Data

library(haven)
setwd("C:/Users/spara/OneDrive/Desktop/project")

ddi <- read_ipums_ddi("C:/Users/spara/OneDrive/Desktop/project/nhis_00006.xml")
data <- read_ipums_micro(ddi)
## Use of data from IPUMS NHIS is subject to conditions including that users
## should cite the data appropriately. Use command `ipums_conditions()` for more
## details.
data<- haven::zap_labels(data)

names(data) <- tolower(gsub(pattern = "_",replacement =  "",x =  names(data)))

Recode the variables

#depression level
data$depfeelevl<-as.factor(data$depfeelevl)
data$depfeelevl<- car::Recode(data$depfeelevl,
                       recodes="1='ALot'; 2='A Little'; 
                       3='Between a Little and a Lot'; 7:9=NA; else=NA",
                      as.factor=T)


# medication for depression
data$deprx <- as.factor(data$deprx)

data$deprx<- car::Recode(data$deprx,
                       recodes="1='No'; 2='Yes';else=NA",
                       as.factor=T)



#currently Pregnant 
data$pregnantnow<-as.factor(data$pregnantnow)
data$curpreg<-car::Recode(data$pregnantnow,
                          recodes="0='Yes';else=NA",
                          as.factor=T)
        
#education level
data$educ<-as.factor(data$educ)
data$educ<-Recode(data$educ,
                        recodes="102 ='NoSchool'; 201='HS Diploma'; 301='Some college'; 
                       400= 'Undergrad'; 501= 'Masters';else=NA", as.factor = T)

#employment status

data$empstat<- car::Recode(data$empstat,
                       recodes="100='Employed'; 200='Unemployed';else=NA",
                       as.factor=T)


##race/ethnicity
data$race<- car::Recode(data$racea,
                       recodes="100 ='White'; 200 ='African American'; 
                       400:434= 'Asian'; 500:590 = 'Other'; else=NA", 
                       as.factor=T)

## marital status
data$mars<- car::Recode(data$marstat, 
                        recodes ="10:13='Married'; 20='Widowed'; 30='Divorced'; 
                        40='Separated'; 50='Never Married'; else=NA", 
                        as.factor=T)

Filter data

data<-data%>%
  filter(is.na(curpreg)==F)
data<-data%>%
  filter(is.na(educ)==F)
data<-data%>%
  filter(is.na(deprx)==F)
data<-data%>%
  filter(is.na(depfeelevl)==F)
data<-data%>%
  filter(is.na(empstat)==F)
data<-data%>%
  filter(is.na(race)==F)
data<-data%>%
  filter(is.na(mars)==F)

Survey design

#First we tell R our survey design
options(survey.lonely.psu = "adjust")

library(dplyr)
sub<-data%>%
  select(depfeelevl, curpreg, educ, deprx, empstat, race, mars, sampweight,strata) %>%
  filter( complete.cases(.))


#First we tell R our survey design

options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~1,
               strata=~strata,
               weights=~sampweight,
               data =sub)
## count education frequency
countedu <- sub %>% 
  group_by(educ)%>%
dplyr::summarise(numedu=n())
countedu
## count employment frequency
countemp <- sub %>% 
  group_by(empstat)%>%
dplyr::summarise(numemp=n())
countemp
## count marital status frequency
countmar <- sub %>% 
  group_by(mars)%>%
dplyr::summarise(nummar=n())
countmar
label(data$depfeelevl) <- "Depression Level"
label(data$deprx) <- "Medication for Depression"
label(data$pregnantnow) <-"Currently Pregnant"
label(data$educ) <- "Education Level"
label(data$empstat)<- "Employment Status"
label(data$race)<- "Race"
label(data$mars)<- "Marital Status"

Results

## Table 1: Demographic properties of currently pregnant women who are either taking or not taking prescription medication for depression
table<-table1(~ educ + empstat + race + mars + depfeelevl | deprx, data=sub)
table
No
(N=11123)
Yes
(N=3535)
Overall
(N=14658)
educ
HS Diploma 3431 (30.8%) 1195 (33.8%) 4626 (31.6%)
Masters 1628 (14.6%) 490 (13.9%) 2118 (14.4%)
NoSchool 24 (0.2%) 10 (0.3%) 34 (0.2%)
Some college 2614 (23.5%) 893 (25.3%) 3507 (23.9%)
Undergrad 3426 (30.8%) 947 (26.8%) 4373 (29.8%)
empstat
Employed 5739 (51.6%) 1236 (35.0%) 6975 (47.6%)
Unemployed 5384 (48.4%) 2299 (65.0%) 7683 (52.4%)
race
African American 1111 (10.0%) 236 (6.7%) 1347 (9.2%)
Asian 567 (5.1%) 60 (1.7%) 627 (4.3%)
Other 122 (1.1%) 15 (0.4%) 137 (0.9%)
White 9323 (83.8%) 3224 (91.2%) 12547 (85.6%)
mars
Divorced 2066 (18.6%) 853 (24.1%) 2919 (19.9%)
Married 4712 (42.4%) 1433 (40.5%) 6145 (41.9%)
Never Married 2796 (25.1%) 645 (18.2%) 3441 (23.5%)
Separated 164 (1.5%) 56 (1.6%) 220 (1.5%)
Widowed 1385 (12.5%) 548 (15.5%) 1933 (13.2%)
depfeelevl
A Little 878 (7.9%) 833 (23.6%) 1711 (11.7%)
ALot 6651 (59.8%) 1201 (34.0%) 7852 (53.6%)
Between a Little and a Lot 3594 (32.3%) 1501 (42.5%) 5095 (34.8%)
## Figure 1: Depression Among Currently Pregnant Women by Education
Fig1 <- ggplot(data = sub, aes(x=educ, fill=deprx)) + 
  geom_bar(position='fill')+
    geom_text(data=countedu, 
            aes(x=educ, y=0.05, label=numedu), 
            size=5, colour="white", inherit.aes=FALSE)+
labs(title="Depression Among Currently pregnant women 
     by Education", 
         x="Education", y = "Population Proportion", fill ="Legend")+
  theme(legend.position="right")
Fig1

## Figure 2: Depression Among Currently Pregnant Women by Employment Status
Fig2 <- ggplot(data = sub, aes(x=empstat, fill=deprx)) + 
  geom_bar(position='fill')+
  geom_text(data=countemp, 
            aes(x=empstat, y=0.05, label=numemp), 
            size=5, colour="white", inherit.aes=FALSE)+
  labs(title="Depression Among Currently pregnant women by Employment Status", 
         x="Employment", y = "Population Proportion", fill ="Legend")+
  theme(legend.position="right")
Fig2

# Figure 3: Depression Among Currently Pregnant Women by Marital Status
Fig3 <- ggplot(data = sub, aes(x=mars, fill=deprx)) + 
  geom_bar(position='fill')+
  geom_text(data=countmar, 
            aes(x=mars, y=0.05, label=nummar), 
            size=5, colour="white", inherit.aes=FALSE)+
  labs(title="Depression Among Currently pregnant women by Marital Status", 
         x="Marital Status", y = "Population Proportion", fill ="Legend")+
  theme(legend.position="right")
Fig3

LS0tDQp0aXRsZTogIkJsb2cgUG9zdCBUd28sIERlc2NyaXB0aXZlIFN0YXRpc3RpY3MiDQphdXRob3I6ICJKeW90aSBOZXBhbCwgTVNXIg0KZGF0ZTogICJgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVkICVCLCAlWScpYCINCm91dHB1dDoNCiAgIGh0bWxfZG9jdW1lbnQ6DQogICAgZGZfcHJpbnQ6IHBhZ2VkDQogICAgZmlnX2hlaWdodDogNw0KICAgIGZpZ193aWR0aDogNw0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQotLS0NCg0KYGBge3IgaW5jbHVkZT1GQUxTRX0NCmxpYnJhcnkoc3RhcmdhemVyLCBxdWlldGx5ID0gVCkNCmxpYnJhcnkoc3VydmV5LCBxdWlldGx5ID0gVCkNCmxpYnJhcnkoY2FyLCBxdWlldGx5ID0gVCkNCmxpYnJhcnkocXVlc3Rpb25yLCBxdWlldGx5ID0gVCkNCmxpYnJhcnkoZHBseXIsIHF1aWV0bHkgPSBUKQ0KbGlicmFyeShmb3JjYXRzLCBxdWlldGx5ID0gVCkNCmxpYnJhcnkodGlkeXZlcnNlLCBxdWlldGx5ID0gVCkNCmxpYnJhcnkoc3J2eXIsIHF1aWV0bHkgPSBUKQ0KbGlicmFyeShndHN1bW1hcnksIHF1aWV0bHkgPSBUKQ0KbGlicmFyeShjYXJldCwgcXVpZXRseSA9IFQpDQpsaWJyYXJ5KGlwdW1zciwgcXVpZXRseSA9IFQpDQpsaWJyYXJ5KHRhYmxlMSwgcXVpZXRseSA9IFQpDQpsaWJyYXJ5KGdncGxvdDIsIHF1aWV0bHkgPSBUKQ0KYGBgDQoNCiMjIyBEYXRhDQpgYGB7cn0NCmxpYnJhcnkoaGF2ZW4pDQpzZXR3ZCgiQzovVXNlcnMvc3BhcmEvT25lRHJpdmUvRGVza3RvcC9wcm9qZWN0IikNCg0KZGRpIDwtIHJlYWRfaXB1bXNfZGRpKCJDOi9Vc2Vycy9zcGFyYS9PbmVEcml2ZS9EZXNrdG9wL3Byb2plY3Qvbmhpc18wMDAwNi54bWwiKQ0KZGF0YSA8LSByZWFkX2lwdW1zX21pY3JvKGRkaSkNCmRhdGE8LSBoYXZlbjo6emFwX2xhYmVscyhkYXRhKQ0KDQpuYW1lcyhkYXRhKSA8LSB0b2xvd2VyKGdzdWIocGF0dGVybiA9ICJfIixyZXBsYWNlbWVudCA9ICAiIix4ID0gIG5hbWVzKGRhdGEpKSkNCg0KYGBgDQoNCiMjIFJlY29kZSB0aGUgdmFyaWFibGVzDQpgYGB7cn0NCiNkZXByZXNzaW9uIGxldmVsDQpkYXRhJGRlcGZlZWxldmw8LWFzLmZhY3RvcihkYXRhJGRlcGZlZWxldmwpDQpkYXRhJGRlcGZlZWxldmw8LSBjYXI6OlJlY29kZShkYXRhJGRlcGZlZWxldmwsDQogICAgICAgICAgICAgICAgICAgICAgIHJlY29kZXM9IjE9J0FMb3QnOyAyPSdBIExpdHRsZSc7IA0KICAgICAgICAgICAgICAgICAgICAgICAzPSdCZXR3ZWVuIGEgTGl0dGxlIGFuZCBhIExvdCc7IDc6OT1OQTsgZWxzZT1OQSIsDQogICAgICAgICAgICAgICAgICAgICAgYXMuZmFjdG9yPVQpDQoNCg0KIyBtZWRpY2F0aW9uIGZvciBkZXByZXNzaW9uDQpkYXRhJGRlcHJ4IDwtIGFzLmZhY3RvcihkYXRhJGRlcHJ4KQ0KDQpkYXRhJGRlcHJ4PC0gY2FyOjpSZWNvZGUoZGF0YSRkZXByeCwNCiAgICAgICAgICAgICAgICAgICAgICAgcmVjb2Rlcz0iMT0nTm8nOyAyPSdZZXMnO2Vsc2U9TkEiLA0KICAgICAgICAgICAgICAgICAgICAgICBhcy5mYWN0b3I9VCkNCg0KDQoNCiNjdXJyZW50bHkgUHJlZ25hbnQgDQpkYXRhJHByZWduYW50bm93PC1hcy5mYWN0b3IoZGF0YSRwcmVnbmFudG5vdykNCmRhdGEkY3VycHJlZzwtY2FyOjpSZWNvZGUoZGF0YSRwcmVnbmFudG5vdywNCiAgICAgICAgICAgICAgICAgICAgICAgICAgcmVjb2Rlcz0iMD0nWWVzJztlbHNlPU5BIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgYXMuZmFjdG9yPVQpDQogICAgICAgIA0KI2VkdWNhdGlvbiBsZXZlbA0KZGF0YSRlZHVjPC1hcy5mYWN0b3IoZGF0YSRlZHVjKQ0KZGF0YSRlZHVjPC1SZWNvZGUoZGF0YSRlZHVjLA0KICAgICAgICAgICAgICAgICAgICAgICAgcmVjb2Rlcz0iMTAyID0nTm9TY2hvb2wnOyAyMDE9J0hTIERpcGxvbWEnOyAzMDE9J1NvbWUgY29sbGVnZSc7IA0KICAgICAgICAgICAgICAgICAgICAgICA0MDA9ICdVbmRlcmdyYWQnOyA1MDE9ICdNYXN0ZXJzJztlbHNlPU5BIiwgYXMuZmFjdG9yID0gVCkNCg0KI2VtcGxveW1lbnQgc3RhdHVzDQoNCmRhdGEkZW1wc3RhdDwtIGNhcjo6UmVjb2RlKGRhdGEkZW1wc3RhdCwNCiAgICAgICAgICAgICAgICAgICAgICAgcmVjb2Rlcz0iMTAwPSdFbXBsb3llZCc7IDIwMD0nVW5lbXBsb3llZCc7ZWxzZT1OQSIsDQogICAgICAgICAgICAgICAgICAgICAgIGFzLmZhY3Rvcj1UKQ0KDQoNCiMjcmFjZS9ldGhuaWNpdHkNCmRhdGEkcmFjZTwtIGNhcjo6UmVjb2RlKGRhdGEkcmFjZWEsDQogICAgICAgICAgICAgICAgICAgICAgIHJlY29kZXM9IjEwMCA9J1doaXRlJzsgMjAwID0nQWZyaWNhbiBBbWVyaWNhbic7IA0KICAgICAgICAgICAgICAgICAgICAgICA0MDA6NDM0PSAnQXNpYW4nOyA1MDA6NTkwID0gJ090aGVyJzsgZWxzZT1OQSIsIA0KICAgICAgICAgICAgICAgICAgICAgICBhcy5mYWN0b3I9VCkNCg0KIyMgbWFyaXRhbCBzdGF0dXMNCmRhdGEkbWFyczwtIGNhcjo6UmVjb2RlKGRhdGEkbWFyc3RhdCwgDQogICAgICAgICAgICAgICAgICAgICAgICByZWNvZGVzID0iMTA6MTM9J01hcnJpZWQnOyAyMD0nV2lkb3dlZCc7IDMwPSdEaXZvcmNlZCc7IA0KICAgICAgICAgICAgICAgICAgICAgICAgNDA9J1NlcGFyYXRlZCc7IDUwPSdOZXZlciBNYXJyaWVkJzsgZWxzZT1OQSIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgYXMuZmFjdG9yPVQpDQpgYGANCg0KIyMgRmlsdGVyIGRhdGENCmBgYHtyfQ0KZGF0YTwtZGF0YSU+JQ0KICBmaWx0ZXIoaXMubmEoY3VycHJlZyk9PUYpDQpkYXRhPC1kYXRhJT4lDQogIGZpbHRlcihpcy5uYShlZHVjKT09RikNCmRhdGE8LWRhdGElPiUNCiAgZmlsdGVyKGlzLm5hKGRlcHJ4KT09RikNCmRhdGE8LWRhdGElPiUNCiAgZmlsdGVyKGlzLm5hKGRlcGZlZWxldmwpPT1GKQ0KZGF0YTwtZGF0YSU+JQ0KICBmaWx0ZXIoaXMubmEoZW1wc3RhdCk9PUYpDQpkYXRhPC1kYXRhJT4lDQogIGZpbHRlcihpcy5uYShyYWNlKT09RikNCmRhdGE8LWRhdGElPiUNCiAgZmlsdGVyKGlzLm5hKG1hcnMpPT1GKQ0KYGBgDQoNCg0KIyMgU3VydmV5IGRlc2lnbg0KYGBge3J9DQojRmlyc3Qgd2UgdGVsbCBSIG91ciBzdXJ2ZXkgZGVzaWduDQpvcHRpb25zKHN1cnZleS5sb25lbHkucHN1ID0gImFkanVzdCIpDQoNCmxpYnJhcnkoZHBseXIpDQpzdWI8LWRhdGElPiUNCiAgc2VsZWN0KGRlcGZlZWxldmwsIGN1cnByZWcsIGVkdWMsIGRlcHJ4LCBlbXBzdGF0LCByYWNlLCBtYXJzLCBzYW1wd2VpZ2h0LHN0cmF0YSkgJT4lDQogIGZpbHRlciggY29tcGxldGUuY2FzZXMoLikpDQoNCg0KI0ZpcnN0IHdlIHRlbGwgUiBvdXIgc3VydmV5IGRlc2lnbg0KDQpvcHRpb25zKHN1cnZleS5sb25lbHkucHN1ID0gImFkanVzdCIpDQpkZXM8LXN2eWRlc2lnbihpZHM9fjEsDQogICAgICAgICAgICAgICBzdHJhdGE9fnN0cmF0YSwNCiAgICAgICAgICAgICAgIHdlaWdodHM9fnNhbXB3ZWlnaHQsDQogICAgICAgICAgICAgICBkYXRhID1zdWIpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KIyMgY291bnQgZWR1Y2F0aW9uIGZyZXF1ZW5jeQ0KY291bnRlZHUgPC0gc3ViICU+JSANCiAgZ3JvdXBfYnkoZWR1YyklPiUNCmRwbHlyOjpzdW1tYXJpc2UobnVtZWR1PW4oKSkNCmNvdW50ZWR1DQoNCiMjIGNvdW50IGVtcGxveW1lbnQgZnJlcXVlbmN5DQpjb3VudGVtcCA8LSBzdWIgJT4lIA0KICBncm91cF9ieShlbXBzdGF0KSU+JQ0KZHBseXI6OnN1bW1hcmlzZShudW1lbXA9bigpKQ0KY291bnRlbXANCg0KIyMgY291bnQgbWFyaXRhbCBzdGF0dXMgZnJlcXVlbmN5DQpjb3VudG1hciA8LSBzdWIgJT4lIA0KICBncm91cF9ieShtYXJzKSU+JQ0KZHBseXI6OnN1bW1hcmlzZShudW1tYXI9bigpKQ0KY291bnRtYXINCmBgYA0KDQoNCmBgYHtyfQ0KbGFiZWwoZGF0YSRkZXBmZWVsZXZsKSA8LSAiRGVwcmVzc2lvbiBMZXZlbCINCmxhYmVsKGRhdGEkZGVwcngpIDwtICJNZWRpY2F0aW9uIGZvciBEZXByZXNzaW9uIg0KbGFiZWwoZGF0YSRwcmVnbmFudG5vdykgPC0iQ3VycmVudGx5IFByZWduYW50Ig0KbGFiZWwoZGF0YSRlZHVjKSA8LSAiRWR1Y2F0aW9uIExldmVsIg0KbGFiZWwoZGF0YSRlbXBzdGF0KTwtICJFbXBsb3ltZW50IFN0YXR1cyINCmxhYmVsKGRhdGEkcmFjZSk8LSAiUmFjZSINCmxhYmVsKGRhdGEkbWFycyk8LSAiTWFyaXRhbCBTdGF0dXMiDQpgYGANCg0KDQojIyBSZXN1bHRzDQpgYGB7cn0NCiMjIFRhYmxlIDE6IERlbW9ncmFwaGljIHByb3BlcnRpZXMgb2YgY3VycmVudGx5IHByZWduYW50IHdvbWVuIHdobyBhcmUgZWl0aGVyIHRha2luZyBvciBub3QgdGFraW5nIHByZXNjcmlwdGlvbiBtZWRpY2F0aW9uIGZvciBkZXByZXNzaW9uDQp0YWJsZTwtdGFibGUxKH4gZWR1YyArIGVtcHN0YXQgKyByYWNlICsgbWFycyArIGRlcGZlZWxldmwgfCBkZXByeCwgZGF0YT1zdWIpDQp0YWJsZQ0KYGBgDQoNCg0KDQpgYGB7cn0NCiMjIEZpZ3VyZSAxOiBEZXByZXNzaW9uIEFtb25nIEN1cnJlbnRseSBQcmVnbmFudCBXb21lbiBieSBFZHVjYXRpb24NCkZpZzEgPC0gZ2dwbG90KGRhdGEgPSBzdWIsIGFlcyh4PWVkdWMsIGZpbGw9ZGVwcngpKSArIA0KICBnZW9tX2Jhcihwb3NpdGlvbj0nZmlsbCcpKw0KICAgIGdlb21fdGV4dChkYXRhPWNvdW50ZWR1LCANCiAgICAgICAgICAgIGFlcyh4PWVkdWMsIHk9MC4wNSwgbGFiZWw9bnVtZWR1KSwgDQogICAgICAgICAgICBzaXplPTUsIGNvbG91cj0id2hpdGUiLCBpbmhlcml0LmFlcz1GQUxTRSkrDQpsYWJzKHRpdGxlPSJEZXByZXNzaW9uIEFtb25nIEN1cnJlbnRseSBwcmVnbmFudCB3b21lbiANCiAgICAgYnkgRWR1Y2F0aW9uIiwgDQogICAgICAgICB4PSJFZHVjYXRpb24iLCB5ID0gIlBvcHVsYXRpb24gUHJvcG9ydGlvbiIsIGZpbGwgPSJMZWdlbmQiKSsNCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uPSJyaWdodCIpDQpGaWcxDQpgYGANCg0KDQoNCg0KYGBge3J9DQojIyBGaWd1cmUgMjogRGVwcmVzc2lvbiBBbW9uZyBDdXJyZW50bHkgUHJlZ25hbnQgV29tZW4gYnkgRW1wbG95bWVudCBTdGF0dXMNCkZpZzIgPC0gZ2dwbG90KGRhdGEgPSBzdWIsIGFlcyh4PWVtcHN0YXQsIGZpbGw9ZGVwcngpKSArIA0KICBnZW9tX2Jhcihwb3NpdGlvbj0nZmlsbCcpKw0KICBnZW9tX3RleHQoZGF0YT1jb3VudGVtcCwgDQogICAgICAgICAgICBhZXMoeD1lbXBzdGF0LCB5PTAuMDUsIGxhYmVsPW51bWVtcCksIA0KICAgICAgICAgICAgc2l6ZT01LCBjb2xvdXI9IndoaXRlIiwgaW5oZXJpdC5hZXM9RkFMU0UpKw0KICBsYWJzKHRpdGxlPSJEZXByZXNzaW9uIEFtb25nIEN1cnJlbnRseSBwcmVnbmFudCB3b21lbiBieSBFbXBsb3ltZW50IFN0YXR1cyIsIA0KICAgICAgICAgeD0iRW1wbG95bWVudCIsIHkgPSAiUG9wdWxhdGlvbiBQcm9wb3J0aW9uIiwgZmlsbCA9IkxlZ2VuZCIpKw0KICB0aGVtZShsZWdlbmQucG9zaXRpb249InJpZ2h0IikNCkZpZzINCmBgYA0KDQoNCmBgYHtyfQ0KIyBGaWd1cmUgMzogRGVwcmVzc2lvbiBBbW9uZyBDdXJyZW50bHkgUHJlZ25hbnQgV29tZW4gYnkgTWFyaXRhbCBTdGF0dXMNCkZpZzMgPC0gZ2dwbG90KGRhdGEgPSBzdWIsIGFlcyh4PW1hcnMsIGZpbGw9ZGVwcngpKSArIA0KICBnZW9tX2Jhcihwb3NpdGlvbj0nZmlsbCcpKw0KICBnZW9tX3RleHQoZGF0YT1jb3VudG1hciwgDQogICAgICAgICAgICBhZXMoeD1tYXJzLCB5PTAuMDUsIGxhYmVsPW51bW1hciksIA0KICAgICAgICAgICAgc2l6ZT01LCBjb2xvdXI9IndoaXRlIiwgaW5oZXJpdC5hZXM9RkFMU0UpKw0KICBsYWJzKHRpdGxlPSJEZXByZXNzaW9uIEFtb25nIEN1cnJlbnRseSBwcmVnbmFudCB3b21lbiBieSBNYXJpdGFsIFN0YXR1cyIsIA0KICAgICAgICAgeD0iTWFyaXRhbCBTdGF0dXMiLCB5ID0gIlBvcHVsYXRpb24gUHJvcG9ydGlvbiIsIGZpbGwgPSJMZWdlbmQiKSsNCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uPSJyaWdodCIpDQpGaWczDQpgYGANCg0K