The rsofun
package and framework includes two main models. The pmodel
and lm3-ppa
(which in part relies on pmodel component). Here we give a short example on how to run the lm3ppa
model on the included demo datasets to familiarize yourself with both the data structure and the outputs.
The package includes two demo datasets to run and validate pmodel output. These files can be directly loaded into your workspace by typing:
library(rsofun)
lm3ppa_gs_leuning_drivers#> # A tibble: 1 × 9
#> sitename site_info params_siml params_tile params_species params_soil
#> <chr> <list> <list> <list> <list> <list>
#> 1 CH-Lae <tibble [1 × 14]> <tibble [1 … <tibble [1… <tibble [16 ×… <tibble [9…
#> # … with 3 more variables: init_cohort <list>, init_soil <list>, forcing <list>
lm3ppa_p_model_drivers#> # A tibble: 1 × 9
#> sitename site_info params_siml params_tile params_species params_soil
#> <chr> <list> <list> <list> <list> <list>
#> 1 CH-Lae <tibble [1 × 14]> <tibble [1 … <tibble [1… <tibble [16 ×… <tibble [9…
#> # … with 3 more variables: init_cohort <list>, init_soil <list>, forcing <list>
lm3ppa_validation#> # A tibble: 1 × 2
#> # Groups: sitename [1]
#> sitename data
#> <chr> <list>
#> 1 CH-Lae <tibble [2,920 × 3]>
These are real data from the Swiss CH-Lae fluxnet site. We can use these data to run the model, together with observations of GPP we can also parameterize lm3ppa
parameters.
The LM3-PPA is a cohort-based vegetation model which simulates vegetation dynamics and biogeochemical processes (Weng et al., 2015). The model is able to link photosynthesis standard models (Farquhar et al., 1980) with tree allometry. In our formulation we retain the original model structure with the standard photosynthesis formulation (i.e. “gs_leuning”) as well as an alternative “p-model” approach. Both model structures operate at different time scales, where the original input has an hourly time step our alternative p-model approach uses a daily time step. Hence, we have two different datasets as driver data (with the lm3ppa p-model input being an aggregate of the high resolution hourly data).
With all data prepared we can run the model using runread_lm3ppa_f()
. This function takes the nested data structure and runs the model site by site, returning nested model output results matching the input drivers. In our case only one site will be evaluated.
# print parameter settings
print(lm3ppa_gs_leuning_drivers$params_siml)
#> [[1]]
#> # A tibble: 1 × 12
#> spinup spinupyears recycle firstyeartrend nyeartrend outputhourly outputdaily
#> <lgl> <dbl> <dbl> <dbl> <dbl> <lgl> <lgl>
#> 1 TRUE 250 1 2009 1 TRUE TRUE
#> # … with 5 more variables: do_U_shaped_mortality <lgl>,
#> # update_annualLAImax <lgl>, do_closedN_run <lgl>, method_photosynth <chr>,
#> # method_mortality <chr>
print(head(lm3ppa_gs_leuning_drivers$forcing))
#> [[1]]
#> # A tibble: 8,760 × 13
#> YEAR DOY HOUR PAR Swdown TEMP SoilT RH RAIN WIND PRESSURE
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2009 1 0 8.17 0.156 0.728 3.16 91.6 0.0000184 3.56 93216.
#> 2 2009 1 1 8.16 0.158 0.780 3.20 91.5 0.0000116 3.37 93189.
#> 3 2009 1 2 8.17 0.162 0.519 3.23 93.2 0.0000116 3.01 93184.
#> 4 2009 1 3 8.15 0.152 0.476 3.28 92.5 0.0000116 3.31 93166.
#> 5 2009 1 4 8.21 0.158 0.336 3.30 92.9 0.0000140 3.23 93143.
#> 6 2009 1 5 8.20 0.161 0.278 3.30 93.8 0.0000140 2.94 93124.
#> 7 2009 1 6 8.18 0.161 0.0966 3.28 95.4 0.0000140 2.98 93114.
#> 8 2009 1 7 8.40 0.164 0.172 3.30 95.4 0.0000211 3.46 93111.
#> 9 2009 1 8 42.1 8.77 0.236 3.33 95.2 0.0000211 3.31 93118.
#> 10 2009 1 9 146. 38.7 0.152 3.41 96.1 0.0000211 3.27 93132.
#> # … with 8,750 more rows, and 2 more variables: aCO2_AW <dbl>, SWC <dbl>
# run the model
<- runread_lm3ppa_f(
lm3ppa_output_leuning
lm3ppa_gs_leuning_drivers,makecheck = TRUE,
parallel = FALSE
)
# split out the annual data
<- lm3ppa_output_leuning$data[[1]]$output_annual_tile lm3ppa_gs_leuning_output
We can now visualize the model output.
# we only have one site so we'll unnest
# the main model output
%>%
lm3ppa_gs_leuning_output ggplot() +
geom_line(aes(x = year, y = GPP)) +
theme_classic()+labs(x = "Year", y = "GPP")
%>%
lm3ppa_gs_leuning_output ggplot() +
geom_line(aes(x = year, y = plantC)) +
theme_classic()+labs(x = "Year", y = "plantC")
Running the fast P-model implementation.
# print parameter settings
print(lm3ppa_p_model_drivers$params_siml)
#> [[1]]
#> # A tibble: 1 × 12
#> spinup spinupyears recycle firstyeartrend nyeartrend outputhourly outputdaily
#> <lgl> <dbl> <dbl> <dbl> <dbl> <lgl> <lgl>
#> 1 TRUE 250 1 2009 1 TRUE TRUE
#> # … with 5 more variables: do_U_shaped_mortality <lgl>,
#> # update_annualLAImax <lgl>, do_closedN_run <lgl>, method_photosynth <chr>,
#> # method_mortality <chr>
print(head(lm3ppa_p_model_drivers$forcing))
#> [[1]]
#> # A tibble: 365 × 13
#> YEAR DOY HOUR PAR Swdown TEMP SoilT RH RAIN WIND PRESSURE
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2009 1 11.5 107. 28.0 0.384 3.39 93.7 0.0000166 3.00 93092.
#> 2 2009 2 11.5 102. 24.4 -1.64 2.55 92.5 0.0000232 2.97 93248.
#> 3 2009 3 11.5 197. 46.5 -2.51 1.95 85.1 0.00000371 2.84 93684.
#> 4 2009 4 11.5 139. 34.6 -1.82 2.20 83.5 0.0000130 2.67 93435.
#> 5 2009 5 11.5 154. 36.2 -1.34 2.23 87.8 0.0000223 3.21 93175.
#> 6 2009 6 11.5 99.2 25.9 -0.450 2.75 90.9 0.0000219 3.03 93282.
#> 7 2009 7 11.5 141. 34.8 0.266 3.50 89.7 0.0000136 2.64 93511.
#> 8 2009 8 11.5 169. 44.4 0.504 3.52 86.1 0.0000113 2.68 93443.
#> 9 2009 9 11.5 102. 25.3 0.0869 3.49 90.3 0.0000186 2.74 93447.
#> 10 2009 10 11.5 160. 40.5 -0.404 3.44 90.1 0.0000125 2.17 93633.
#> # … with 355 more rows, and 2 more variables: aCO2_AW <dbl>, SWC <dbl>
# run the model
<- runread_lm3ppa_f(
lm3ppa_p_model_output
lm3ppa_p_model_drivers,makecheck = TRUE,
parallel = FALSE
)
# split out the annual data for visuals
<- lm3ppa_p_model_output$data[[1]]$output_annual_tile lm3ppa_p_model_output
We can now visualize the model output.
# we only have one site so we'll unnest
# the main model output
%>%
lm3ppa_p_model_output ggplot() +
geom_line(aes(x = year, y = GPP)) +
theme_classic()+labs(x = "Year", y = "GPP")
%>%
lm3ppa_p_model_output ggplot() +
geom_line(aes(x = year, y = plantC)) +
theme_classic()+labs(x = "Year", y = "plantC")
To optimize new parameters based upon driver data and a validation dataset we must first specify an optimization strategy and settings, as well as parameter ranges.
# Mortality as DBH
<- list(
settings method = "bayesiantools",
targetvars = c("gpp"),
timescale = list(targets_obs = "y"),
sitenames = "CH-Lae",
metric = cost_rmse_lm3ppa_gsleuning,
dir_results = "./",
name = "ORG",
control = list(
sampler = "DEzs",
settings = list(
burnin = 10,
iterations = 50
)
),par = list(
phiRL = list(lower=0.5, upper=5, init=3.5),
LAI_light = list(lower=2, upper=5, init=3.5),
tf_base = list(lower=0.5, upper=1.5, init=1),
par_mort = list(lower=0.1, upper=2, init=1))
)
<- calib_sofun(
pars drivers = lm3ppa_gs_leuning_drivers,
obs = lm3ppa_validation_2,
settings = settings
)