#上課程式碼:

#資料(data)、值(valus)、變數(varible)、物件(object)

# R 是以物件導向為主的程式語言, 在R中每一樣 “東西”, 都可視為 “物件”(object), 
##一、R語言資料集合:
#1.向量(vector)
#2.清單(list)
#3.矩陣(matrix)
#4.陣列(array)
#5.因子(factor)
#6.資料框(dataframe)
# 資料分析基本上是 :產生資料物件、命名、使用函式對物件運算操作


#建立向量資料
id <- c("001","002","003","004","005")
name <- c("superman", "batman", "spiderman", "wolverine", "wonderwoman")
height <- c(190, 188, 178, 150, 183)
weight <- c(102, 95, 76, 88, 59)
gender <- c("Male","Male","Male","Male","feMale" )


#二、R 的最基本物件是向量, 
# 向量是由包含相同 “模式” 的元素 (element) 組成,
# 向量物件的基本元素的類型(basic mode) 主要分成
# 六大向量(vector)類型

# 1.數值向量(numeric):包含 "integer", 整數型向量  與 "double", 倍精確度型向量。
# 2.整數向量(integer)
# 3.文字向量(character) 
# 4.邏輯值向量(logical)
# 5.日期向量(Date)
# 6.日期時間向量(POSIXct)


#用class()查詢資料類型

class(name)
## [1] "character"
class(height)
## [1] "numeric"
class(gender)
## [1] "character"
class(id)   
## [1] "character"
class(height)
## [1] "numeric"
q <- height > 170
q
## [1]  TRUE  TRUE  TRUE FALSE  TRUE
class(q)
## [1] "logical"
#str()查看資料結構
#summary()查看變數統計量




#用[ ]取出向量資料
name
## [1] "superman"    "batman"      "spiderman"   "wolverine"   "wonderwoman"
name[2]
## [1] "batman"
name[3:5]
## [1] "spiderman"   "wolverine"   "wonderwoman"
name[-1]
## [1] "batman"      "spiderman"   "wolverine"   "wonderwoman"
name[-c(1,3,5)]
## [1] "batman"    "wolverine"
height
## [1] 190 188 178 150 183
height[height > 170]
## [1] 190 188 178 183
#將向量資料組合為data frame(數據框) 
heroes <- data.frame(id,height,weight,name,gender )
#顯示在console區
heroes
##    id height weight        name gender
## 1 001    190    102    superman   Male
## 2 002    188     95      batman   Male
## 3 003    178     76   spiderman   Male
## 4 004    150     88   wolverine   Male
## 5 005    183     59 wonderwoman feMale
#看資料結構
str(heroes )
## 'data.frame':    5 obs. of  5 variables:
##  $ id    : chr  "001" "002" "003" "004" ...
##  $ height: num  190 188 178 150 183
##  $ weight: num  102 95 76 88 59
##  $ name  : chr  "superman" "batman" "spiderman" "wolverine" ...
##  $ gender: chr  "Male" "Male" "Male" "Male" ...
#看摘要
summary(heroes )
##       id                height          weight        name          
##  Length:5           Min.   :150.0   Min.   : 59   Length:5          
##  Class :character   1st Qu.:178.0   1st Qu.: 76   Class :character  
##  Mode  :character   Median :183.0   Median : 88   Mode  :character  
##                     Mean   :177.8   Mean   : 84                     
##                     3rd Qu.:188.0   3rd Qu.: 95                     
##                     Max.   :190.0   Max.   :102                     
##     gender         
##  Length:5          
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
#存成.RData格式
save(heroes, file ="heroes.RData" )
#清空物件,然後再讀取一次.RData
load("heroes.RData")

#用[ ] 取出data frame中的資料, 其中[ 列, 欄]
heroes[2, ]#取出第二列資料
##    id height weight   name gender
## 2 002    188     95 batman   Male
heroes[,2]#取出第二欄資料
## [1] 190 188 178 150 183
heroes[2, 2]##取出第二列第二欄資料
## [1] 188
heroes[5,]
##    id height weight        name gender
## 5 005    183     59 wonderwoman feMale
#用欄位名稱取出某欄的資料,有兩種方法:
heroes[["name"]]
## [1] "superman"    "batman"      "spiderman"   "wolverine"   "wonderwoman"
##或是
heroes$name
## [1] "superman"    "batman"      "spiderman"   "wolverine"   "wonderwoman"
#計算身高的平均數
heroes$height
## [1] 190 188 178 150 183
mean(heroes$height)
## [1] 177.8
heroes[1:3,]
##    id height weight      name gender
## 1 001    190    102  superman   Male
## 2 002    188     95    batman   Male
## 3 003    178     76 spiderman   Male
heroes[heroes$name=="spiderman",]#名字內包含
##    id height weight      name gender
## 3 003    178     76 spiderman   Male
heroes[heroes$name!="spiderman",]#名字內不包含
##    id height weight        name gender
## 1 001    190    102    superman   Male
## 2 002    188     95      batman   Male
## 4 004    150     88   wolverine   Male
## 5 005    183     59 wonderwoman feMale
heroes[heroes$height>180,]
##    id height weight        name gender
## 1 001    190    102    superman   Male
## 2 002    188     95      batman   Male
## 5 005    183     59 wonderwoman feMale
heroes[heroes$weight<80,]
##    id height weight        name gender
## 3 003    178     76   spiderman   Male
## 5 005    183     59 wonderwoman feMale
#畫長條圖
heroes$height
## [1] 190 188 178 150 183
#先排序(由大到小 decreasing = T)
sort(heroes$height ,decreasing  = TRUE)
## [1] 190 188 183 178 150
#畫長條圖函數
barplot(sort(heroes$height ,decreasing  = TRUE))

barplot(sort(heroes$height ,decreasing  = TRUE) ,
        main ="HEROES", 
        sub ="by W", 
        names.arg =  c("superman", "batman", "spiderman", "wonderwoman", "wolverine"), 
        xlab ="name" , 
        ylab ="height"  , 
        col = c("red", "black", "pink","cyan","blue"))

# 亞洲四小龍(Four Asian Tigers)
# https://zh.wikipedia.org/wiki/%E4%BA%9A%E6%B4%B2%E5%9B%9B%E5%B0%8F%E9%BE%99
nation <-c("Taiwan","Hanken","Sorth Korea","singapore")
  growth <-c(0.28,0.83,0.36,1.40) 
  data <- data.frame(nation,growth)
barplot(sort(data$growth,decreasing  = TRUE))

barplot(sort(data$growth,decreasing  = TRUE) ,
        main ="Asian Tigers", 
        sub ="by W", 
        names.arg =  c("singapore", "Hanken", "Sorth Korea", "Taiwan"), 
        xlab ="nation" , 
        ylab ="growth"  , 
        col = c("red", "black", "pink","cyan"))