A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected time for the first of these bulbs to burn out? (See Exercise 10.)
Exercise 10: Let \(X_1, X_2, . . . , X_n\) be n independent random variables each of which has an exponential density with mean \(\mu\). Let \(M\) be the minimum value of the \(X_j\). Show that the density for \(M\) is exponential with mean \(\mu/n\). Hint: Use cumulative distribution functions.
SOLUTION:
Based on Exercise 10, we know that the density for \(M\) is exponential with mean \(\mu/n\),
We also know that
Therefore, the expected time for the first of these bulb to burn out is:
Assume that \(X_1\) and \(X_2\) are independent random variables, each having an exponential density with parameter \(\lambda\). Show that \(Z = X_1 - X_2\) has density
\(f_Z(z) = (1/2)\lambda e^{-\lambda |z|}\)
SOLUTION:
Since \(f_Z(z)\) is an exponential function, \(z\) can only take positive values. This it can be written as:
\[\begin{equation} f_Z(z) = \begin{cases} \frac{1}{2}\lambda e^{-\lambda z} & \text{if } z \geq 0\\ \frac{1}{2}\lambda e^{\lambda z} & \text{if } z < 0 \end{cases} \end{equation}\]
The PDF for \(X1\) and \(X2\) is:
\[\begin{equation} fX_1(x) = fX_2(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \geq 0\\ 0 & \text{if } z < 0 \end{cases} \end{equation}\]
\[f_Z(z) = \int_{-\infty}^{\infty} f(x_1)(x)f(x_2)(x-z) \,dx \]
\[ = \int_{0}^{\infty} \lambda e^{-\lambda z} \lambda e^{-\lambda (x-z)} \,dx \]
\[ = \int_{0}^{\infty} \lambda ^2 e^{-2\lambda x + \lambda z} \,dx \]
\[ = \lambda e^{\lambda z} \int_{0}^{\infty} e^{-2\lambda x} \,dx \]
\[ = \frac{1}{2} \lambda e^{-\lambda|z|} \]
Let \(X\) be a continuous random variable with mean \(\mu = 10\) and variance \(\sigma^2 = 100/3\). Using Chebyshev’s Inequality, find an upper bound for the following probabilities.
SOLUTION:
The theorem of Chebyshev’s Inequality is defined as:
Let \(X\) be a discrete random variable with expected value \(\mu = E(X)\), and let \(\epsilon > 0\) be any positive real number. Then
\(P(|X-\mu | \geq \epsilon) \leq \frac{V(X)}{\epsilon ^2}\)
We also know that
The mean \(E(X) = \mu = 10\)
The variance \(V(X) = \sigma^2 = 100/3\)
The standard deviation \(\sigma = \sqrt{\frac{100}{3}}\)
Then, if \(\epsilon = k \sigma\), Chebyshev’s Inequality states that
\(P(|X-\mu | \geq k \sigma) \leq \frac{\sigma ^2}{k^2 \sigma ^2} = \frac{1}{k^2}\) *** (CI Ineq).
Exercise 1.a : \(P(|X - 10| \geq 2)\).
If \(k \sigma = 2 => k = \frac{2}{\sqrt{\frac{100}{3}}}\)
Using inequality (CI Ineq) we get:
\(P(|X-10| \geq 2) = \frac{1}{k^2} = 8.333333\)
1/ (2/sqrt(100/3))^2
#> [1] 8.333333Exercise 1.b : \(P(|X - 10| \geq 5)\).
If \(k \sigma = 5 => k = \frac{5}{\sqrt{\frac{100}{3}}}\)
Using inequality (CI Ineq) we get:
\(P(|X-10| \geq 5) = \frac{1}{k^2} = 1.333333\)
1/ (5/sqrt(100/3))^2
#> [1] 1.333333Exercise 1.c : \(P(|X - 10| \geq 9)\).
If \(k \sigma = 9 => k = \frac{9}{\sqrt{\frac{100}{3}}}\)
Using inequality (CI Ineq) we get:
\(P(|X-10| \geq 9) = \frac{1}{k^2} = 0.4115226\)
1/ (9/sqrt(100/3))^2
#> [1] 0.4115226Exercise 1.d : \(P(|X - 10| \geq 20)\).
If \(k \sigma = 20 => k = \frac{20}{\sqrt{\frac{100}{3}}}\)
Using inequality (CI Ineq) we get:
\(P(|X-10| \geq 20) = \frac{1}{k^2} = 0.08333333\)
1/ (20/sqrt(100/3))^2
#> [1] 0.08333333