Dosen Pengampu : Prof. Dr. Suhartono, M.Kom
Mata Kuliah : Linear Algebra
Prodi : Teknik Informatika
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Pivot merupakan salah satu fitur yang powerful di dalam Microsoft Excel, digunakan untuk merangkum data. Fungsi lengkapnya adalah untuk melakukan analisis, eksplorasi data, dan mempresentasikannya. Sehingga proses pembacaan dan penyajian data di dalam aplikasi menjadi lebih mudah sekaligus lebih detail. Pivot memungkinkan pengguna untuk melakukan manipulasi data agar tampilannya lebih sesuai dengan keinginan dan kebutuhan. Tujuannya untuk memastikan data yang penting bisa ditampilkan, sebab pivot biasanya digunakan untuk merangkum data dalam jumlah banyak sehingga bisa lebih mudah dibaca. Berikut pivot dan visualisasi data inflow uang kartal di pulau Sumatera tahun 2011-2021 menggunakan bahasa pemrograman R.
library(readxl)
inflowsumatera <- read_excel(path = "inflowSumatera.xlsx")
inflowsumatera
## # A tibble: 11 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Sumatera 57900. 65911. 98369. 8.60e4 86549. 97764. 1.04e5 1.17e5 1.34e5
## 2 Aceh 2308. 2620. 36337. 4.57e3 4710. 5775. 5.51e3 5.80e3 7.51e3
## 3 Sumatera Utara 23238. 25981. 18120. 3.05e4 30254. 34427. 3.56e4 4.18e4 4.71e4
## 4 Sumatera Barat 9385. 11192. 14056. 1.41e4 13309. 14078. 1.53e4 1.51e4 1.47e4
## 5 Riau 3012. 4447. 8933. 6.36e3 7156. 8211. 8.55e3 1.07e4 1.09e4
## 6 Kep. Riau 1426. 2236. 3378. 2.56e3 3218. 4317. 4.41e3 5.13e3 6.08e3
## 7 Jambi 1868. 2138. 3047. 5.17e3 4978. 4398. 4.40e3 5.66e3 6.49e3
## 8 Sumatera Sela~ 7820. 9126. 8647. 1.00e4 10797. 12752. 1.31e4 1.43e4 1.48e4
## 9 Bengkulu 1153. 1201. 2378. 3.26e3 2791. 2889. 3.62e3 4.15e3 5.79e3
## 10 Lampung 7690. 6969. 3474. 9.45e3 8160. 9373. 1.21e4 1.34e4 1.70e4
## 11 Kep. Bangka B~ 0 0 0 1.37e1 1177. 1544. 1.16e3 1.52e3 3.27e3
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
datalongersumatera <- inflowsumatera %>%
pivot_longer(!Provinsi, names_to = "Tahun", values_to = "Kasus")
datalongersumatera
## # A tibble: 121 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Sumatera 2011 57900.
## 2 Sumatera 2012 65911.
## 3 Sumatera 2013 98369.
## 4 Sumatera 2014 86024.
## 5 Sumatera 2015 86549.
## 6 Sumatera 2016 97764.
## 7 Sumatera 2017 103748.
## 8 Sumatera 2018 117495.
## 9 Sumatera 2019 133762.
## 10 Sumatera 2020 109345.
## # ... with 111 more rows
library(dplyr)
sumatera2 <- select(datalongersumatera, Provinsi, Kasus)
sumatera2
## # A tibble: 121 x 2
## Provinsi Kasus
## <chr> <dbl>
## 1 Sumatera 57900.
## 2 Sumatera 65911.
## 3 Sumatera 98369.
## 4 Sumatera 86024.
## 5 Sumatera 86549.
## 6 Sumatera 97764.
## 7 Sumatera 103748.
## 8 Sumatera 117495.
## 9 Sumatera 133762.
## 10 Sumatera 109345.
## # ... with 111 more rows
library(dplyr)
aceh3 <- datalongersumatera %>%
filter(Provinsi == 'Aceh') %>%
select('Provinsi', 'Tahun', 'Kasus')
aceh3
## # A tibble: 11 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Aceh 2011 2308.
## 2 Aceh 2012 2620.
## 3 Aceh 2013 36337.
## 4 Aceh 2014 4567.
## 5 Aceh 2015 4710.
## 6 Aceh 2016 5775.
## 7 Aceh 2017 5514.
## 8 Aceh 2018 5799.
## 9 Aceh 2019 7509.
## 10 Aceh 2020 6641.
## 11 Aceh 2021 3702.
aceh4 <- datalongersumatera %>%
filter(Provinsi == 'Aceh', Tahun == '2021') %>%
select('Provinsi', 'Tahun', 'Kasus')
aceh4
## # A tibble: 1 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Aceh 2021 3702.
ggplot(data = datalongersumatera, mapping = aes(x = Tahun, y = Kasus)) +
geom_point() +
facet_wrap( ~ Provinsi) +
theme(axis.text.x = element_text(angle = 90))
ggplot(data = datalongersumatera, mapping = aes(x = Provinsi, y = Kasus)) +
geom_point() +
facet_wrap( ~ Tahun) +
theme(axis.text.x = element_text(angle = 90))