Problem 2:
For parts (a) through (c), indicate which of i. through iv. is correct. Justify your answer. (a) The lasso, relative to least squares, is: i. More flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance. ii. More flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias. iii. Less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance. iv. Less flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias.
Answer: iii because Lasso’s advantage over least squares is rooted in the bias-variance trade-off. When least squares estimates have excessively high variance, the lasso solution can yield a reduction in variance at the expense of a small increase in bias. This consequently can generate more accurate predictions.
Repeat (a) for ridge regression relative to least squares. Answer: iii because ridge regression and lasso’s advantage over least squares is rooted in the bias-variance trade-off. As λ increases, the flexibility of the ridge regression fit decreases leading to decreased variance but increased bias. The relationship between λ and variance and bias in this regression method is the key holder to understanding the relationship. When there is small change in the training data, the least squares coefficient produces a large change and larger value for variance. Whereas ridge regression can still perform well by trading off a small increase in bias for a large decrease in variance. Hence, between these two methods, ridge regression works best in situations where the least squares estimates have high variance. The big difference between ridge and lasso is that lasso performs variance selection and makes it easier to interpret.
Repeat (a) for non-linear methods relative to least squares. Answer: ii because compared to the previous two the non-linear method is more flexible than the least sqaure method. Which will result in more accurate predictions when its increase in variance is less than the increase in bias.
Problem 9:
In this exercise, we will predict the number of applications received using the other variables in the College data set. (a) Split the data set into a training set and a test set.
library(ISLR)
attach(College)
x=model.matrix(Apps~.,College)[,-1]
y=College$Apps
set.seed(10)
train=sample(1:nrow(x), nrow(x)/2)
test=(-train)
College.train = College[train, ]
College.test = College[test, ]
y.test=y[test]
pls.fit<-lm(Apps~., data=College, subset=train)
summary(pls.fit)
##
## Call:
## lm(formula = Apps ~ ., data = College, subset = train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5139.5 -473.3 -21.1 353.2 7402.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -629.36179 639.35741 -0.984 0.325579
## PrivateYes -647.56836 192.17056 -3.370 0.000832 ***
## Accept 1.68912 0.05038 33.530 < 2e-16 ***
## Enroll -1.02383 0.27721 -3.693 0.000255 ***
## Top10perc 48.19124 8.10714 5.944 6.42e-09 ***
## Top25perc -10.51538 6.44952 -1.630 0.103865
## F.Undergrad 0.01992 0.05364 0.371 0.710574
## P.Undergrad 0.04213 0.05348 0.788 0.431373
## Outstate -0.09489 0.02674 -3.549 0.000436 ***
## Room.Board 0.14549 0.07243 2.009 0.045277 *
## Books 0.06660 0.31115 0.214 0.830623
## Personal 0.05663 0.09453 0.599 0.549475
## PhD -10.11489 7.11588 -1.421 0.156027
## Terminal -2.29300 8.03546 -0.285 0.775528
## S.F.Ratio 22.07117 18.70991 1.180 0.238897
## perc.alumni 2.08121 6.00673 0.346 0.729179
## Expend 0.07654 0.01672 4.577 6.45e-06 ***
## Grad.Rate 9.99706 4.49821 2.222 0.026857 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1092 on 370 degrees of freedom
## Multiple R-squared: 0.9395, Adjusted R-squared: 0.9367
## F-statistic: 338 on 17 and 370 DF, p-value: < 2.2e-16
pred.app<-predict(pls.fit, College.test)
test.error<-mean((College.test$Apps-pred.app)^2)
test.error
## [1] 1020100
MSE for linear model using the least squares is 1,020,100.
library(glmnet)
## Loading required package: Matrix
## Loaded glmnet 4.1-3
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x[train,],y[train],alpha=0,lambda=grid)
summary(ridge.mod)
## Length Class Mode
## a0 100 -none- numeric
## beta 1700 dgCMatrix S4
## df 100 -none- numeric
## dim 2 -none- numeric
## lambda 100 -none- numeric
## dev.ratio 100 -none- numeric
## nulldev 1 -none- numeric
## npasses 1 -none- numeric
## jerr 1 -none- numeric
## offset 1 -none- logical
## call 5 -none- call
## nobs 1 -none- numeric
cv.college.out=cv.glmnet(x[train,],y[train] ,alpha=0)
bestlam=cv.college.out$lambda.min
bestlam
## [1] 411.3927
ridge.pred=predict(ridge.mod,s=bestlam,newx=x[test,])
mean((ridge.pred-y.test)^2)
## [1] 985020.1
MSE for the ridge model is 985,020.1
lasso.mod=glmnet(x[train,],y[train],alpha=1,lambda=grid)
summary(lasso.mod)
## Length Class Mode
## a0 100 -none- numeric
## beta 1700 dgCMatrix S4
## df 100 -none- numeric
## dim 2 -none- numeric
## lambda 100 -none- numeric
## dev.ratio 100 -none- numeric
## nulldev 1 -none- numeric
## npasses 1 -none- numeric
## jerr 1 -none- numeric
## offset 1 -none- logical
## call 5 -none- call
## nobs 1 -none- numeric
cv.out=cv.glmnet(x[train,],y[train],alpha=1)
bestlam=cv.out$lambda.min
bestlam
## [1] 24.66235
lasso.pred=predict(lasso.mod,s=bestlam,newx=x[test,])
mean((lasso.pred-y.test)^2)
## [1] 1008145
out=glmnet(x,y,alpha=1,lambda = grid)
lasso.coef=predict(out,type="coefficients",s=bestlam)[1:18,]
lasso.coef[lasso.coef!=0]
## (Intercept) PrivateYes Accept Enroll Top10perc
## -6.324960e+02 -4.087012e+02 1.436837e+00 -1.410240e-01 3.143012e+01
## Top25perc P.Undergrad Outstate Room.Board Personal
## -8.606536e-01 1.480293e-02 -5.342495e-02 1.205819e-01 4.379135e-05
## PhD Terminal S.F.Ratio perc.alumni Expend
## -5.121245e+00 -3.371192e+00 2.717231e+00 -1.039648e+00 6.838161e-02
## Grad.Rate
## 4.700317e+00
MSE for the lasso model is 1,008,145
library(pls)
##
## Attaching package: 'pls'
## The following object is masked from 'package:stats':
##
## loadings
pcr.college=pcr(Apps~., data=College.train,scale=TRUE,validation="CV")
summary(pcr.college)
## Data: X dimension: 388 17
## Y dimension: 388 1
## Fit method: svdpc
## Number of components considered: 17
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
## CV 4347 4345 2371 2391 2104 1949 1898
## adjCV 4347 4345 2368 2396 2085 1939 1891
## 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps
## CV 1899 1880 1864 1861 1870 1873 1891
## adjCV 1893 1862 1857 1853 1862 1865 1885
## 14 comps 15 comps 16 comps 17 comps
## CV 1903 1727 1295 1260
## adjCV 1975 1669 1283 1249
##
## TRAINING: % variance explained
## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
## X 32.6794 56.94 64.38 70.61 76.27 80.97 84.48 87.54
## Apps 0.9148 71.17 71.36 79.85 81.49 82.73 82.79 83.70
## 9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15 comps
## X 90.50 92.89 94.96 96.81 97.97 98.73 99.39
## Apps 83.86 84.08 84.11 84.11 84.16 84.28 93.08
## 16 comps 17 comps
## X 99.86 100.00
## Apps 93.71 93.95
validationplot(pcr.college, val.type="MSEP")
pcr.pred=predict(pcr.college,x[test,],ncomp=10)
mean((pcr.pred-y.test)^2)
## [1] 1422699
Selected number of components was 10 due to its low CV and high variance explained.
pls.college=plsr(Apps~., data=College.train,scale=TRUE, validation="CV")
validationplot(pls.college, val.type="MSEP")
summary(pls.college)
## Data: X dimension: 388 17
## Y dimension: 388 1
## Fit method: kernelpls
## Number of components considered: 17
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
## CV 4347 2178 1872 1734 1615 1453 1359
## adjCV 4347 2171 1867 1726 1586 1427 1341
## 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps
## CV 1347 1340 1329 1317 1310 1305 1305
## adjCV 1330 1324 1314 1302 1296 1291 1291
## 14 comps 15 comps 16 comps 17 comps
## CV 1305 1307 1307 1307
## adjCV 1291 1292 1293 1293
##
## TRAINING: % variance explained
## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
## X 24.27 38.72 62.64 65.26 69.01 73.96 78.86 82.18
## Apps 76.96 84.31 86.80 91.48 93.37 93.75 93.81 93.84
## 9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15 comps
## X 85.35 87.42 89.18 91.41 92.70 94.58 97.16
## Apps 93.88 93.91 93.93 93.94 93.95 93.95 93.95
## 16 comps 17 comps
## X 98.15 100.00
## Apps 93.95 93.95
pls.pred=predict(pls.college,x[test,],ncomp=9)
mean((pls.pred-y.test)^2)
## [1] 1049868
The PLS model resulted with 11 componenets as this had the lowest CV at 1285 with high (89.18) variance explained.
test.avg = mean(College.test[, "Apps"])
lm.test.r2 = 1 - mean((College.test[, "Apps"] - pred.app)^2) /mean((College.test[, "Apps"] - test.avg)^2)
ridge.test.r2 = 1 - mean((College.test[, "Apps"] - ridge.pred)^2) /mean((College.test[, "Apps"] - test.avg)^2)
lasso.test.r2 = 1 - mean((College.test[, "Apps"] - lasso.pred)^2) /mean((College.test[, "Apps"] - test.avg)^2)
pcr.test.r2 = 1 - mean((pcr.pred-y.test)^2) /mean((College.test[, "Apps"] - test.avg)^2)
pls.test.r2 = 1 - mean((pls.pred-y.test)^2) /mean((College.test[, "Apps"] - test.avg)^2)
barplot(c(lm.test.r2, ridge.test.r2, lasso.test.r2, pcr.test.r2, pls.test.r2), names.arg=c("OLS", "Ridge", "Lasso", "PCR", "PLS"), main="Test R-squared")
detach(College)
Problem 11:
We will now try to predict per capita crime rate in the Boston data set.
library(leaps)
library(MASS)
set.seed(1)
attach(Boston)
predict.regsubsets = function(object, newdata, id, ...) {
form = as.formula(object$call[[2]])
mat = model.matrix(form, newdata)
coefi = coef(object, id = id)
mat[, names(coefi)] %*% coefi
}
k = 10
p = ncol(Boston) - 1
folds = sample(rep(1:k, length = nrow(Boston)))
cv.errors = matrix(NA, k, p)
for (i in 1:k) {
best.fit = regsubsets(crim ~ ., data = Boston[folds != i, ], nvmax = p)
for (j in 1:p) {
pred = predict(best.fit, Boston[folds == i, ], id = j)
cv.errors[i, j] = mean((Boston$crim[folds == i] - pred)^2)
}
}
mean.cv.errors <- apply(cv.errors, 2, mean)
plot(mean.cv.errors, type = "b", xlab = "Number of variables", ylab = "CV error")
which.min(mean.cv.errors)
## [1] 9
mean.cv.errors[which.min(mean.cv.errors)]
## [1] 42.81453
x = model.matrix(crim ~ . - 1, data = Boston)
y = Boston$crim
cv.lasso = cv.glmnet(x, y, type.measure = "mse")
plot(cv.lasso)
coef(cv.lasso)
## 14 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) 2.176491
## zn .
## indus .
## chas .
## nox .
## rm .
## age .
## dis .
## rad 0.150484
## tax .
## ptratio .
## black .
## lstat .
## medv .
sqrt(cv.lasso$cvm[cv.lasso$lambda == cv.lasso$lambda.1se])
## [1] 7.921353
x = model.matrix(crim ~ . - 1, data = Boston)
y = Boston$crim
cv.ridge = cv.glmnet(x, y, type.measure = "mse", alpha = 0)
plot(cv.ridge)
coef(cv.ridge)
## 14 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) 1.523899542
## zn -0.002949852
## indus 0.029276741
## chas -0.166526007
## nox 1.874769665
## rm -0.142852604
## age 0.006207995
## dis -0.094547258
## rad 0.045932737
## tax 0.002086668
## ptratio 0.071258052
## black -0.002605281
## lstat 0.035745604
## medv -0.023480540
sqrt(cv.ridge$cvm[cv.ridge$lambda == cv.ridge$lambda.1se])
## [1] 7.669133
pcr.crime = pcr(crim ~ ., data = Boston, scale = TRUE, validation = "CV")
summary(pcr.crime)
## Data: X dimension: 506 13
## Y dimension: 506 1
## Fit method: svdpc
## Number of components considered: 13
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
## CV 8.61 7.175 7.180 6.724 6.731 6.727 6.727
## adjCV 8.61 7.174 7.179 6.721 6.725 6.724 6.724
## 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps
## CV 6.722 6.614 6.618 6.607 6.598 6.553 6.488
## adjCV 6.718 6.609 6.613 6.602 6.592 6.546 6.481
##
## TRAINING: % variance explained
## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
## X 47.70 60.36 69.67 76.45 82.99 88.00 91.14 93.45
## crim 30.69 30.87 39.27 39.61 39.61 39.86 40.14 42.47
## 9 comps 10 comps 11 comps 12 comps 13 comps
## X 95.40 97.04 98.46 99.52 100.0
## crim 42.55 42.78 43.04 44.13 45.4
Based on the MSE, the best subset selection model had the lowest cross-validation error with the MSE of 42.8.