Dosen Pengampu : Prof. Dr. Suhartono, M.Kom
Mata Kuliah : Linear Algebra
Prodi : Teknik Informatika
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Pivot merupakan salah satu fitur yang powerful di dalam Microsoft Excel, digunakan untuk merangkum data. Fungsi lengkapnya adalah untuk melakukan analisis, eksplorasi data, dan mempresentasikannya. Sehingga proses pembacaan dan penyajian data di dalam aplikasi menjadi lebih mudah sekaligus lebih detail. Pivot memungkinkan pengguna untuk melakukan manipulasi data agar tampilannya lebih sesuai dengan keinginan dan kebutuhan. Tujuannya untuk memastikan data yang penting bisa ditampilkan, sebab pivot biasanya digunakan untuk merangkum data dalam jumlah banyak sehingga bisa lebih mudah dibaca. Berikut pivot dan visualisasi data inflow-outflow uang kartal di pulau Bali Nusa Tenggara tahun 2011-2021 menggunakan bahasa pemrograman R.
library(readxl)
inflowbalinusra <- read_excel(path = "inflowBaliNusra.xlsx")
inflowbalinusra
## # A tibble: 4 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Bali Nu~ 10322. 14613. 17512. 20807. 23008. 30965. 30797. 33866. 38116. 29400.
## 2 Bali 6394. 8202. 5066. 11590. 13072. 17914. 16962. 18610. 21422. 14735.
## 3 Nusa Te~ 1803. 3676. 7024. 5704. 6285. 8842. 8383. 9140. 9614. 8007.
## 4 Nusa Te~ 2125. 2735. 5422. 3512. 3651. 4210. 5452. 6116. 7080. 6657.
## # ... with 1 more variable: `2021` <dbl>
outflowbalinusra <- read_excel(path = "outflowBaliNusra.xlsx")
outflowbalinusra
## # A tibble: 4 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 34160. 37260. 38680. 31224.
## 2 Bali 8912. 10782. 7248. 13104. 14471. 18140. 17822. 20434. 20654. 14323.
## 3 Nusa Te~ 3819. 4379. 10628. 5620. 6728. 8149. 8770. 9271. 10288. 8546.
## 4 Nusa Te~ 3693. 4260. 11524. 4668. 5530. 5652. 7569. 7555. 7738. 8356.
## # ... with 1 more variable: `2021` <dbl>
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
indatalongerbalinusra <- inflowbalinusra %>%
pivot_longer(!Provinsi, names_to = "Tahun", values_to = "Kasus")
indatalongerbalinusra
## # A tibble: 44 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Bali Nusra 2011 10322.
## 2 Bali Nusra 2012 14613.
## 3 Bali Nusra 2013 17512.
## 4 Bali Nusra 2014 20807.
## 5 Bali Nusra 2015 23008.
## 6 Bali Nusra 2016 30965.
## 7 Bali Nusra 2017 30797.
## 8 Bali Nusra 2018 33866.
## 9 Bali Nusra 2019 38116.
## 10 Bali Nusra 2020 29400.
## # ... with 34 more rows
outdatalongerbalinusra <- outflowbalinusra %>%
pivot_longer(!Provinsi, names_to = "Tahun", values_to = "Kasus")
outdatalongerbalinusra
## # A tibble: 44 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Bali Nusra 2011 16424.
## 2 Bali Nusra 2012 19421.
## 3 Bali Nusra 2013 29399.
## 4 Bali Nusra 2014 23391.
## 5 Bali Nusra 2015 26728.
## 6 Bali Nusra 2016 31941.
## 7 Bali Nusra 2017 34160.
## 8 Bali Nusra 2018 37260.
## 9 Bali Nusra 2019 38680.
## 10 Bali Nusra 2020 31224.
## # ... with 34 more rows
library(dplyr)
balinusra1 <- select(indatalongerbalinusra, Provinsi, Kasus)
balinusra1
## # A tibble: 44 x 2
## Provinsi Kasus
## <chr> <dbl>
## 1 Bali Nusra 10322.
## 2 Bali Nusra 14613.
## 3 Bali Nusra 17512.
## 4 Bali Nusra 20807.
## 5 Bali Nusra 23008.
## 6 Bali Nusra 30965.
## 7 Bali Nusra 30797.
## 8 Bali Nusra 33866.
## 9 Bali Nusra 38116.
## 10 Bali Nusra 29400.
## # ... with 34 more rows
library(dplyr)
balinusra2 <- select(outdatalongerbalinusra, Provinsi, Kasus)
balinusra2
## # A tibble: 44 x 2
## Provinsi Kasus
## <chr> <dbl>
## 1 Bali Nusra 16424.
## 2 Bali Nusra 19421.
## 3 Bali Nusra 29399.
## 4 Bali Nusra 23391.
## 5 Bali Nusra 26728.
## 6 Bali Nusra 31941.
## 7 Bali Nusra 34160.
## 8 Bali Nusra 37260.
## 9 Bali Nusra 38680.
## 10 Bali Nusra 31224.
## # ... with 34 more rows
library(dplyr)
nusrabarat1 <- indatalongerbalinusra %>%
filter(Provinsi == 'Nusa Tenggara Barat') %>%
select('Provinsi', 'Tahun', 'Kasus')
nusrabarat1
## # A tibble: 11 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Nusa Tenggara Barat 2011 1803.
## 2 Nusa Tenggara Barat 2012 3676.
## 3 Nusa Tenggara Barat 2013 7024.
## 4 Nusa Tenggara Barat 2014 5704.
## 5 Nusa Tenggara Barat 2015 6285.
## 6 Nusa Tenggara Barat 2016 8842.
## 7 Nusa Tenggara Barat 2017 8383.
## 8 Nusa Tenggara Barat 2018 9140.
## 9 Nusa Tenggara Barat 2019 9614.
## 10 Nusa Tenggara Barat 2020 8007.
## 11 Nusa Tenggara Barat 2021 5888.
library(dplyr)
nusrabarat2 <- outdatalongerbalinusra %>%
filter(Provinsi == 'Nusa Tenggara Barat') %>%
select('Provinsi', 'Tahun', 'Kasus')
nusrabarat2
## # A tibble: 11 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Nusa Tenggara Barat 2011 3819.
## 2 Nusa Tenggara Barat 2012 4379.
## 3 Nusa Tenggara Barat 2013 10628.
## 4 Nusa Tenggara Barat 2014 5620.
## 5 Nusa Tenggara Barat 2015 6728.
## 6 Nusa Tenggara Barat 2016 8149.
## 7 Nusa Tenggara Barat 2017 8770.
## 8 Nusa Tenggara Barat 2018 9271.
## 9 Nusa Tenggara Barat 2019 10288.
## 10 Nusa Tenggara Barat 2020 8546.
## 11 Nusa Tenggara Barat 2021 5222.
nusrabarat1 <- indatalongerbalinusra %>%
filter(Provinsi == 'Nusa Tenggara Barat', Tahun == '2021') %>%
select('Provinsi', 'Tahun', 'Kasus')
nusrabarat1
## # A tibble: 1 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Nusa Tenggara Barat 2021 5888.
nusrabarat1 <- outdatalongerbalinusra %>%
filter(Provinsi == 'Nusa Tenggara Barat', Tahun == '2021') %>%
select('Provinsi', 'Tahun', 'Kasus')
nusrabarat1
## # A tibble: 1 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Nusa Tenggara Barat 2021 5222.
ggplot(data = indatalongerbalinusra, mapping = aes(x = Tahun, y = Kasus)) +
geom_point() +
facet_wrap( ~ Provinsi) +
theme(axis.text.x = element_text(angle = 90))
ggplot(data = outdatalongerbalinusra, mapping = aes(x = Tahun, y = Kasus)) +
geom_point() +
facet_wrap( ~ Provinsi) +
theme(axis.text.x = element_text(angle = 90))
ggplot(data = indatalongerbalinusra, mapping = aes(x = Provinsi, y = Kasus)) +
geom_point() +
facet_wrap( ~ Tahun) +
theme(axis.text.x = element_text(angle = 90))
ggplot(data = outdatalongerbalinusra, mapping = aes(x = Provinsi, y = Kasus)) +
geom_point() +
facet_wrap( ~ Tahun) +
theme(axis.text.x = element_text(angle = 90))