Setting Up

Import Data Sets

Experiment 1: 5-min adaptation reliability

## Experiment 1: 5-min adaptation differences

##                Df Sum Sq Mean Sq F value   Pr(>F)    
## Sweetener       2   1423   711.6  18.638 1.56e-08 ***
## Cup             9   5652   628.0  16.448  < 2e-16 ***
## Sweetener:Cup  18     41     2.3   0.059        1    
## Residuals     500  19089    38.2                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## Cup           9   1694  188.27   2.606 0.00764 **
## Residuals   170  12280   72.24                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Intensity ~ Cup, data = .)
## 
## $Cup
##              diff        lwr        upr     p adj
## 2-1   -7.81862507 -16.902129  1.2648792 0.1591151
## 3-1  -10.69455038 -19.778055 -1.6110461 0.0081955
## 4-1   -9.98575550 -19.069260 -0.9022512 0.0189425
## 5-1  -10.41390281 -19.497407 -1.3303985 0.0115057
## 6-1  -10.17827485 -19.261779 -1.0947705 0.0151821
## 7-1  -10.08243690 -19.165941 -0.9989326 0.0169603
## 8-1  -10.20155557 -19.285060 -1.1180513 0.0147765
## 9-1  -10.24021546 -19.323720 -1.1567111 0.0141245
## 10-1  -9.64122364 -18.724728 -0.5577193 0.0278060
## 3-2   -2.87592531 -11.959430  6.2075790 0.9910081
## 4-2   -2.16713042 -11.250635  6.9163739 0.9989535
## 5-2   -2.59527773 -11.678782  6.4882266 0.9957770
## 6-2   -2.35964977 -11.443154  6.7238545 0.9979586
## 7-2   -2.26381183 -11.347316  6.8196925 0.9985229
## 8-2   -2.38293050 -11.466435  6.7005738 0.9977973
## 9-2   -2.42159039 -11.505095  6.6619139 0.9975062
## 10-2  -1.82259857 -10.906103  7.2609057 0.9997425
## 4-3    0.70879488  -8.374709  9.7922992 0.9999999
## 5-3    0.28064757  -8.802857  9.3641519 1.0000000
## 6-3    0.51627553  -8.567229  9.5997799 1.0000000
## 7-3    0.61211347  -8.471391  9.6956178 1.0000000
## 8-3    0.49299481  -8.590510  9.5764991 1.0000000
## 9-3    0.45433492  -8.629169  9.5378392 1.0000000
## 10-3   1.05332674  -8.030178 10.1368311 0.9999976
## 5-4   -0.42814731  -9.511652  8.6553570 1.0000000
## 6-4   -0.19251935  -9.276024  8.8909850 1.0000000
## 7-4   -0.09668141  -9.180186  8.9868229 1.0000000
## 8-4   -0.21580008  -9.299304  8.8677042 1.0000000
## 9-4   -0.25445997  -9.337964  8.8290444 1.0000000
## 10-4   0.34453185  -8.738972  9.4280362 1.0000000
## 6-5    0.23562796  -8.847876  9.3191323 1.0000000
## 7-5    0.33146590  -8.752038  9.4149702 1.0000000
## 8-5    0.21234723  -8.871157  9.2958515 1.0000000
## 9-5    0.17368734  -8.909817  9.2571917 1.0000000
## 10-5   0.77267916  -8.310825  9.8561835 0.9999998
## 7-6    0.09583794  -8.987666  9.1793423 1.0000000
## 8-6   -0.02328073  -9.106785  9.0602236 1.0000000
## 9-6   -0.06194062  -9.145445  9.0215637 1.0000000
## 10-6   0.53705120  -8.546453  9.6205555 1.0000000
## 8-7   -0.11911867  -9.202623  8.9643856 1.0000000
## 9-7   -0.15777856  -9.241283  8.9257258 1.0000000
## 10-7   0.44121326  -8.642291  9.5247176 1.0000000
## 9-8   -0.03865989  -9.122164  9.0448444 1.0000000
## 10-8   0.56033193  -8.523172  9.6438362 1.0000000
## 10-9   0.59899182  -8.484512  9.6824961 1.0000000
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Cup           9   2155  239.42   11.01 1.95e-13 ***
## Residuals   170   3698   21.75                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Intensity ~ Cup, data = .)
## 
## $Cup
##               diff        lwr       upr     p adj
## 2-1   -9.407108578 -14.391457 -4.422760 0.0000004
## 3-1  -11.403937054 -16.388286 -6.419588 0.0000000
## 4-1  -11.223219379 -16.207568 -6.238871 0.0000000
## 5-1  -11.459844059 -16.444193 -6.475495 0.0000000
## 6-1  -11.657441598 -16.641790 -6.673093 0.0000000
## 7-1  -11.796529176 -16.780878 -6.812180 0.0000000
## 8-1  -11.655163205 -16.639512 -6.670814 0.0000000
## 9-1  -11.637451538 -16.621800 -6.653103 0.0000000
## 10-1 -11.649563407 -16.633912 -6.665215 0.0000000
## 3-2   -1.996828476  -6.981177  2.987520 0.9558957
## 4-2   -1.816110800  -6.800460  3.168238 0.9761319
## 5-2   -2.052735480  -7.037084  2.931613 0.9476745
## 6-2   -2.250333020  -7.234682  2.734016 0.9101321
## 7-2   -2.389420598  -7.373769  2.594928 0.8752740
## 8-2   -2.248054627  -7.232403  2.736294 0.9106441
## 9-2   -2.230342960  -7.214692  2.754006 0.9145599
## 10-2  -2.242454829  -7.226804  2.741894 0.9118945
## 4-3    0.180717676  -4.803631  5.165066 1.0000000
## 5-3   -0.055907004  -5.040256  4.928442 1.0000000
## 6-3   -0.253504544  -5.237853  4.730844 1.0000000
## 7-3   -0.392592122  -5.376941  4.591757 0.9999999
## 8-3   -0.251226151  -5.235575  4.733123 1.0000000
## 9-3   -0.233514484  -5.217863  4.750834 1.0000000
## 10-3  -0.245626353  -5.229975  4.738722 1.0000000
## 5-4   -0.236624680  -5.220973  4.747724 1.0000000
## 6-4   -0.434222220  -5.418571  4.550127 0.9999998
## 7-4   -0.573309797  -5.557659  4.411039 0.9999978
## 8-4   -0.431943826  -5.416293  4.552405 0.9999998
## 9-4   -0.414232159  -5.398581  4.570117 0.9999999
## 10-4  -0.426344028  -5.410693  4.558005 0.9999998
## 6-5   -0.197597540  -5.181946  4.786751 1.0000000
## 7-5   -0.336685117  -5.321034  4.647664 1.0000000
## 8-5   -0.195319146  -5.179668  4.789030 1.0000000
## 9-5   -0.177607480  -5.161956  4.806741 1.0000000
## 10-5  -0.189719348  -5.174068  4.794629 1.0000000
## 7-6   -0.139087578  -5.123436  4.845261 1.0000000
## 8-6    0.002278393  -4.982070  4.986627 1.0000000
## 9-6    0.019990060  -4.964359  5.004339 1.0000000
## 10-6   0.007878191  -4.976471  4.992227 1.0000000
## 8-7    0.141365971  -4.842983  5.125715 1.0000000
## 9-7    0.159077638  -4.825271  5.143426 1.0000000
## 10-7   0.146965769  -4.837383  5.131315 1.0000000
## 9-8    0.017711667  -4.966637  5.002060 1.0000000
## 10-8   0.005599798  -4.978749  4.989949 1.0000000
## 10-9  -0.012111869  -4.996461  4.972237 1.0000000
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Cup           9   1843  204.80   10.53 9.98e-13 ***
## Residuals   160   3111   19.44                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Intensity ~ Cup, data = .)
## 
## $Cup
##              diff        lwr       upr     p adj
## 2-1   -9.16971446 -14.022767 -4.316662 0.0000004
## 3-1  -10.47864884 -15.331701 -5.625596 0.0000000
## 4-1  -11.09025054 -15.943303 -6.237198 0.0000000
## 5-1  -10.97590042 -15.828953 -6.122848 0.0000000
## 6-1  -10.91294452 -15.765997 -6.059892 0.0000000
## 7-1  -11.16684816 -16.019901 -6.313796 0.0000000
## 8-1  -10.92330197 -15.776354 -6.070250 0.0000000
## 9-1  -11.05776856 -15.910821 -6.204716 0.0000000
## 10-1 -11.41088434 -16.263937 -6.557832 0.0000000
## 3-2   -1.30893438  -6.161987  3.544118 0.9972455
## 4-2   -1.92053609  -6.773588  2.932516 0.9588676
## 5-2   -1.80618596  -6.659238  3.046866 0.9723084
## 6-2   -1.74323006  -6.596282  3.109822 0.9781325
## 7-2   -1.99713371  -6.850186  2.855919 0.9475560
## 8-2   -1.75358751  -6.606640  3.099465 0.9772448
## 9-2   -1.88805410  -6.741106  2.964998 0.9630872
## 10-2  -2.24116988  -7.094222  2.611882 0.8974636
## 4-3   -0.61160171  -5.464654  4.241451 0.9999950
## 5-3   -0.49725158  -5.350304  4.355801 0.9999992
## 6-3   -0.43429568  -5.287348  4.418757 0.9999998
## 7-3   -0.68819933  -5.541252  4.164853 0.9999861
## 8-3   -0.44465313  -5.297705  4.408399 0.9999997
## 9-3   -0.57911972  -5.432172  4.273933 0.9999969
## 10-3  -0.93223550  -5.785288  3.920817 0.9998184
## 5-4    0.11435012  -4.738702  4.967402 1.0000000
## 6-4    0.17730603  -4.675746  5.030358 1.0000000
## 7-4   -0.07659762  -4.929650  4.776455 1.0000000
## 8-4    0.16694858  -4.686104  5.020001 1.0000000
## 9-4    0.03248198  -4.820570  4.885534 1.0000000
## 10-4  -0.32063379  -5.173686  4.532419 1.0000000
## 6-5    0.06295590  -4.790096  4.916008 1.0000000
## 7-5   -0.19094774  -5.044000  4.662105 1.0000000
## 8-5    0.05259845  -4.800454  4.905651 1.0000000
## 9-5   -0.08186814  -4.934920  4.771184 1.0000000
## 10-5  -0.43498392  -5.288036  4.418068 0.9999997
## 7-6   -0.25390365  -5.106956  4.599149 1.0000000
## 8-6   -0.01035745  -4.863410  4.842695 1.0000000
## 9-6   -0.14482404  -4.997876  4.708228 1.0000000
## 10-6  -0.49793982  -5.350992  4.355113 0.9999992
## 8-7    0.24354620  -4.609506  5.096599 1.0000000
## 9-7    0.10907960  -4.743973  4.962132 1.0000000
## 10-7  -0.24403618  -5.097089  4.609016 1.0000000
## 9-8   -0.13446659  -4.987519  4.718586 1.0000000
## 10-8  -0.48758237  -5.340635  4.365470 0.9999993
## 10-9  -0.35311578  -5.206168  4.499937 1.0000000
##             Df Sum Sq Mean Sq F value Pr(>F)
## Sweetener    2     67   33.61   0.265  0.769
## Residuals   50   6351  127.02
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Intensity ~ Sweetener, data = .)
## 
## $Sweetener
##                         diff        lwr      upr     p adj
## RebA-Glucose      -2.2311912 -11.437876 6.975494 0.8285617
## Sucralose-Glucose -2.4958121 -11.570020 6.578396 0.7851134
## Sucralose-RebA    -0.2646209  -9.471306 8.942064 0.9973464
##             Df Sum Sq Mean Sq F value Pr(>F)
## Sweetener    2  177.5   88.76   1.919  0.157
## Residuals   50 2313.1   46.26
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Intensity ~ Sweetener, data = .)
## 
## $Sweetener
##                        diff       lwr      upr     p adj
## RebA-Glucose      -3.582281 -9.138523 1.973962 0.2735381
## Sucralose-Glucose -4.084296 -9.560588 1.391997 0.1795310
## Sucralose-RebA    -0.502015 -6.058258 5.054228 0.9740995
##             Df Sum Sq Mean Sq F value Pr(>F)
## Sweetener    2   94.4   47.21   2.345  0.106
## Residuals   50 1006.5   20.13
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Intensity ~ Sweetener, data = .)
## 
## $Sweetener
##                        diff       lwr       upr     p adj
## RebA-Glucose      -2.015290 -5.680424 1.6498451 0.3864891
## Sucralose-Glucose -3.205199 -6.817595 0.4071975 0.0914277
## Sucralose-RebA    -1.189909 -4.855044 2.4752257 0.7143989
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Sweetener    2  150.4   75.18   2.964 0.0607 .
## Residuals   50 1268.2   25.36                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Intensity ~ Sweetener, data = .)
## 
## $Sweetener
##                         diff       lwr       upr     p adj
## RebA-Glucose      -3.3356863 -7.449725 0.7783524 0.1332555
## Sucralose-Glucose -3.7332760 -7.788117 0.3215648 0.0768960
## Sucralose-RebA    -0.3975897 -4.511628 3.7164490 0.9704257
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Sweetener    2    125   62.48   2.821 0.0691 .
## Residuals   50   1108   22.15                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Intensity ~ Sweetener, data = .)
## 
## $Sweetener
##                         diff       lwr       upr     p adj
## RebA-Glucose      -2.7931888 -6.637756 1.0513786 0.1953420
## Sucralose-Glucose -3.5417533 -7.331000 0.2474937 0.0714152
## Sucralose-RebA    -0.7485645 -4.593132 3.0960029 0.8855124

Experiment 2: Detection threshold, JND, exposed JND reliability

Experiment 2: Detection threshold, JND, exposed JND difference

Experiment 3: Suprathreshold Reliability

Experiment 3: Suprathreshold DRC - Glucose

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.2207  -0.5119  -0.2196   0.2325   3.3959  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             43.198   20.4454    65.951
## Growth rate          5.533   -0.8604    11.926
## Midpoint at          2.768    2.5285     3.008
## Residual std err.   15.197   12.5113    17.883
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -271.71
## AIC: 549.41
## BIC: 555.98
## 
## Optimization algorithm converged in 20 iterations

## 
## Model fitted: Log-logistic (ED50 as parameter) (3 parms)
## 
## Parameter estimates:
## 
##                     Estimate Std. Error t-value   p-value    
## slope:(Intercept) -25.064210  10.691093 -2.3444   0.02222 *  
## Max:(Intercept)    48.062262  11.025312  4.3593 4.917e-05 ***
## EC50:(Intercept)    2.916286   0.073259 39.8081 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error:
## 
##  14.29746 (63 degrees of freedom)
## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.5895  -0.5732  -0.2202   0.4063   3.1623  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum               0.00        NA        NA
## Maximum              46.78    28.454    65.114
## Growth rate           9.00     1.803    16.196
## Midpoint at           2.91     2.786     3.035
## Residual std err.    14.29    11.762    16.812
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -267.63
## AIC: 541.26
## BIC: 547.83
## 
## Optimization algorithm converged in 19 iterations

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -2.0105  -0.6855  -0.1691   0.6067   3.4706  
## 
## Parameters:
##                    Estimate  Lower .95 Upper .95
## Minimum           0.000e+00         NA        NA
## Maximum           4.433e+05 -2.274e+07 2.363e+07
## Growth rate       3.886e+00  2.385e+00 5.386e+00
## Midpoint at       5.608e+00 -7.900e+00 1.911e+01
## Residual std err. 1.194e+01  9.830e+00 1.405e+01
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -255.79
## AIC: 517.58
## BIC: 524.15
## 
## Optimization algorithm converged in 785 iterations

Experiment 3: Suprathreshold DRC - Glucose: Fixed Top

## 
## Model fitted: Log-logistic (ED50 as parameter) (2 parms)
## 
## Parameter estimates:
## 
##                     Estimate Std. Error t-value   p-value    
## slope:(Intercept) -14.753830   3.746298 -3.9382 0.0002053 ***
## EC50:(Intercept)    2.779221   0.040317 68.9347 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error:
## 
##  15.07882 (64 degrees of freedom)
## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.2207  -0.5119  -0.2196   0.2325   3.3959  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             43.198   20.4454    65.951
## Growth rate          5.533   -0.8604    11.926
## Midpoint at          2.768    2.5285     3.008
## Residual std err.   15.197   12.5113    17.883
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -271.71
## AIC: 549.41
## BIC: 555.98
## 
## Optimization algorithm converged in 91 iterations

## 
## Model fitted: Log-logistic (ED50 as parameter) (2 parms)
## 
## Parameter estimates:
## 
##                     Estimate Std. Error  t-value   p-value    
## slope:(Intercept) -28.369183   6.979494  -4.0646  0.000134 ***
## EC50:(Intercept)    2.895697   0.025175 115.0215 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error:
## 
##  14.19945 (64 degrees of freedom)
## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.5307  -0.5668  -0.1917   0.4330   3.1586  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             44.670    30.555    58.785
## Growth rate          9.752     2.569    16.936
## Midpoint at          2.897     2.799     2.996
## Residual std err.   14.294    11.766    16.822
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -267.66
## AIC: 541.33
## BIC: 547.9
## 
## Optimization algorithm converged in 33 iterations

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.7996  -0.6114  -0.1273   0.6296   3.6071  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             44.670    15.339    74.001
## Growth rate          6.597     2.373    10.822
## Midpoint at          3.044     2.826     3.262
## Residual std err.   12.105     9.948    14.261
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -256.69
## AIC: 519.38
## BIC: 525.95
## 
## Optimization algorithm converged in 33 iterations

Experiment 3: Suprathreshold DRC - Sucralose

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##      Min        1Q    Median        3Q       Max  
## -2.02039  -0.70372  -0.07711   0.55412   2.66829  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             41.415   28.9397    53.889
## Growth rate          3.644    0.9571     6.331
## Midpoint at          2.576    2.3489     2.803
## Residual std err.   10.944    9.0099    12.878
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -250.04
## AIC: 506.08
## BIC: 512.65
## 
## Optimization algorithm converged in 23 iterations

## 
## Model fitted: Log-logistic (ED50 as parameter) (3 parms)
## 
## Parameter estimates:
## 
##                   Estimate Std. Error t-value   p-value    
## slope:(Intercept) -9.50851    6.61556 -1.4373    0.1556    
## Max:(Intercept)   44.82131   32.69372  1.3709    0.1753    
## EC50:(Intercept)   2.96259    0.52408  5.6529 4.094e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error:
## 
##  15.95378 (63 degrees of freedom)
## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.6677  -0.4624  -0.0969   0.3067   3.3203  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             39.742    2.2274    77.256
## Growth rate          3.784   -0.8052     8.374
## Midpoint at          2.891    2.2621     3.520
## Residual std err.   15.951   13.1319    18.770
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -274.9
## AIC: 555.8
## BIC: 562.37
## 
## Optimization algorithm converged in 24 iterations

## 
## Model fitted: Log-logistic (ED50 as parameter) (3 parms)
## 
## Parameter estimates:
## 
##                   Estimate Std. Error t-value  p-value   
## slope:(Intercept)  -3.2529     1.2156 -2.6759 0.009486 **
## Max:(Intercept)   354.2130         NA      NA       NA   
## EC50:(Intercept)    8.1901         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error:
## 
##  12.22454 (63 degrees of freedom)
## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.4139  -0.6542  -0.3330   0.2268   2.6805  
## 
## Parameters:
##                    Estimate  Lower .95 Upper .95
## Minimum               0.000         NA        NA
## Maximum           60903.755 -3.150e+07 3.162e+07
## Growth rate           1.118  2.049e-01 2.031e+00
## Midpoint at          10.576 -4.539e+02 4.750e+02
## Residual std err.    12.221  1.006e+01 1.438e+01
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -257.33
## AIC: 520.65
## BIC: 527.22
## 
## Optimization algorithm DID NOT converge in 10783 iterations

Experiment 3: Suprathreshold DRC - Sucralose: Fixed Top

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##      Min        1Q    Median        3Q       Max  
## -2.02039  -0.70372  -0.07711   0.55412   2.66829  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             41.415   28.9397    53.889
## Growth rate          3.644    0.9571     6.331
## Midpoint at          2.576    2.3489     2.803
## Residual std err.   10.944    9.0099    12.878
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -250.04
## AIC: 506.08
## BIC: 512.65
## 
## Optimization algorithm DID NOT converge in 10021 iterations

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.6677  -0.4624  -0.0969   0.3067   3.3203  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             39.742    2.2274    77.256
## Growth rate          3.784   -0.8052     8.374
## Midpoint at          2.891    2.2621     3.520
## Residual std err.   15.951   13.1319    18.770
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -274.9
## AIC: 555.8
## BIC: 562.37
## 
## Optimization algorithm converged in 1724 iterations

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.3894  -0.6667  -0.3466   0.2218   2.6696  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             44.640  -200.315   289.594
## Growth rate          1.491    -1.485     4.468
## Midpoint at          3.596    -2.815    10.007
## Residual std err.   12.225    10.064    14.386
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -257.35
## AIC: 520.69
## BIC: 527.26
## 
## Optimization algorithm DID NOT converge in 10019 iterations

Experiment 3: Suprathreshold DRC - RebA

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##      Min        1Q    Median        3Q       Max  
## -1.88018  -0.75961  -0.05485   0.61124   3.07789  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             30.368   19.2984    41.437
## Growth rate          3.842   -0.8728     8.558
## Midpoint at          2.297    2.0617     2.531
## Residual std err.   10.978    9.0375    12.917
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -250.24
## AIC: 506.48
## BIC: 513.05
## 
## Optimization algorithm converged in 14 iterations

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.5718  -0.6037  -0.1305   0.5580   3.0087  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             31.967  -72.1182   136.053
## Growth rate          2.219   -4.3531     8.791
## Midpoint at          2.746   -0.4059     5.897
## Residual std err.   13.392   11.0252    15.759
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -263.36
## AIC: 532.72
## BIC: 539.29
## 
## Optimization algorithm converged in 27 iterations

## 
## Model fitted: Log-logistic (ED50 as parameter) (3 parms)
## 
## Parameter estimates:
## 
##                   Estimate Std. Error t-value p-value
## slope:(Intercept)  -1.9365     2.9672 -0.6526  0.5164
## Max:(Intercept)    84.9038   849.5231  0.0999  0.9207
## EC50:(Intercept)    7.5755    55.5154  0.1365  0.8919
## 
## Residual standard error:
## 
##  9.58849 (63 degrees of freedom)
## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.3079  -0.8383  -0.1847   0.6246   1.9773  
## 
## Parameters:
##                    Estimate  Lower .95 Upper .95
## Minimum           0.000e+00         NA        NA
## Maximum           3.211e+04 -1.576e+07 1.583e+07
## Growth rate       6.548e-01 -2.105e-01 1.520e+00
## Midpoint at       1.503e+01 -7.386e+02 7.687e+02
## Residual std err. 9.585e+00  7.891e+00 1.128e+01
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -241.29
## AIC: 488.58
## BIC: 495.15
## 
## Optimization algorithm DID NOT converge in 10765 iterations

Experiment 3: Suprathreshold DRC - RebA: Fixed Top

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##      Min        1Q    Median        3Q       Max  
## -1.88018  -0.75961  -0.05485   0.61124   3.07789  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             30.368   19.2984    41.437
## Growth rate          3.842   -0.8728     8.558
## Midpoint at          2.297    2.0617     2.531
## Residual std err.   10.978    9.0375    12.917
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -250.24
## AIC: 506.48
## BIC: 513.05
## 
## Optimization algorithm converged in 1718 iterations

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.5690  -0.6014  -0.1292   0.5579   3.0078  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum              0.000        NA        NA
## Maximum             31.177 -59.67584   122.030
## Growth rate          2.270  -4.05244     8.592
## Midpoint at          2.722  -0.06001     5.503
## Residual std err.   13.392  11.02522    15.759
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -263.36
## AIC: 532.72
## BIC: 539.29
## 
## Optimization algorithm DID NOT converge in 10033 iterations

## 
## Call: drda(formula = geo.Int ~ log10(Conc.mM), data = ., mean_function = "logistic4", 
##     is_log = TRUE, lower_bound = lb, upper_bound = ub)
## 
## Pearson Residuals:
##     Min       1Q   Median       3Q      Max  
## -1.2954  -0.8392  -0.1912   0.6317   1.9892  
## 
## Parameters:
##                   Estimate Lower .95 Upper .95
## Minimum             0.0000        NA        NA
## Maximum            31.1443  -203.893   266.182
## Growth rate         0.9476    -2.475     4.371
## Midpoint at         3.4747   -11.077    18.026
## Residual std err.   9.5872     7.893    11.282
## 
## Residual standard error on 63 degrees of freedom
## 
## Log-likelihood: -241.3
## AIC: 488.61
## BIC: 495.17
## 
## Optimization algorithm DID NOT converge in 10043 iterations