The expected value of the Exponential distribution is: λe^(-λx)
n = 100
rate = 1000
n_rate = rate / n
paste0("The first bulb will burn out at ", n_rate, " hours")
## [1] "The first bulb will burn out at 10 hours"
I’m not sure where to approach this problem
p320-321 1. Let X be a continuous random variable with mean μ=10 and variance σ2=100/3. Using Chebyshev’s Inequality, find an upper bound for the following probabilities.(on page 320-321) P(|X−10|≥2) P(|X−10|≥5) P(|X−10|≥9) P(|X−10|≥20)
\[Chebyshev’s Inequality = P(|X-\mu | \le k\sigma) \le \frac{1}{k^2}\]
\(\mu = 10\) and \(\sigma = \sqrt{100/3}\)
upper_bound <- function(x) {
k <- x/sqrt(100/3)
u_b <- 1/k^2
paste0("upper bound is ", format(u_b,digits=4))
}
P(|X−10|≥2)
upper_bound(2)
## [1] "upper bound is 8.333"
P(|X−10|≥5)
upper_bound(5)
## [1] "upper bound is 1.333"
P(|X−10|≥9)
upper_bound(9)
## [1] "upper bound is 0.4115"
P(|X−10|≥20)
upper_bound(20)
## [1] "upper bound is 0.08333"