Problem 3: We now review k-fold cross-validation. (a) Explain how k-fold cross-validation is implemented. The k-fold cross validation is implemented by taking the amount of observations, n, and randomly splitting them into k, non-overlapping groups of length of approximately n/k. These groups are the validation set, and the remainder is the training set. The test error is then estimated by averaging the k resulting mean squared error estimates. (b) What are the advantages and disadvantages of k-fold crossvalidation relative to: i. The validation set approach? Advantages: Validation set approach is conceptually simple & easily implemented. Disadvantages: Validation MSE can be highly variable & only a subset of observations are used to fit the model. ii. LOOCV? Advantages: Less bias & validation approach produces different MSE when repeatedly applied due to randomness during process of splitting, while performing LOOCV multiple times will always produce same results, because split based on one observation every time. Disadvantage is that it is computationally intensive.
Problem 5: In Chapter 4, we used logistic regression to predict the probability of default using income and balance on the Default data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis. (a) Fit a logistic regression model that uses income and balance to predict default.
library(ISLR)
data("Default")
summary(Default)
## default student balance income
## No :9667 No :7056 Min. : 0.0 Min. : 772
## Yes: 333 Yes:2944 1st Qu.: 481.7 1st Qu.:21340
## Median : 823.6 Median :34553
## Mean : 835.4 Mean :33517
## 3rd Qu.:1166.3 3rd Qu.:43808
## Max. :2654.3 Max. :73554
logmodel1 = glm(default ~ balance + income, data = Default, family = binomial)
summary(logmodel1)
##
## Call:
## glm(formula = default ~ balance + income, family = binomial,
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]
LOGmodel2 = glm(default ~ balance + income, data = Default, family = binomial, subset = trainDefault)
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
##
## log.pred_def No Yes
## No 4821 116
## Yes 12 51
mean(log.pred_def !=testDefault$default)
## [1] 0.0256
#i
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]
#ii
LOGmodel2 = glm(default ~ balance + income, data = Default, family = binomial, subset = trainDefault)
#iii
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
##
## log.pred_def No Yes
## No 4822 106
## Yes 19 53
#iv
mean(log.pred_def !=testDefault$default)
## [1] 0.025
#i
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]
#ii
LOGmodel2 = glm(default ~ balance + income, data = Default, family = binomial, subset = trainDefault)
#iii
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
##
## log.pred_def No Yes
## No 4821 105
## Yes 16 58
#iv
mean(log.pred_def !=testDefault$default)
## [1] 0.0242
#i
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]
#ii
LOGmodel2 = glm(default ~ balance + income, data = Default, family = binomial, subset = trainDefault)
#iii
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
##
## log.pred_def No Yes
## No 4817 108
## Yes 15 60
#iv
mean(log.pred_def !=testDefault$default)
## [1] 0.0246
#i
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]
#ii
LOGmodel2 = glm(default ~ balance + income + student, data = Default, family = binomial, subset = trainDefault)
#iii
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
##
## log.pred_def No Yes
## No 4822 109
## Yes 16 53
#iv
mean(log.pred_def !=testDefault$default)
## [1] 0.025
Problem 6. We continue to consider the use of a logistic regression model to predict the probability of default using income and balance on the Default data set. In particular, we will now compute estimates for the standard errors of the income and balance logistic regression coefficients in two different ways: (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the glm() function. Do not forget to set a random seed before beginning your analysis. (a) Using the summary() and glm() functions, determine the estimated standard errors for the coefficients associated with income and balance in a multiple logistic regression model that uses both predictors. The glm() estimates of the standard errors for the coefficients intercept, income and balance are respectively 4.348e-01, 4.985e-06 and 2.274e-04.
set.seed(1)
attach(Default)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
boot.fn <- function(data, index) {
fit <- glm(default ~ income + balance, data = data, family = "binomial", subset = index)
return (coef(fit))
}
library(boot)
boot(Default, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -1.154047e+01 -3.945460e-02 4.344722e-01
## t2* 2.080898e-05 1.680317e-07 4.866284e-06
## t3* 5.647103e-03 1.855765e-05 2.298949e-04
Problem 9: We will now consider the Boston housing data set, from the MASS library. (a) Based on this data set, provide an estimate for the population mean of medv. Call this estimate ˆμ.
library(MASS)
attach(Boston)
mu.hat <- mean(medv)
mu.hat
## [1] 22.53281
se.hat <- sd(medv) / sqrt(dim(Boston)[1])
se.hat
## [1] 0.4088611
set.seed(1)
boot.fn <- function(data, index) {
mu <- mean(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 22.53281 0.007650791 0.4106622
t.test(medv)
##
## One Sample t-test
##
## data: medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 21.72953 23.33608
## sample estimates:
## mean of x
## 22.53281
CI.mu.hat <- c(22.53 - 2 * 0.4119, 22.53 + 2 * 0.4119)
CI.mu.hat
## [1] 21.7062 23.3538
med.hat <- median(medv)
med.hat
## [1] 21.2
boot.fn <- function(data, index) {
mu <- median(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 21.2 -0.0386 0.3770241
percent.hat <- quantile(medv, c(0.1))
percent.hat
## 10%
## 12.75
boot.fn <- function(data, index) {
mu <- quantile(data[index], c(0.1))
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 12.75 0.0186 0.4925766