Los conceptos pueden verse en el libro “Introducción al riesgo financiero” que puede obtenerse en https://1drv.ms/b/s!Aj-hHTVbsx01h4JmNiA9O57JQuANWg?e=l4IFbm

0. Los datos.

Los datos corresponen al precio del dolar durante 62 días(apertura,máximo,mínimo, cierre).

Se pueden bajar los datos desde

https://1drv.ms/x/s!Aj-hHTVbsx01hvQU5ABlORR8-FPOvg?e=hbcz8a

str(dolar)
## 'data.frame':    62 obs. of  5 variables:
##  $ Fecha: chr  "2019-05-06" "2019-05-07" "2019-05-08" "2019-05-09" ...
##  $ Open : num  3260 3270 3300 3302 3269 ...
##  $ High : num  3263 3302 3311 3319 3288 ...
##  $ Low  : num  3247 3270 3276 3273 3260 ...
##  $ Close: num  3254 3302 3292 3276 3273 ...
nrow(dolar)
## [1] 62
attach(dolar)
a<-zoo(dolar[,2:5], dolar$Fecha)
b<-as.xts(a, as.Date(dolar$Fecha))
D<-as.quantmod.OHLC(b,c("Open","High","Low","Close"))

1. Gráficos.

1.1. Gráfico de líneas.

chartSeries(D,type="line",theme=chartTheme("white"),pch=16,line.type="l")

1.2. Gráfico de barras

chartSeries(D,type="bars",theme = chartTheme("white"),show.grid=TRUE)

1.3 Gráfico de velas (Candlestick)

chartSeries(D,type="candlesticks",theme = chartTheme("white"),show.grid=TRUE)

2. Promedios móviles.

2.1 Promedio móvil simple.

addSMA(n = 10,on = 1, overlay = TRUE, col = "red")

2.2 Promedio móvil exponencial.

addEMA(n = 10,on = 1, overlay = TRUE, col = "blue")

2.3 Promedio móvil ponderado

addWMA(n = 10,on = 1, overlay = TRUE, col = "orange")

2.4 Promedio móvil doble exponencial.

addDEMA(n = 10,on = 1, overlay = TRUE, col = "black")

2.5 Los 4 promedios móviles-

addDEMA(n = 10,on = 1, overlay = TRUE, col = "black")

2.6 Resumen de los promedios móviles

A1<-data.frame(C2,sma,ema,wma,dema)
head(A1,20)
##         C2      sma      ema      wma     dema
## 1  3254.00       NA       NA       NA       NA
## 2  3301.50       NA       NA       NA       NA
## 3  3292.00       NA       NA       NA       NA
## 4  3276.20       NA       NA       NA       NA
## 5  3272.70       NA       NA       NA       NA
## 6  3303.60       NA       NA       NA       NA
## 7  3291.95       NA       NA       NA       NA
## 8  3283.80       NA       NA       NA       NA
## 9  3298.00       NA       NA       NA       NA
## 10 3321.99 3289.574 3289.574 3295.252       NA
## 11 3351.78 3299.352 3300.884 3306.562       NA
## 12 3342.95 3303.497 3308.533 3314.489       NA
## 13 3335.00 3307.797 3313.345 3320.217       NA
## 14 3378.30 3318.007 3325.155 3333.035       NA
## 15 3358.25 3326.562 3331.172 3340.352       NA
## 16 3376.10 3333.812 3339.341 3349.359       NA
## 17 3353.00 3339.917 3341.824 3352.848       NA
## 18 3364.45 3347.982 3345.938 3357.309       NA
## 19 3380.00 3356.182 3352.131 3363.130 3379.473
## 20 3291.75 3353.158 3341.153 3351.415 3354.541

3. Soportes y Resistencias

H<-High
L<-Low
P<-(H+L+C2)/3
R1<-2*P-L
S1<-2*P-H
R2<-P+H-L
S2<-P-H+L
R3<-H+2*(P-L)
S3<-L-2*(H-P)
plot(C2,type="l",lwd=2)
lines(S3,lwd=1,lty=2)
lines(R3,lwd=1,lty=2)

A2<-data.frame(S1,C2,R1)
head(A2,15)
##          S1      C2       R1
## 1  3246.533 3254.00 3262.133
## 2  3280.500 3301.50 3312.000
## 3  3274.700 3292.00 3310.100
## 4  3259.773 3276.20 3305.813
## 5  3259.133 3272.70 3287.133
## 6  3288.867 3303.60 3313.517
## 7  3278.300 3291.95 3301.350
## 8  3274.200 3283.80 3302.950
## 9  3284.233 3298.00 3306.883
## 10 3310.030 3321.99 3327.970
## 11 3321.120 3351.78 3371.320
## 12 3327.933 3342.95 3361.033
## 13 3321.500 3335.00 3351.000
## 14 3360.550 3378.30 3390.500
## 15 3349.067 3358.25 3368.367

4. Bandas de Bollinger

addBBands(n=10,sd=2,maType = "SMA")

5. RSI (Relative strength Index)

ifr<-RSI(C2,n=7);ifr
##  [1]       NA       NA       NA       NA       NA       NA       NA 61.73228
##  [9] 66.14813 72.42079 78.25748 72.92078 68.04655 77.57242 66.81231 70.99161
## [17] 59.65037 63.06276 67.42735 37.83024 42.20680 37.95495 33.80352 31.81713
## [25] 32.55390 36.99124 36.69567 40.14212 48.22289 35.31088 30.75571 20.25979
## [33] 26.47614 23.75937 22.63796 31.04111 40.39585 39.59143 34.01768 44.65460
## [41] 48.55449 48.75447 40.97998 37.50007 33.52603 32.71598 42.44971 33.27641
## [49] 29.34566 27.28054 33.16433 45.74522 53.82217 66.16348 75.02271 85.02340
## [57] 87.13889 73.73888 83.26451 87.21666 91.32844 80.06192
addRSI(n = 7, maType = "EMA", wilder = TRUE)

A3<-data.frame(C2,ifr)
head(A3,15)
##         C2      ifr
## 1  3254.00       NA
## 2  3301.50       NA
## 3  3292.00       NA
## 4  3276.20       NA
## 5  3272.70       NA
## 6  3303.60       NA
## 7  3291.95       NA
## 8  3283.80 61.73228
## 9  3298.00 66.14813
## 10 3321.99 72.42079
## 11 3351.78 78.25748
## 12 3342.95 72.92078
## 13 3335.00 68.04655
## 14 3378.30 77.57242
## 15 3358.25 66.81231

6. Momentum

mome<-momentum(C2,n=10);mome
##  [1]      NA      NA      NA      NA      NA      NA      NA      NA      NA
## [10]      NA   97.78   41.45   43.00  102.10   85.55   72.50   61.05   80.65
## [19]   82.00  -30.24  -46.98  -55.95  -66.60 -119.00  -97.50 -107.25  -85.00
## [28]  -91.20  -93.85  -35.55  -62.80  -93.88  -64.90  -68.85  -75.70  -71.85
## [37]  -56.20  -63.35  -89.65  -44.02  -23.50   25.68    2.75    9.54    7.45
## [46]   -6.00  -11.80  -24.60  -19.01  -38.98  -40.70  -29.70   -8.15   17.01
## [55]   46.00   94.50  102.05   98.50  164.21  210.80  279.00  240.40
addMomentum(n=10)

7. Tasa de cambio.

roc<-ROC(C2,n=10,type="discrete");roc
##  [1]            NA            NA            NA            NA            NA
##  [6]            NA            NA            NA            NA            NA
## [11]  0.0300491703  0.0125548993  0.0130619684  0.0311641536  0.0261404956
## [16]  0.0219457561  0.0185452391  0.0245599610  0.0248635537 -0.0091029774
## [21] -0.0140164331 -0.0167367146 -0.0199700150 -0.0352248172 -0.0290329785
## [26] -0.0317674240 -0.0253504324 -0.0271069566 -0.0277662722 -0.0107997266
## [31] -0.0190026628 -0.0285609979 -0.0198568107 -0.0211241678 -0.0232155179
## [36] -0.0219802071 -0.0171970624 -0.0193538532 -0.0272811649 -0.0135188256
## [41] -0.0072486120  0.0080422909  0.0008584361  0.0029901738  0.0023390528
## [46] -0.0018767595 -0.0036739523 -0.0076637901 -0.0059471297 -0.0121350609
## [51] -0.0126456424 -0.0092270411 -0.0025419103  0.0053156416  0.0144087706
## [56]  0.0296145409  0.0318906250  0.0309233039  0.0516791556  0.0664313627
## [61]  0.0877965888  0.0753817692
addROC(n = 10, type = c("discrete","continuous"), col = "red")

8. MACD (Moving Average Convergence Divergence)

macd<-MACD(C2,26,12,9,maType="SMA")
addMACD(fast = 12, slow = 26, signal = 9, type = "EMA", histogram = TRUE)

A3<-data.frame(D,ifr,mome,roc,macd)
head(A3,20)
##            b.Open  b.High   b.Low b.Close      ifr   mome          roc macd
## 2019-05-06 3259.9 3262.80 3247.20 3254.00       NA     NA           NA   NA
## 2019-05-07 3270.0 3301.50 3270.00 3301.50       NA     NA           NA   NA
## 2019-05-08 3300.0 3310.90 3275.50 3292.00       NA     NA           NA   NA
## 2019-05-09 3302.0 3319.00 3272.96 3276.20       NA     NA           NA   NA
## 2019-05-10 3268.6 3288.00 3260.00 3272.70       NA     NA           NA   NA
## 2019-05-13 3300.0 3308.70 3284.05 3303.60       NA     NA           NA   NA
## 2019-05-14 3295.0 3297.10 3274.05 3291.95       NA     NA           NA   NA
## 2019-05-15 3310.0 3312.50 3283.75 3283.80 61.73228     NA           NA   NA
## 2019-05-16 3285.0 3302.00 3279.35 3298.00 66.14813     NA           NA   NA
## 2019-05-17 3310.0 3321.99 3304.05 3321.99 72.42079     NA           NA   NA
## 2019-05-20 3310.0 3360.20 3310.00 3351.78 78.25748  97.78  0.030049170   NA
## 2019-05-21 3342.0 3364.10 3331.00 3342.95 72.92078  41.45  0.012554899   NA
## 2019-05-22 3330.0 3353.50 3324.00 3335.00 68.04655  43.00  0.013061968   NA
## 2019-05-23 3355.0 3384.95 3355.00 3378.30 77.57242 102.10  0.031164154   NA
## 2019-05-24 3359.9 3369.30 3350.00 3358.25 66.81231  85.55  0.026140496   NA
## 2019-05-28 3365.0 3382.00 3346.00 3376.10 70.99161  72.50  0.021945756   NA
## 2019-05-29 3385.0 3393.00 3352.50 3353.00 59.65037  61.05  0.018545239   NA
## 2019-05-30 3357.0 3367.00 3346.70 3364.45 63.06276  80.65  0.024559961   NA
## 2019-05-31 3393.0 3398.00 3369.00 3380.00 67.42735  82.00  0.024863554   NA
## 2019-06-04 3330.0 3335.90 3287.10 3291.75 37.83024 -30.24 -0.009102977   NA
##            signal
## 2019-05-06     NA
## 2019-05-07     NA
## 2019-05-08     NA
## 2019-05-09     NA
## 2019-05-10     NA
## 2019-05-13     NA
## 2019-05-14     NA
## 2019-05-15     NA
## 2019-05-16     NA
## 2019-05-17     NA
## 2019-05-20     NA
## 2019-05-21     NA
## 2019-05-22     NA
## 2019-05-23     NA
## 2019-05-24     NA
## 2019-05-28     NA
## 2019-05-29     NA
## 2019-05-30     NA
## 2019-05-31     NA
## 2019-06-04     NA

Paquetes utilizados

library(quantmod)

library(TTR)


.