  2248.8929  3247.0141 10573.2876  9548.9282  2255.6891
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  2034.1084  6858.3309   541.0612  1310.1216  1177.5762  3699.4895
## 2012  2598.9985  5510.8284   962.2777  1909.7261  2056.9649  4388.0579
## 2013  3272.1964  1707.8440  1713.5428  2564.9296  2360.6920  4394.6459
## 2014 10216.9924  1338.9065  2783.6008  3779.0261  3121.3091  5253.5617
## 2015 10250.2900  1832.8051  3156.7885  3433.4900  3132.0420  6304.2540
## 2016  2984.5153  1662.4221  3825.6385  2754.3698  3495.3434  6107.0954
## 2017  1319.8764  4072.1924  2251.3678  3184.0253  5454.6336  5883.4930
## 2018  2045.8298  4308.3747  2820.9496  3262.5906  4737.7032  7208.4220
## 2019  3845.6894  4560.5874  2168.6492  3908.8675  4580.5862  7407.6064
## 2020  4706.1033  3583.1857  3279.5102  7565.6162  3408.9003  8806.6301
## 2021  4237.2599  1971.0936                                            
## 
## $seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2012 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2013 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2014 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2015 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2016 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2017 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2018 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2019 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2020 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
## 2021 -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2012   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2013   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2014   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2015   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2016   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2017   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2018   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2019   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2020   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 2021   596.5215  -196.9857                                            
## 
## $trend
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2011       NA       NA       NA       NA       NA       NA 1752.246 1795.892
## 2012 2280.931 2248.323 2209.727 2252.262 2313.886 2379.218 2401.956 2380.380
## 2013 2068.021 1937.613 1810.458 1869.061 1909.017 1921.946 1971.579 2074.570
## 2014 2820.779 3094.774 3123.987 3219.160 3301.440 3368.920 3407.956 3433.427
## 2015 3788.587 3810.553 3846.682 3847.834 3833.884 3878.110 3900.875 3885.059
## 2016 4421.019 4111.179 4131.949 4131.521 4118.362 4125.285 4122.303 4129.977
## 2017 4304.679 4335.726 4370.539 4322.847 4422.386 4494.706 4477.714 4510.438
## 2018 4958.545 4998.634 5032.208 5059.214 5032.615 5057.949 5106.222 5083.866
## 2019 5042.011 5127.514 5110.844 5110.593 5130.974 5132.727 5181.055 5201.541
## 2020 4398.934 4394.060 4399.620 4598.271 4701.815 4711.287 4713.651 4636.357
## 2021 4972.476 4885.771       NA       NA       NA       NA       NA       NA
##           Sep      Oct      Nov      Dec
## 2011 1882.422 1996.595 2096.232 2201.202
## 2012 2326.211 2233.161 2152.253 2082.911
## 2013 2181.541 2275.911 2380.722 2487.957
## 2014 3443.460 3535.206 3631.227 3705.256
## 2015 3923.565 3901.753 3897.448 4336.011
## 2016 4180.490 4236.245 4257.499 4322.556
## 2017 4602.378 4691.015 5013.657 5113.749
## 2018 5046.257 5069.773 5456.612 5382.384
## 2019 5144.073 5103.062 4712.405 4343.959
## 2020 4579.824 4759.679 4944.598 4953.252
## 2021                                    
## 
## $random
##              Jan         Feb         Mar         Apr         May         Jun
## 2011          NA          NA          NA          NA          NA          NA
## 2012  1083.86088   372.02849   471.35288   453.13176 -2816.97890 -1732.62788
## 2013  1153.91257   307.77115   -54.45470  -471.79750 -3045.77506 -2305.90383
## 2014  1585.75791   437.78460   -87.86002  -837.13886 -2907.49617 -2709.93335
## 2015   695.89713   255.35428 -1103.11295  1028.64853 -3629.89455 -1252.47692
## 2016  -440.85730    79.46119  -588.97909  -577.91096 -2694.84227  7806.33322
## 2017  -198.91400   -86.52452   326.20030  -584.89406 -2673.11312  8672.51769
## 2018 -1037.00119   220.17654   901.46988  -430.90531  3569.71980  3658.42326
## 2019 -1286.83000  -278.88626   290.40244   614.53664 11658.67154 -6385.15474
## 2020   316.92562   -14.44823    91.42582  1052.77432  2786.15328 -5504.73290
## 2021 -1598.92434 -1018.88996          NA          NA          NA          NA
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  -314.65934  5259.42487    66.70509  -246.12665  -389.58282  -526.73170
## 2012  -399.47875  3327.43442    44.13273   116.91159   433.78501   280.12801
## 2013   704.09554  -169.74042   940.06824   729.36527   509.04328  -118.33037
## 2014  6212.51469 -1897.53471   748.20724   684.16679    19.15507  -476.71340
## 2015  5752.89313 -1855.26841   641.28998   -27.91693  -236.33265   -56.77598
## 2016 -1734.30928 -2270.56877  1053.21442 -1041.52877  -233.08267  -240.47959
## 2017 -3754.35882  -241.26009  -942.94358 -1066.64320   970.04909 -1255.27576
## 2018 -3656.91400  -578.50582  -817.24147 -1366.83639  -189.83620  -198.98096
## 2019 -1931.88703  -443.96779 -1567.35804  -753.84768   397.25420  1038.62786
## 2020  -604.06885  -856.18600   107.75267  3246.28325 -1006.62503  1828.35917
## 2021          NA          NA                                                
## 
## $figure
##  [1] -2693.1711 -1617.9880  -399.9559  -238.3679  2783.5169  2118.8964
##  [7]   596.5215  -196.9857 -1408.0662  -440.3465  -529.0729  2025.0193
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
jatimouttimeseriescomponents
## $x
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   622.2843  1161.2019  1818.9743  2548.3076  2202.0508  2881.6643
## 2012   972.6386  2107.9733  3537.5574  3385.7392  3330.3175  5276.1881
## 2013  1042.6989  1416.3046  1956.8638  1501.3800  2436.5230  2548.4787
## 2014  2292.6490  2337.3901  4341.3923  3259.1932  3762.0541  3671.3338
## 2015  1477.3586  2466.3076  3691.7979  6112.8089  3701.0538  7691.4778
## 2016  2028.4451  3699.0597  4496.5522  5539.6423  7636.9558 18111.9600
## 2017  2443.7613  4603.4441  7882.3392  6755.4780  8700.5238 22447.4045
## 2018  2578.4385  5969.9665  9790.7112  6163.5930 14484.9670 15809.8892
## 2019  2272.9352  5545.4638  8593.6906  9438.6568 24122.3944  2418.9280
## 2020  3789.6870  5644.7356  9175.4920  9057.1774 11911.2719  2584.3144
## 2021  1339.2973  4063.6639  5911.6155 12153.3435 10258.7903  3478.7340
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  3703.3381 10065.1388   997.5488  2446.9332  2002.5094  4766.7289
## 2012  4999.0124  7700.9961  1600.9659  3363.9058  2929.6925  5283.8016
## 2013  5133.5144  3883.1844  2330.9637  4056.2800  3496.0878  6862.7322
## 2014 14441.2175  1421.8224  3508.4894  4449.9358  4017.4337  6428.3864
## 2015 13456.5557  2901.5841  5135.6666  3915.9097  4379.8290  8654.3655
## 2016  3438.6223  3697.4495  6212.4006  4866.6283  5763.2763  8999.8004
## 2017  2421.0292  8428.1973  5489.6827  5071.8714  8510.9058 10641.2201
## 2018  4579.9448  9148.7061  5728.7680  6591.1663  7346.6019  9802.3189
## 2019  7869.8703  8757.2044  6624.0955  6896.2513  8618.8669 14355.7462
## 2020  8544.1231  5712.7574  6949.3088 10935.1122  5170.0166 13900.2427
## 2021  5906.8317  2917.2180                                            
## 
## $seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2012 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2013 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2014 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2015 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2016 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2017 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2018 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2019 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2020 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2021 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2012   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2013   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2014   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2015   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2016   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2017   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2018   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2019   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2020   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2021   983.48098   281.38109                                                
## 
## $trend
##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2011       NA       NA       NA       NA       NA       NA 2949.321 3003.368
## 2012 3603.371 3558.851 3485.488 3548.837 3625.677 3685.854 3710.318 3684.418
## 2013 3070.656 2917.185 2788.526 2847.792 2900.240 2989.629 3107.499 3197.959
## 2014 4173.386 4458.650 4405.157 4470.622 4508.748 4512.373 4460.304 4431.706
## 2015 4909.647 4930.276 5059.732 5105.279 5098.128 5205.977 5321.688 5396.015
## 2016 6245.630 5861.377 5939.402 6023.879 6121.136 6193.173 6224.871 6279.858
## 2017 7108.528 7263.242 7430.244 7408.682 7531.719 7714.596 7788.600 7851.150
## 2018 8036.661 8156.637 8196.620 8269.886 8284.677 8201.210 8153.527 8123.110
## 2019 8102.878 8223.646 8244.639 8294.656 8360.379 8603.116 8856.040 8923.374
## 2020 7968.487 7869.729 7756.427 7938.264 7962.847 7800.166 7679.087 7511.109
## 2021 7258.197 7031.829       NA       NA       NA       NA       NA       NA
##           Sep      Oct      Nov      Dec
## 2011 3114.425 3220.925 3302.830 3449.612
## 2012 3589.736 3445.359 3329.602 3178.706
## 2013 3335.693 3508.290 3636.763 3738.779
## 2014 4410.011 4501.845 4618.204 4783.168
## 2015 5480.911 5490.560 5630.674 6228.857
## 2016 6458.616 6650.350 6745.325 6970.284
## 2017 7987.604 8042.457 8258.814 8223.269
## 2018 8055.546 8142.131 8680.152 8523.755
## 2019 8951.752 8960.099 8435.407 7933.502
## 2020 7309.237 7302.249 7362.402 7330.816
## 2021                                    
## 
## $random
##              Jan         Feb         Mar         Apr         May         Jun
## 2011          NA          NA          NA          NA          NA          NA
## 2012  1443.33710   840.94959    84.39011   186.37696 -3099.96666 -1209.98116
## 2013  2046.11189   790.94709  -799.34193  -996.93655 -3268.32442 -3241.46506
## 2014  2193.33268   170.56777   -31.44392  -861.95428 -3551.30054 -3641.35375
## 2015   641.78124  -172.14067 -1335.61325  1357.00439 -4201.68147  -314.81431
## 2016  -143.11561   129.51007 -1410.52950  -134.76193 -1288.78747  9118.47212
## 2017  -590.69715  -367.97081   484.41583  -303.72925 -1635.80186 11932.49385
## 2018 -1384.15310   105.15710  1626.41158 -1756.81780  3395.68280  4808.36408
## 2019 -1755.87370  -386.35456   381.37238  1493.47609 12957.40866 -8984.50281
## 2020  -104.73037    66.83450  1451.38522  1468.38889  1143.81748 -8016.16644
## 2021 -1844.83016  -676.33727          NA          NA          NA          NA
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  -229.46432  6780.38932  -655.19573   -56.84870  -473.70850 -1566.22674
## 2012   305.21323  3735.19711  -527.08995   635.69040   426.70159  -778.24802
## 2013  1042.53454   403.84464   456.95126  1265.13326   685.93657   240.61011
## 2014  8997.43218 -3291.26418   560.15895   665.23438   225.84151 -1238.12493
## 2015  7151.38646 -2775.81179  1116.43588  -857.50721  -424.23378  -457.83470
## 2016 -3769.72955 -2863.79005  1215.46524 -1066.57807  -155.43708  -853.82655
## 2017 -6351.05144   295.66658 -1036.24063 -2253.44232  1078.70365  -465.39217
## 2018 -4557.06279   744.21527  -865.09800  -833.82162  -506.93832 -1604.77885
## 2019 -1969.65063  -447.55094  -865.97660 -1346.70426  1010.07115  3538.90143
## 2020  -118.44488 -2079.73316  1101.75238  4350.00695 -1365.77398  3686.08322
## 2021          NA          NA                                                
## 
## $figure
##  [1] -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
##  [7]   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"
plot(jabarintimeseriescomponents$seasonal,type = "l", col = "red")
lines(jatimintimeseriescomponents$seasonal,col = "green")
lines(jabarouttimeseriescomponents$seasonal, type = "l", col = "orange")
lines(jatimouttimeseriescomponents$seasonal, col = "navy")
legend("top", c("jabar inflow","jatim inflow","jabar outflow","jatim outflow"),fill = c("red","green","orange","navy"))

plot(jabarintimeseriescomponents$trend,type = "l", col = "red")
lines(jatimintimeseriescomponents$trend,col = "green")
lines(jabarouttimeseriescomponents$trend, type = "l", col = "orange")
lines(jatimouttimeseriescomponents$trend, col = "navy")
legend("top", c("jabar inflow","jatim inflow","jabar outflow","jatim outflow"),fill = c("red","green","orange","navy"))

plot(jabarintimeseriescomponents$random,type = "l", col = "red")
lines(jatimintimeseriescomponents$random,col = "green")
lines(jabarouttimeseriescomponents$random, type = "l", col = "orange")
lines(jatimouttimeseriescomponents$random, col = "navy")
legend("top", c("jabar inflow","jatim inflow","jabar outflow","jatim outflow"),fill = c("red","green","orange","navy"))

plot(jabarintimeseriescomponents$figure,type = "l", col = "red")
lines(jatimintimeseriescomponents$figure,col = "green")
lines(jabarouttimeseriescomponents$figure, type = "l", col = "orange")
lines(jatimouttimeseriescomponents$figure, col = "navy")
legend("top", c("jabar inflow","jatim inflow","jabar outflow","jatim outflow"),fill = c("red","green","orange","navy"))

REFERENSI:

https://rpubs.com/suhartono-uinmaliki/861286

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx