Construir y evaluar un modelo de árbol de regresión para realizar predicciones y comparar resultados con el modelo de regresión lineal múltiple
Se cargan las librerías necesarias
Se cargan los datos Se exploran los datos
Se crear los datos de entrenamiento y validación 70% y 30% respectivamente
Las métricas a valorar serán:
Que los coeficientes sean estadísticamente significativos por encima del 95%.
R Squared Ajustado el modelo se acepta si sobrepasa en el 80%
rmse comparado con otro modelo mismos datos se acepta o se establece que un modelo es mejor que otro.
Comparaciones con el modelo de regresión lineal múltiple
Los algoritmos de aprendizaje basados en árbol se consideran uno de los mejores y más utilizados métodos de aprendizaje supervisado. Potencian modelos predictivos con alta precisión, estabilidad y facilidad de interpretación.
Los árboles de clasificación y regresión son métodos que proporcionan modelos que satisfacen objetivos tanto predictivos como explicativos.
Algunas ventajas son su sencillez y la representación gráfica mediante árboles y, por otro, la definición de reglas de asociación entre variables que incluye expresiones de condición que permiten explicar las predicciones.
Se pueden usar para regresiones con variables dependientes que tienen valores numéricos continuos o para clasificaciones con variables categóricas.
Utilizar un árbol de regresión para crear un modelo explicativo y predictivo para una variable cuantitativa dependiente basada en variables explicativas independientes cuantitativas y cualitativas (XLSTAT by Addinsoft, n.d.).
Un árbol de regresión consiste en hacer preguntas de tipo \(¿x_k < c?\) para cada una de las covariables, de esta forma el espacio de las covariables es divido en hiper-rectángulos (con el resultado de las condicionales) de las observaciones que queden dentro de un hiper-rectángulo tendrán el mismo valor estimado \(\hat{y}\) o \(Y\). (Hernández 2021).
Por otra parte, bajo el paradigma divide y vencerás, usando árboles de regresión y decisión y correspondientes reglas, el árbol representa el modelo similar a un diagrama de flujo en el que los nodos de decisión, los nodos de hoja y las ramas definen una serie de decisiones que se pueden usar para generar predicciones. Siguiendo las reglas se encuentran predicciones en la hoja final. (Lantz 2013)
library(readr) # Para importar datos
library(dplyr) # Para filtrar
library(knitr) # Para datos tabulares
library(ggplot2) # Para visualizar
library(plotly)
library(caret) # Para particionar
library(Metrics) # Para determinar rmse
library(rpart) # Para árbol
library(rpart.plot) # Para árbol
datos <- read.csv("https://raw.githubusercontent.com/rpizarrog/Analisis-Inteligente-de-datos/main/datos/Advertising.csv")
summary(datos)
## X TV Radio Newspaper
## Min. : 1.00 Min. : 0.70 Min. : 0.000 Min. : 0.30
## 1st Qu.: 50.75 1st Qu.: 74.38 1st Qu.: 9.975 1st Qu.: 12.75
## Median :100.50 Median :149.75 Median :22.900 Median : 25.75
## Mean :100.50 Mean :147.04 Mean :23.264 Mean : 30.55
## 3rd Qu.:150.25 3rd Qu.:218.82 3rd Qu.:36.525 3rd Qu.: 45.10
## Max. :200.00 Max. :296.40 Max. :49.600 Max. :114.00
## Sales
## Min. : 1.60
## 1st Qu.:10.38
## Median :12.90
## Mean :14.02
## 3rd Qu.:17.40
## Max. :27.00
str(datos)
## 'data.frame': 200 obs. of 5 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ TV : num 230.1 44.5 17.2 151.5 180.8 ...
## $ Radio : num 37.8 39.3 45.9 41.3 10.8 48.9 32.8 19.6 2.1 2.6 ...
## $ Newspaper: num 69.2 45.1 69.3 58.5 58.4 75 23.5 11.6 1 21.2 ...
## $ Sales : num 22.1 10.4 9.3 18.5 12.9 7.2 11.8 13.2 4.8 10.6 ...
Son 200 registros tres variables independientes y una variable dependiente.
La variable dependiente o variable objetivo es Sales que deberá estar en función de la inversión que se hace en TV, Radio o Newspaper.
Quitar la variable x que no es de interés
datos <- datos %>%
select (TV, Radio, Newspaper, Sales)
kable(head(datos, 20), caption = "Primeros 20 registros")
| TV | Radio | Newspaper | Sales |
|---|---|---|---|
| 230.1 | 37.8 | 69.2 | 22.1 |
| 44.5 | 39.3 | 45.1 | 10.4 |
| 17.2 | 45.9 | 69.3 | 9.3 |
| 151.5 | 41.3 | 58.5 | 18.5 |
| 180.8 | 10.8 | 58.4 | 12.9 |
| 8.7 | 48.9 | 75.0 | 7.2 |
| 57.5 | 32.8 | 23.5 | 11.8 |
| 120.2 | 19.6 | 11.6 | 13.2 |
| 8.6 | 2.1 | 1.0 | 4.8 |
| 199.8 | 2.6 | 21.2 | 10.6 |
| 66.1 | 5.8 | 24.2 | 8.6 |
| 214.7 | 24.0 | 4.0 | 17.4 |
| 23.8 | 35.1 | 65.9 | 9.2 |
| 97.5 | 7.6 | 7.2 | 9.7 |
| 204.1 | 32.9 | 46.0 | 19.0 |
| 195.4 | 47.7 | 52.9 | 22.4 |
| 67.8 | 36.6 | 114.0 | 12.5 |
| 281.4 | 39.6 | 55.8 | 24.4 |
| 69.2 | 20.5 | 18.3 | 11.3 |
| 147.3 | 23.9 | 19.1 | 14.6 |
kable(tail(datos, 20), caption = "Últimos 20 registros")
| TV | Radio | Newspaper | Sales | |
|---|---|---|---|---|
| 181 | 156.6 | 2.6 | 8.3 | 10.5 |
| 182 | 218.5 | 5.4 | 27.4 | 12.2 |
| 183 | 56.2 | 5.7 | 29.7 | 8.7 |
| 184 | 287.6 | 43.0 | 71.8 | 26.2 |
| 185 | 253.8 | 21.3 | 30.0 | 17.6 |
| 186 | 205.0 | 45.1 | 19.6 | 22.6 |
| 187 | 139.5 | 2.1 | 26.6 | 10.3 |
| 188 | 191.1 | 28.7 | 18.2 | 17.3 |
| 189 | 286.0 | 13.9 | 3.7 | 15.9 |
| 190 | 18.7 | 12.1 | 23.4 | 6.7 |
| 191 | 39.5 | 41.1 | 5.8 | 10.8 |
| 192 | 75.5 | 10.8 | 6.0 | 9.9 |
| 193 | 17.2 | 4.1 | 31.6 | 5.9 |
| 194 | 166.8 | 42.0 | 3.6 | 19.6 |
| 195 | 149.7 | 35.6 | 6.0 | 17.3 |
| 196 | 38.2 | 3.7 | 13.8 | 7.6 |
| 197 | 94.2 | 4.9 | 8.1 | 9.7 |
| 198 | 177.0 | 9.3 | 6.4 | 12.8 |
| 199 | 283.6 | 42.0 | 66.2 | 25.5 |
| 200 | 232.1 | 8.6 | 8.7 | 13.4 |
n <- nrow(datos)
# Modificar la semilla estableciendo como parámetro los útimos cuatro dígitos de su no de control.
# Ej. set.seed(0732), o set.seed(1023)
# set.seed(2022)
set.seed(2022)
De manera aleatoria se construyen los datos de entrenamiento y los datos de validación.
En la variable entrena se generan los registros que van a ser los datos de entrenamiento, de tal forma que los datos de validación serán los que no sena de entrenamiento [-entrena].
entrena <- createDataPartition(y = datos$Sales, p = 0.70, list = FALSE, times = 1)
# Datos entrenamiento
datos.entrenamiento <- datos[entrena, ] # [renglones, columna]
# Datos validación
datos.validacion <- datos[-entrena, ]
kable(head(datos.entrenamiento, 20), caption = "Datos de Entrenamiento. Primeros 20 registros")
| TV | Radio | Newspaper | Sales | |
|---|---|---|---|---|
| 1 | 230.1 | 37.8 | 69.2 | 22.1 |
| 2 | 44.5 | 39.3 | 45.1 | 10.4 |
| 3 | 17.2 | 45.9 | 69.3 | 9.3 |
| 4 | 151.5 | 41.3 | 58.5 | 18.5 |
| 5 | 180.8 | 10.8 | 58.4 | 12.9 |
| 6 | 8.7 | 48.9 | 75.0 | 7.2 |
| 7 | 57.5 | 32.8 | 23.5 | 11.8 |
| 8 | 120.2 | 19.6 | 11.6 | 13.2 |
| 9 | 8.6 | 2.1 | 1.0 | 4.8 |
| 11 | 66.1 | 5.8 | 24.2 | 8.6 |
| 12 | 214.7 | 24.0 | 4.0 | 17.4 |
| 13 | 23.8 | 35.1 | 65.9 | 9.2 |
| 14 | 97.5 | 7.6 | 7.2 | 9.7 |
| 15 | 204.1 | 32.9 | 46.0 | 19.0 |
| 16 | 195.4 | 47.7 | 52.9 | 22.4 |
| 17 | 67.8 | 36.6 | 114.0 | 12.5 |
| 18 | 281.4 | 39.6 | 55.8 | 24.4 |
| 19 | 69.2 | 20.5 | 18.3 | 11.3 |
| 23 | 13.2 | 15.9 | 49.6 | 5.6 |
| 25 | 62.3 | 12.6 | 18.3 | 9.7 |
kable(tail(datos.entrenamiento, 20), caption = "Datos de entrenamiento ültimos 20 registros")
| TV | Radio | Newspaper | Sales | |
|---|---|---|---|---|
| 175 | 222.4 | 3.4 | 13.1 | 11.5 |
| 176 | 276.9 | 48.9 | 41.8 | 27.0 |
| 179 | 276.7 | 2.3 | 23.7 | 11.8 |
| 180 | 165.6 | 10.0 | 17.6 | 12.6 |
| 181 | 156.6 | 2.6 | 8.3 | 10.5 |
| 183 | 56.2 | 5.7 | 29.7 | 8.7 |
| 184 | 287.6 | 43.0 | 71.8 | 26.2 |
| 185 | 253.8 | 21.3 | 30.0 | 17.6 |
| 186 | 205.0 | 45.1 | 19.6 | 22.6 |
| 187 | 139.5 | 2.1 | 26.6 | 10.3 |
| 188 | 191.1 | 28.7 | 18.2 | 17.3 |
| 189 | 286.0 | 13.9 | 3.7 | 15.9 |
| 190 | 18.7 | 12.1 | 23.4 | 6.7 |
| 192 | 75.5 | 10.8 | 6.0 | 9.9 |
| 193 | 17.2 | 4.1 | 31.6 | 5.9 |
| 195 | 149.7 | 35.6 | 6.0 | 17.3 |
| 196 | 38.2 | 3.7 | 13.8 | 7.6 |
| 197 | 94.2 | 4.9 | 8.1 | 9.7 |
| 198 | 177.0 | 9.3 | 6.4 | 12.8 |
| 200 | 232.1 | 8.6 | 8.7 | 13.4 |
Los datos de validación deben ser diferentes a los datos den entrenamiento.
kable(head(datos.validacion, 20), caption = "Datos de Validación Primeros 20 registros")
| TV | Radio | Newspaper | Sales | |
|---|---|---|---|---|
| 10 | 199.8 | 2.6 | 21.2 | 10.6 |
| 20 | 147.3 | 23.9 | 19.1 | 14.6 |
| 21 | 218.4 | 27.7 | 53.4 | 18.0 |
| 22 | 237.4 | 5.1 | 23.5 | 12.5 |
| 24 | 228.3 | 16.9 | 26.2 | 15.5 |
| 26 | 262.9 | 3.5 | 19.5 | 12.0 |
| 27 | 142.9 | 29.3 | 12.6 | 15.0 |
| 30 | 70.6 | 16.0 | 40.8 | 10.5 |
| 31 | 292.9 | 28.3 | 43.2 | 21.4 |
| 33 | 97.2 | 1.5 | 30.0 | 9.6 |
| 34 | 265.6 | 20.0 | 0.3 | 17.4 |
| 35 | 95.7 | 1.4 | 7.4 | 9.5 |
| 36 | 290.7 | 4.1 | 8.5 | 12.8 |
| 42 | 177.0 | 33.4 | 38.7 | 17.1 |
| 48 | 239.9 | 41.5 | 18.5 | 23.2 |
| 50 | 66.9 | 11.7 | 36.8 | 9.7 |
| 54 | 182.6 | 46.2 | 58.7 | 21.2 |
| 55 | 262.7 | 28.8 | 15.9 | 20.2 |
| 60 | 210.7 | 29.5 | 9.3 | 18.4 |
| 63 | 239.3 | 15.5 | 27.3 | 15.7 |
kable(tail(datos.validacion, 20), caption = "Datos de validació últimos 20 registros")
| TV | Radio | Newspaper | Sales | |
|---|---|---|---|---|
| 118 | 76.4 | 0.8 | 14.8 | 9.4 |
| 120 | 19.4 | 16.0 | 22.3 | 6.6 |
| 125 | 229.5 | 32.3 | 74.2 | 19.7 |
| 128 | 80.2 | 0.0 | 9.2 | 8.8 |
| 130 | 59.6 | 12.0 | 43.1 | 9.7 |
| 133 | 8.4 | 27.2 | 2.1 | 5.7 |
| 139 | 43.0 | 25.9 | 20.5 | 9.6 |
| 140 | 184.9 | 43.9 | 1.7 | 20.7 |
| 144 | 104.6 | 5.7 | 34.4 | 10.4 |
| 149 | 38.0 | 40.3 | 11.9 | 10.9 |
| 151 | 280.7 | 13.9 | 37.0 | 16.1 |
| 153 | 197.6 | 23.3 | 14.2 | 16.6 |
| 171 | 50.0 | 11.6 | 18.4 | 8.4 |
| 172 | 164.5 | 20.9 | 47.4 | 14.5 |
| 177 | 248.4 | 30.2 | 20.3 | 20.2 |
| 178 | 170.2 | 7.8 | 35.2 | 11.7 |
| 182 | 218.5 | 5.4 | 27.4 | 12.2 |
| 191 | 39.5 | 41.1 | 5.8 | 10.8 |
| 194 | 166.8 | 42.0 | 3.6 | 19.6 |
| 199 | 283.6 | 42.0 | 66.2 | 25.5 |
Se construye el modelo con la función rpart
modelo_ar <- rpart(data = datos.entrenamiento,formula = Sales ~ TV + Radio + Newspaper )
modelo_ar
## n= 142
##
## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 142 4117.76800 14.077460
## 2) TV< 122.05 58 520.13120 9.725862
## 4) TV< 32.75 21 79.17238 6.752381 *
## 5) TV>=32.75 37 149.90320 11.413510
## 10) Radio< 13.45 14 18.11429 9.657143 *
## 11) Radio>=13.45 23 62.31304 12.482610 *
## 3) TV>=122.05 84 1740.96300 17.082140
## 6) Radio< 26.85 44 188.94980 13.497730
## 12) Radio< 10.05 21 18.96667 11.766670 *
## 13) Radio>=10.05 23 49.59913 15.078260 *
## 7) Radio>=26.85 40 364.85500 21.025000
## 14) TV< 194.55 12 17.66917 17.641670 *
## 15) TV>=194.55 28 150.95250 22.475000
## 30) Radio< 35.3 9 6.44000 19.766670 *
## 31) Radio>=35.3 19 47.22632 23.757890 *
summary(modelo_ar)
## Call:
## rpart(formula = Sales ~ TV + Radio + Newspaper, data = datos.entrenamiento)
## n= 142
##
## CP nsplit rel error xerror xstd
## 1 0.45089318 0 1.00000000 1.0132336 0.10752048
## 2 0.28830145 1 0.54910682 0.7169968 0.06569588
## 3 0.07068285 2 0.26080537 0.3808481 0.04645636
## 4 0.04765527 3 0.19012252 0.2664784 0.02717328
## 5 0.02923525 4 0.14246725 0.2326955 0.02375388
## 6 0.02362595 5 0.11323200 0.2270240 0.02334504
## 7 0.01687223 6 0.08960605 0.1772675 0.01984244
## 8 0.01000000 7 0.07273382 0.1472676 0.01638832
##
## Variable importance
## TV Radio Newspaper
## 54 33 13
##
## Node number 1: 142 observations, complexity param=0.4508932
## mean=14.07746, MSE=28.99837
## left son=2 (58 obs) right son=3 (84 obs)
## Primary splits:
## TV < 122.05 to the left, improve=0.4508932, (0 missing)
## Radio < 39.65 to the left, improve=0.2641203, (0 missing)
## Newspaper < 50.9 to the left, improve=0.1007850, (0 missing)
## Surrogate splits:
## Radio < 1.75 to the left, agree=0.606, adj=0.034, (0 split)
##
## Node number 2: 58 observations, complexity param=0.07068285
## mean=9.725862, MSE=8.967779
## left son=4 (21 obs) right son=5 (37 obs)
## Primary splits:
## TV < 32.75 to the left, improve=0.55958110, (0 missing)
## Radio < 40.1 to the left, improve=0.13279470, (0 missing)
## Newspaper < 31.65 to the left, improve=0.04804439, (0 missing)
## Surrogate splits:
## Radio < 1.8 to the left, agree=0.655, adj=0.048, (0 split)
## Newspaper < 49.45 to the right, agree=0.655, adj=0.048, (0 split)
##
## Node number 3: 84 observations, complexity param=0.2883014
## mean=17.08214, MSE=20.72575
## left son=6 (44 obs) right son=7 (40 obs)
## Primary splits:
## Radio < 26.85 to the left, improve=0.6818975, (0 missing)
## Newspaper < 37.3 to the left, improve=0.2368093, (0 missing)
## TV < 193.45 to the left, improve=0.2120854, (0 missing)
## Surrogate splits:
## Newspaper < 37.3 to the left, agree=0.738, adj=0.450, (0 split)
## TV < 189.75 to the left, agree=0.607, adj=0.175, (0 split)
##
## Node number 4: 21 observations
## mean=6.752381, MSE=3.770113
##
## Node number 5: 37 observations, complexity param=0.01687223
## mean=11.41351, MSE=4.051439
## left son=10 (14 obs) right son=11 (23 obs)
## Primary splits:
## Radio < 13.45 to the left, improve=0.4634717, (0 missing)
## TV < 66.95 to the left, improve=0.2811344, (0 missing)
## Newspaper < 45.4 to the left, improve=0.2653206, (0 missing)
## Surrogate splits:
## Newspaper < 8.25 to the left, agree=0.703, adj=0.214, (0 split)
##
## Node number 6: 44 observations, complexity param=0.02923525
## mean=13.49773, MSE=4.294313
## left son=12 (21 obs) right son=13 (23 obs)
## Primary splits:
## Radio < 10.05 to the left, improve=0.63712160, (0 missing)
## TV < 170.45 to the left, improve=0.24450570, (0 missing)
## Newspaper < 28.3 to the left, improve=0.04083687, (0 missing)
## Surrogate splits:
## Newspaper < 20.4 to the left, agree=0.614, adj=0.190, (0 split)
## TV < 170.45 to the left, agree=0.591, adj=0.143, (0 split)
##
## Node number 7: 40 observations, complexity param=0.04765527
## mean=21.025, MSE=9.121375
## left son=14 (12 obs) right son=15 (28 obs)
## Primary splits:
## TV < 194.55 to the left, improve=0.53783920, (0 missing)
## Radio < 42 to the left, improve=0.39216040, (0 missing)
## Newspaper < 39.15 to the left, improve=0.05520939, (0 missing)
## Surrogate splits:
## Newspaper < 73.95 to the right, agree=0.725, adj=0.083, (0 split)
##
## Node number 10: 14 observations
## mean=9.657143, MSE=1.293878
##
## Node number 11: 23 observations
## mean=12.48261, MSE=2.709263
##
## Node number 12: 21 observations
## mean=11.76667, MSE=0.9031746
##
## Node number 13: 23 observations
## mean=15.07826, MSE=2.156484
##
## Node number 14: 12 observations
## mean=17.64167, MSE=1.472431
##
## Node number 15: 28 observations, complexity param=0.02362595
## mean=22.475, MSE=5.391161
## left son=30 (9 obs) right son=31 (19 obs)
## Primary splits:
## Radio < 35.3 to the left, improve=0.6444821, (0 missing)
## TV < 258.35 to the left, improve=0.2648266, (0 missing)
## Newspaper < 39.15 to the left, improve=0.1296573, (0 missing)
## Surrogate splits:
## Newspaper < 12.55 to the left, agree=0.714, adj=0.111, (0 split)
##
## Node number 30: 9 observations
## mean=19.76667, MSE=0.7155556
##
## Node number 31: 19 observations
## mean=23.75789, MSE=2.485596
rpart.plot(modelo_ar)
predicciones <- predict(object = modelo_ar, newdata = datos.validacion)
Construir un data frame para comparar y luego evaluar
comparaciones <- data.frame(datos.validacion, predicciones)
comparaciones
## TV Radio Newspaper Sales predicciones
## 10 199.8 2.6 21.2 10.6 11.766667
## 20 147.3 23.9 19.1 14.6 15.078261
## 21 218.4 27.7 53.4 18.0 19.766667
## 22 237.4 5.1 23.5 12.5 11.766667
## 24 228.3 16.9 26.2 15.5 15.078261
## 26 262.9 3.5 19.5 12.0 11.766667
## 27 142.9 29.3 12.6 15.0 17.641667
## 30 70.6 16.0 40.8 10.5 12.482609
## 31 292.9 28.3 43.2 21.4 19.766667
## 33 97.2 1.5 30.0 9.6 9.657143
## 34 265.6 20.0 0.3 17.4 15.078261
## 35 95.7 1.4 7.4 9.5 9.657143
## 36 290.7 4.1 8.5 12.8 11.766667
## 42 177.0 33.4 38.7 17.1 17.641667
## 48 239.9 41.5 18.5 23.2 23.757895
## 50 66.9 11.7 36.8 9.7 9.657143
## 54 182.6 46.2 58.7 21.2 17.641667
## 55 262.7 28.8 15.9 20.2 19.766667
## 60 210.7 29.5 9.3 18.4 19.766667
## 63 239.3 15.5 27.3 15.7 15.078261
## 66 69.0 9.3 0.9 9.3 9.657143
## 67 31.5 24.6 2.2 9.5 6.752381
## 69 237.4 27.5 11.0 18.9 19.766667
## 76 16.9 43.7 89.4 8.7 6.752381
## 83 75.3 20.3 32.5 11.3 12.482609
## 84 68.4 44.5 35.6 13.6 12.482609
## 87 76.3 27.5 16.0 12.0 12.482609
## 90 109.8 47.8 51.4 16.7 12.482609
## 93 217.7 33.5 59.0 19.4 19.766667
## 95 107.4 14.0 10.9 11.5 12.482609
## 101 222.4 4.3 49.8 11.7 11.766667
## 104 187.9 17.2 17.9 14.7 15.078261
## 107 25.0 11.0 29.7 7.2 6.752381
## 109 13.1 0.4 25.6 5.3 6.752381
## 111 225.8 8.2 56.5 13.4 11.766667
## 112 241.7 38.0 23.2 21.8 23.757895
## 114 209.6 20.6 10.7 15.9 15.078261
## 116 75.1 35.0 52.7 12.6 12.482609
## 118 76.4 0.8 14.8 9.4 9.657143
## 120 19.4 16.0 22.3 6.6 6.752381
## 125 229.5 32.3 74.2 19.7 19.766667
## 128 80.2 0.0 9.2 8.8 9.657143
## 130 59.6 12.0 43.1 9.7 9.657143
## 133 8.4 27.2 2.1 5.7 6.752381
## 139 43.0 25.9 20.5 9.6 12.482609
## 140 184.9 43.9 1.7 20.7 17.641667
## 144 104.6 5.7 34.4 10.4 9.657143
## 149 38.0 40.3 11.9 10.9 12.482609
## 151 280.7 13.9 37.0 16.1 15.078261
## 153 197.6 23.3 14.2 16.6 15.078261
## 171 50.0 11.6 18.4 8.4 9.657143
## 172 164.5 20.9 47.4 14.5 15.078261
## 177 248.4 30.2 20.3 20.2 19.766667
## 178 170.2 7.8 35.2 11.7 11.766667
## 182 218.5 5.4 27.4 12.2 11.766667
## 191 39.5 41.1 5.8 10.8 12.482609
## 194 166.8 42.0 3.6 19.6 17.641667
## 199 283.6 42.0 66.2 25.5 23.757895
Este valor normalmente se compara contra otro modelo y el que esté mas cerca de cero es mejor.
La raiz del Error Cuadrático Medio (rmse) es una métrica que dice qué tan lejos están los valores predichos de los valores observados o reales en un análisis de regresión, en promedio. Se calcula como:
\[ rmse = \sqrt{\frac{\sum(predicho_i - real_i)^{2}}{n}} \]
RMSE es una forma útil de ver qué tan bien un modelo de regresión puede ajustarse a un conjunto de datos.
Cuanto mayor sea el rmse, mayor será la diferencia entre los valores predichos y reales, lo que significa que peor se ajusta un modelo de regresión a los datos. Por el contrario, cuanto más pequeño sea el rmse, mejor podrá un modelo ajustar los datos.
Se compara este valor de rmse con respecto al modelo de regresión múltiple
En el modelo de regresión múltiple https://rpubs.com/rpizarro/878398 con los datos Adverstising se tuvo un valor de rmse de: 1.590948.
Con este modelo de árbol de regresión, los mismos datos, mismas particiones se tuvo un valor de 1.455681 por lo que se puede interpretar que este modelo de regresión fué mejor con respecto a la métrica rmse.
rmse <- rmse(actual = comparaciones$Sales, predicted = comparaciones$predicciones)
rmse
## [1] 1.455681
ggplot(data = comparaciones) +
geom_line(aes(x = 1:nrow(comparaciones), y = Sales), col='blue') +
geom_line(aes(x = 1:nrow(comparaciones), y = predicciones), col='yellow') +
ggtitle(label="Valores reales vs predichos Adverstising", subtitle = "Arbol de Regresión")
TV <- c(140, 160)
Radio <- c(60, 40)
Newspaper <- c(80, 90)
nuevos <- data.frame(TV, Radio, Newspaper)
nuevos
## TV Radio Newspaper
## 1 140 60 80
## 2 160 40 90
Y.predicciones <- predict(object = modelo_ar, newdata = nuevos)
Y.predicciones
## 1 2
## 17.64167 17.64167
Comentarios sobre el caso