EXERCISE # 1 (COMPARE THE AVERAGE OF DIAMONDS BY CUT)
SOLUTION 1
## # A tibble: 5 x 2
## cut AVERAGE
## <ord> <dbl>
## 1 Fair 4359.
## 2 Good 3929.
## 3 Very Good 3982.
## 4 Premium 4584.
## 5 Ideal 3458.
END OF SOLUTION 1
EXERCISE # 2 (CUANTOS DIAMANTES CUESTAN MAS DE 200)
SOLUTION 2
## # A tibble: 53,940 x 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
## 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
## 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
## 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
## 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
## 10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
## # ... with 53,930 more rows
END OF SOLUTION 2
EXERCISE # 3 (SELECT THE CUT DIMENSION X, Y, Z AND THEIR AVERANGE
PRICE)
SOLUTION 3
## `summarise()` has grouped output by 'x', 'y', 'z', 'color'. You can override
## using the `.groups` argument.
## # A tibble: 9,797 x 5
## # Groups: x, y, z, color [8,651]
## x y z color C_promedio
## <dbl> <dbl> <dbl> <ord> <int>
## 1 3.74 3.71 2.36 E 367
## 2 3.76 3.73 2.33 E 367
## 3 3.79 3.75 2.27 E 345
## 4 3.79 3.77 2.26 E 367
## 5 3.81 3.78 2.24 E 367
## 6 3.81 3.78 2.32 E 367
## 7 3.82 3.78 2.4 E 386
## 8 3.83 3.85 2.46 E 402
## 9 3.84 3.8 2.28 E 367
## 10 3.84 3.82 2.37 E 394
## # ... with 9,787 more rows
END OF SOLUTION 3
EXERCISE #4 (DETERMMINE THE AVERANGE OF THE PRICE IN EACH
COLOR)
SOLUTION 4
## # A tibble: 7 x 2
## color Color_averange
## <ord> <dbl>
## 1 D 3170.
## 2 E 3077.
## 3 F 3725.
## 4 G 3999.
## 5 H 4487.
## 6 I 5092.
## 7 J 5324.
END OF SOLUTION 4
SOLUTION 5
END OF SOLUTION 5
R Markdown Hecho por Ángel David García