Exercício 1: Introdução

A região a ser analisada encontra-se no semiário nordestino, corresponde ao bioma Caatinga em uma paisagem com áreas em processo de regeneração natural. Os organismos a serem analisados serão as comumidades de nematoides cuja composição taxonômica das famílias podem variar de acordo com o tempo de regeneração natural, temperatura, umidade e pH do solo assim como os indices pluviométricos da região, granulometria do solo e composição da vegetação. Para essa atividade cujos dados são ficticios, ultilisaremos para “brincar” com o R algumas ferramentas de analise de comunidades>

Iniciamos carregando os dados da tabelas com os valores de abundancia das famílias de nematoides em cada local de amostragem (que por algum motivo divino essa tabela não aparece aqui).

library(vegan)
## Warning: package 'vegan' was built under R version 4.1.2
## Warning: package 'permute' was built under R version 4.1.2
tabela<- read.table(file = "eco_num_.txt", header = TRUE)
library(vegan)
library(tidyverse)
library(forcats)
library(iNEXT)
comunidade<-read.table("eco_num_.txt", header=TRUE)
rownames(comunidade) <-paste0("Local", 1:nrow(comunidade))

Brincando com alguns índices dessa comunidade atraves do pacote vegan.

Riqueza <-specnumber(comunidade)
Riqueza
##  Local1  Local2  Local3  Local4  Local5  Local6  Local7  Local8  Local9 Local10 
##       6       6       6       6       6       6       6       6       6       6
Riqueza_total<-specnumber(colSums(comunidade))
Riqueza_total
## [1] 6

Diversidade de espécies

indices de shannon e simpson de cada local, usando a função “diversity” do vegan. Usamos esses indices para medir a riqueza e abundancia das familias observadas em cada local. É visto que os locais 4,9 e 10 tem uma maior diversidade.

Shannon<-diversity(comunidade, index = "shannon")
Shannon
##   Local1   Local2   Local3   Local4   Local5   Local6   Local7   Local8 
## 1.691434 1.715290 1.746197 1.774550 1.744471 1.712732 1.754105 1.736195 
##   Local9  Local10 
## 1.768133 1.779842

Observando Simpson. Através deles vvimos que os locais 4,9 e 10 tem uma maior riqueza.

Simpson<-diversity(comunidade, index = "simpson")
Simpson
##    Local1    Local2    Local3    Local4    Local5    Local6    Local7    Local8 
## 0.8000000 0.8064206 0.8178980 0.8276644 0.8177393 0.8050000 0.8203125 0.8144044 
##    Local9   Local10 
## 0.8253110 0.8293345

Somando abundâncias para obter a diversidade total :

Shannon_total<-diversity(colSums(comunidade), index="shannon")
Shannon_total
## [1] 1.766653
Simpson_total<-diversity(colSums(comunidade), index = "simpson")
Simpson_total
## [1] 0.8245323

Aplicando a equitabilidade. Essa métrica vai nos dizer a abundância relativa das diferentes espécies que compõem a riqueza de uma área, é derivado do índice de diversidade de Shannon e permite representar a uniformidade da distribuição dos indivíduos entre as espécies existentes. O seu valor apresenta uma amplitude de 0 (uniformidade mínima) a 1 (uniformidade máxima) Calculando : Divide o indice de shannon pelo log da riqueza

J<-Shannon/log(Riqueza)
J
##    Local1    Local2    Local3    Local4    Local5    Local6    Local7    Local8 
## 0.9440075 0.9573216 0.9745713 0.9903950 0.9736076 0.9558942 0.9789848 0.9689891 
##    Local9   Local10 
## 0.9868140 0.9933486

Equitabilidade total : Novamente as áreas 4,9 e 10 se sobressaem na uniformidade das cominidades

J_total<-Shannon_total/log(Riqueza_total)
J_total
## [1] 0.9859877

Série de Hill e perfil de diversidade: Tentei utilizar a série de Hill pois é uma métrica unificadora de Shannon e Simpson, mostra a riqueza de acordo com o peso das especies, quanto maiso próximo de zero maior a riqueza.

R<-renyi(comunidade, hill = TRUE)
R
##         0     0.25      0.5        1        2        4        8       16
## Local1  6 5.843000 5.695094 5.427260 5.000000 4.485395 4.098911 3.910486
## Local2  6 5.886620 5.774835 5.558287 5.165839 4.583452 4.019293 3.688613
## Local3  6 5.931047 5.863455 5.732762 5.491429 5.095864 4.608788 4.238084
## Local4  6 5.973759 5.947939 5.897624 5.802632 5.636149 5.388292 5.111943
## Local5  6 5.927159 5.856610 5.722872 5.486647 5.135033 4.766203 4.524544
## Local6  6 5.884491 5.769548 5.544090 5.128205 4.508429 3.932947 3.611540
## Local7  6 5.944416 5.888803 5.778276 5.565217 5.200335 4.743976 4.381486
## Local8  6 5.916408 5.834282 5.675708 5.388060 4.949204 4.478783 4.145875
## Local9  6 5.964674 5.929524 5.859905 5.724458 5.476099 5.099254 4.728257
## Local10 6 5.982101 5.964284 5.928918 5.859416 5.726504 5.493135 5.181568
##               32       64      Inf
## Local1  3.826818 3.787604 3.750000
## Local2  3.536905 3.466691 3.400000
## Local3  4.048059 3.959217 3.875000
## Local4  4.900713 4.782140 4.666667
## Local5  4.407499 4.352565 4.300000
## Local6  3.465339 3.397648 3.333333
## Local7  4.182909 4.088994 4.000000
## Local8  3.967119 3.881383 3.800000
## Local9  4.507041 4.400718 4.300000
## Local10 4.940206 4.816883 4.700000

Fazendo um gráfico de diversidade com os valores de Hill

g1 <- R %>%  
  rownames_to_column() %>% 
  pivot_longer(-rowname) %>% 
  mutate(name = factor(name, name[1:length(R)])) %>% 
  ggplot(aes(x = name, y = value, group = rowname,
             col = rowname)) +
  geom_point(size = 2) +
  geom_line(size = 1) +
  xlab("Parâmetro de ordem de diversidade (q)") +
  ylab("Diversidade") +
  labs(col = "Locais") +
  theme_bw() +
  theme(text = element_text(size = 16))
  
g1

Por fim os gráficos mostram que as áreas 4,9 e 10 tem uma maior riqueza.

Exercício 2: Descrição de comunidades biológicas

Os dados ultilizados nesta atividade são os dados referente ao trabalho “Communities of molluscs, vascular plants and bryophytes on spring fens of West Carpathian” explloraremos de inícios a comunidade de moluscos.

library(vegan)
library(BiodiversityR)
data(moll)
moll <- read.delim ('https://raw.githubusercontent.com/zdealveindy/anadat-r/master/data/molluscs-fens.txt', row.names = 1)

env <- read.delim ('https://raw.githubusercontent.com/zdealveindy/anadat-r/master/data/env-fens.txt', row.names = 1)
dim(moll)
## [1] 43 57
specnumber(moll)
##    Baladi   Bukovec    Cudrak   Dubcova  Grigovci      Grun    HLplos    HLrosn 
##        19         9        10        14        13        20         3         3 
##  Hrncarky  HrubBrod   HuteDol  ChmelLou  ChmelStu    Chmura   Jasenka  Javoruvk 
##        23        13        25         8        16        16        20        27 
##  Kalabova   Klubina  Kralovec    Krocil      Lany   Machala   Machova   Mechnac 
##        26         9        24        12         9        12        23        13 
##   Milonov    NizKel   Obidova   Pisojov   PivoLou  Pivovari   Rajnoch   Semetin 
##        16        14         4         7         8        16         7        18 
##   Skanzen     Solan    Spanie  StudVrch     Tlsta  Trubiska U Pavliku   ValKlob 
##        12        12        23        20        18        28        15        21 
##   Vlarsky  VresStra   VrchPre 
##        20         4         5

Foi observado então que nos 43 pontos de coleta (que eram coletados 12 litros de solo) foram encontradas 57 espécies de molluscos,é posivel observar também a quantidade de espécies por cada área de coleta, Trubiska e Javoruvk por exemplo apresentam um maior número de especies dentre os demais pontos.

rowSums(moll)
##    Baladi   Bukovec    Cudrak   Dubcova  Grigovci      Grun    HLplos    HLrosn 
##      1094        52        49       131       103       789         7         8 
##  Hrncarky  HrubBrod   HuteDol  ChmelLou  ChmelStu    Chmura   Jasenka  Javoruvk 
##       253       117      1556        45       133       216       914       251 
##  Kalabova   Klubina  Kralovec    Krocil      Lany   Machala   Machova   Mechnac 
##       450        54       229       258        67       337       454       250 
##   Milonov    NizKel   Obidova   Pisojov   PivoLou  Pivovari   Rajnoch   Semetin 
##       192       553        11        67        54       249        24       980 
##   Skanzen     Solan    Spanie  StudVrch     Tlsta  Trubiska U Pavliku   ValKlob 
##        87       208      1138       597       328      1232        74      1490 
##   Vlarsky  VresStra   VrchPre 
##       413         4        16

Foi possível observar a quantidade de individuos coletados em cada plot, essa simple tabela pode mostrar por exemplo que algumas áreas apesar de muitas espécies diferentes podem ter poucos indiiduos em relação a áreas com mais individuos e poucas especies. Mas para uma melhor analise é possivel indicar ralmente quais possuem maior abundancia e riqueza através dos pacotes básicos do vegan.

colSums(moll)
## PlaPol CarMin CarTri VerPyg VerSub VerAnt VerAng VerMou VerPus ColEde CocLub 
##     29   3603   1681    984    577    904   1285    155      6    108   1041 
## CocLul PupMus PupPra AcaAcu ValCos ValPul TruCyl PunPyg AliBip MacTum MacVen 
##     58      3      8     46    121    387     10    715     14     56     39 
## VesTur SucPut SucObl OxyEle AegPur AegMin PerHam OxyCel OxyGla VitCon VitCry 
##     57    450    306    170    187     11    605      3      7     52     73 
## VitDia CecAci SemSem VitPel EucFul EucAld ZonNit DauBre DauRuf AriSil AriSub 
##     33      1      2     51    749      5    364     57     37      2      2 
## DerAgr DerLae DerPra PliLub PetUni PerBid TriHis MonInc MonVic EuoStr AriArb 
##      4      5      6     84     22    101    152     70     10      4     13 
## CepHor CepVin 
##      1      8

Aqui podemos ver a abundancia de cada espécies, Carychium minimum (CarMin) e Carychium tridentatum (CarTri) são as espécies mais abundantes do estudo.

Agora observaremos curva de acumulação de especies para o grupo dos moluscos estudados, usando ainda o pacote do vegan. As curvas de acumulação ou curva do coletor é capaz de nos informar se a quantidades de dados coletados foram o suficiente para indicar o tamnha mínimo da comunidade numa determinada área.

sp1<- specaccum(moll, "random" )
sp1
## Species Accumulation Curve
## Accumulation method: random, with 100 permutations
## Call: specaccum(comm = moll, method = "random") 
## 
##                                                                        
## Sites     1.00000  2.00000  3.00000  4.00000  5.00000  6.00000  7.00000
## Richness 14.13000 20.99000 26.18000 29.17000 31.64000 34.42000 36.10000
## sd        6.69034  6.72624  6.43284  6.01355  5.59134  5.12309  5.20392
##                                                                        
## Sites     8.00000  9.00000 10.00000 11.00000 12.00000 13.00000 14.00000
## Richness 38.02000 39.58000 41.06000 42.42000 43.75000 45.15000 46.01000
## sd        4.76303  4.60386  4.35964  4.40656  4.05113  3.88308  3.65009
##                                                                               
## Sites    15.00000 16.000 17.00000 18.00000 19.00000 20.00000 21.00000 22.00000
## Richness 46.92000 47.630 48.27000 48.90000 49.41000 50.16000 50.52000 50.99000
## sd        3.40137  3.311  3.12001  2.84445  2.67459  2.46478  2.48828  2.38469
##                                                                        
## Sites    23.00000 24.00000 25.00000 26.00000 27.00000 28.00000 29.00000
## Richness 51.53000 51.99000 52.52000 52.83000 53.15000 53.47000 53.79000
## sd        2.13889  2.12011  1.93574  1.90722  1.93519  1.83927  1.74249
##                                                                                
## Sites    30.00000 31.00000 32.00000 33.00000 34.00000 35.00000 36.00000 37.0000
## Richness 54.21000 54.59000 54.90000 55.24000 55.40000 55.57000 55.75000 56.0200
## sd        1.67751  1.65813  1.63608  1.49828  1.42134  1.24928  1.15798  1.0539
##                                                       
## Sites    38.00000 39.00000 40.00000 41.00000 42.000 43
## Richness 56.19000 56.39000 56.50000 56.71000 56.870 57
## sd        0.91778  0.75069  0.65905  0.47768  0.338  0
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightgrey")
boxplot(sp1, col="white", add=TRUE, pch="+")

O grafico de curva do coletor por estar estabilizado de acordo com a quantidade de sites, nos diz que esses dados coletados foram o sufuciente para nos dizer que a comunidade de molusco se aproxima de um tamanho real. Agora para descrever melhor essa comunidade no quesito detalhamento de abunância utilizaremos curvas de rank-abundância, onde as espécies são ordenadas em sequência, da mais abundante para a mais rara, ao longo da abcissa, com abundâncias absolutas ou relativas log-transformadas na ordenada.

library(RADanalysis)
## Warning: package 'RADanalysis' was built under R version 4.1.2
setwd("C:/Users/italo/OneDrive/Documentos/eco_numerica")
mollusca <- read.table("abundanciamoll.txt")
mod <- (rad.lognormal(mollusca))
plot (mod)

Exercício 3: Medidas de diversidade biológica

Neste exerício aplicaremos os indices de diversidade de Shanon e Simpson em uma base de dados retirados do próprio R.

library(devtools)
## Warning: package 'devtools' was built under R version 4.1.2
## Carregando pacotes exigidos: usethis
## Warning: package 'usethis' was built under R version 4.1.2
## 
## Attaching package: 'devtools'
## The following object is masked from 'package:permute':
## 
##     check
devtools::install_github("paternogbc/ecodados")
## Skipping install of 'ecodados' from a github remote, the SHA1 (929ffae7) has not changed since last install.
##   Use `force = TRUE` to force installation
library(ecodados)
## 
## Attaching package: 'ecodados'
## The following object is masked _by_ '.GlobalEnv':
## 
##     env
library(vegan)
library(ggplot2)
library(BiodiversityR)

#caregando os dados

composicao_especies <- ecodados::composicao_anuros_div_taxonomica
precipitacao        <- ecodados::precipitacao_div_taxonomica

O conjunto de dados apresentados mostra a distribuição das esécies em 10 comunidades diferentes junto com os dados das precipitações de cda comunidade. # Utilizando as curvas de rank-abundância

rank_com2 <- rankabundance(composicao_especies[2, composicao_especies[2,] > 0])
## Warning in qt(0.975, df = n - 1): NaNs produzidos
rankabunplot(rank_com2, scale = "logabun", specnames = c(1), 
             pch = 19, col = "darkorange")

rank_com3 <- rankabundance(composicao_especies[3, composicao_especies[3,] > 0])
## Warning in qt(0.975, df = n - 1): NaNs produzidos
rankabunplot(rank_com3, scale = "logabun", specnames = c(1), 
             pch = 19, col = "darkgreen")

rank_com4 <- rankabundance(composicao_especies[4, composicao_especies[4,] > 0])
## Warning in qt(0.975, df = n - 1): NaNs produzidos
rankabunplot(rank_com4, scale = "logabun", specnames = c(1), 
             pch = 19, col = "darkblue")

rank_com5 <- rankabundance(composicao_especies[5, composicao_especies[5,] > 0])
## Warning in qt(0.975, df = n - 1): NaNs produzidos
rankabunplot(rank_com5, scale = "logabun", specnames = c(1), 
             pch = 19, col = "darkred")

#Aplicando os índices de diversidade nas comunidades

riqueza_dados <- specnumber(composicao_especies)
riqueza_dados
##  Com_1  Com_2  Com_3  Com_4  Com_5  Com_6  Com_7  Com_8  Com_9 Com_10 
##     10     10      5      5      5      6      2      4      6      4
Shannon_dados <- diversity(composicao_especies, index = "shannon", MARGIN = 1)
Shannon_dados
##     Com_1     Com_2     Com_3     Com_4     Com_5     Com_6     Com_7     Com_8 
## 2.3025851 0.5002880 0.9580109 1.6068659 1.4861894 1.5607038 0.6931472 1.1058899 
##     Com_9    Com_10 
## 1.7140875 1.2636544
Simpson_dados <- diversity(composicao_especies, index = "simpson", MARGIN = 1)
Simpson_dados
##     Com_1     Com_2     Com_3     Com_4     Com_5     Com_6     Com_7     Com_8 
## 0.9000000 0.1710000 0.4814815 0.7989636 0.7587500 0.7674858 0.5000000 0.5850000 
##     Com_9    Com_10 
## 0.8088889 0.6942149
Shannon_total <- diversity(colSums(composicao_especies), index = "shannon")
Shannon_total
## [1] 2.164299
Simpson_total <- diversity(colSums(composicao_especies), index = "simpson")
Simpson_total
## [1] 0.8653032

Aplicando a Equitabilidade pielou

O indice de equitabilidade de pielou é derivado do índice de diversidade de Shannon e permite representar a uniformidade da distribuição dos indivíduos entre as espécies existentes (PIELOU, 1966). Seu valor apresenta uma amplitude de 0 (uniformidade mínima) a 1 (uniformidade máxi-ma

equi <- Shannon / log(Riqueza)
equi
##    Local1    Local2    Local3    Local4    Local5    Local6    Local7    Local8 
## 0.9440075 0.9573216 0.9745713 0.9903950 0.9736076 0.9558942 0.9789848 0.9689891 
##    Local9   Local10 
## 0.9868140 0.9933486

Analisando a relação da comunidade com a precipitação.

prec_dados <- data.frame(precipitacao$prec, riqueza_dados,Shannon_dados, 
                        Simpson_dados,equi)
prec_dados
##        precipitacao.prec riqueza_dados Shannon_dados Simpson_dados      equi
## Com_1               3200            10     2.3025851     0.9000000 0.9440075
## Com_2               3112            10     0.5002880     0.1710000 0.9573216
## Com_3               2800             5     0.9580109     0.4814815 0.9745713
## Com_4               1800             5     1.6068659     0.7989636 0.9903950
## Com_5               2906             5     1.4861894     0.7587500 0.9736076
## Com_6               3005             6     1.5607038     0.7674858 0.9558942
## Com_7                930             2     0.6931472     0.5000000 0.9789848
## Com_8               1000             4     1.1058899     0.5850000 0.9689891
## Com_9               1300             6     1.7140875     0.8088889 0.9868140
## Com_10               987             4     1.2636544     0.6942149 0.9933486
colnames(prec_dados) <- c("Precipitacao", "Riqueza", "Shannon", "Simpson", "Equitabilidade")
prec_dados
##        Precipitacao Riqueza   Shannon   Simpson Equitabilidade
## Com_1          3200      10 2.3025851 0.9000000      0.9440075
## Com_2          3112      10 0.5002880 0.1710000      0.9573216
## Com_3          2800       5 0.9580109 0.4814815      0.9745713
## Com_4          1800       5 1.6068659 0.7989636      0.9903950
## Com_5          2906       5 1.4861894 0.7587500      0.9736076
## Com_6          3005       6 1.5607038 0.7674858      0.9558942
## Com_7           930       2 0.6931472 0.5000000      0.9789848
## Com_8          1000       4 1.1058899 0.5850000      0.9689891
## Com_9          1300       6 1.7140875 0.8088889      0.9868140
## Com_10          987       4 1.2636544 0.6942149      0.9933486
anova_shan <- lm(Shannon ~ Precipitacao, data = prec_dados)
anova(anova_shan)
## Analysis of Variance Table
## 
## Response: Shannon
##              Df  Sum Sq Mean Sq F value Pr(>F)
## Precipitacao  1 0.10989 0.10989  0.3627 0.5637
## Residuals     8 2.42366 0.30296
anova_simp <- lm(Simpson ~ Precipitacao, data = prec_dados)
anova (anova_simp)
## Analysis of Variance Table
## 
## Response: Simpson
##              Df  Sum Sq  Mean Sq F value Pr(>F)
## Precipitacao  1 0.00132 0.001325  0.0252 0.8778
## Residuals     8 0.42064 0.052580
anova_riq <- lm(Riqueza ~ Precipitacao, data = prec_dados)
anova(anova_riq)
## Analysis of Variance Table
## 
## Response: Riqueza
##              Df Sum Sq Mean Sq F value  Pr(>F)  
## Precipitacao  1 30.622 30.6224  8.9156 0.01744 *
## Residuals     8 27.478  3.4347                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova_equi <- lm(Equitabilidade ~ Precipitacao, data = prec_dados)
anova(anova_equi)
## Analysis of Variance Table
## 
## Response: Equitabilidade
##              Df    Sum Sq    Mean Sq F value Pr(>F)  
## Precipitacao  1 0.0012169 0.00121694  8.6878 0.0185 *
## Residuals     8 0.0011206 0.00014007                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Exercício 4: Diversidade verdadeira

O índice de Hill é um cálculo cuja fórmula unifica outros índices de diversidade de Shannon e Simpson e fórmulas derivadas.

library(devtools)
library(ecodados)
library(vegan)
library(ggplot2)
library(BiodiversityR)
library(hillR)
## Warning: package 'hillR' was built under R version 4.1.3
composicao_especies <- ecodados::composicao_anuros_div_taxonomica
precipitacao        <- ecodados::precipitacao_div_taxonomica
hill_q_0 <- hillR::hill_taxa(moll, q  = 0)
hill_q_0
##    Baladi   Bukovec    Cudrak   Dubcova  Grigovci      Grun    HLplos    HLrosn 
##        19         9        10        14        13        20         3         3 
##  Hrncarky  HrubBrod   HuteDol  ChmelLou  ChmelStu    Chmura   Jasenka  Javoruvk 
##        23        13        25         8        16        16        20        27 
##  Kalabova   Klubina  Kralovec    Krocil      Lany   Machala   Machova   Mechnac 
##        26         9        24        12         9        12        23        13 
##   Milonov    NizKel   Obidova   Pisojov   PivoLou  Pivovari   Rajnoch   Semetin 
##        16        14         4         7         8        16         7        18 
##   Skanzen     Solan    Spanie  StudVrch     Tlsta  Trubiska U Pavliku   ValKlob 
##        12        12        23        20        18        28        15        21 
##   Vlarsky  VresStra   VrchPre 
##        20         4         5
hill_q_1 <- hillR::hill_taxa(moll, q  = 1)
hill_q_1
##    Baladi   Bukovec    Cudrak   Dubcova  Grigovci      Grun    HLplos    HLrosn 
##  7.143260  5.940757  7.375416  8.663178  8.836557 11.818495  2.600490  2.649351 
##  Hrncarky  HrubBrod   HuteDol  ChmelLou  ChmelStu    Chmura   Jasenka  Javoruvk 
##  6.330010  8.204216  8.155648  6.039829  5.805370  7.865815 11.424821 14.361361 
##  Kalabova   Klubina  Kralovec    Krocil      Lany   Machala   Machova   Mechnac 
## 14.915726  6.123555 11.590345  8.183111  5.185746  7.580978 10.661884  7.014454 
##   Milonov    NizKel   Obidova   Pisojov   PivoLou  Pivovari   Rajnoch   Semetin 
##  5.158927  7.323815  3.827122  5.647906  5.077726  6.069975  4.689955 11.681803 
##   Skanzen     Solan    Spanie  StudVrch     Tlsta  Trubiska U Pavliku   ValKlob 
##  7.215562  5.601488 11.950488  6.761065 10.316393  8.173482 10.674255  8.162188 
##   Vlarsky  VresStra   VrchPre 
## 13.503723  4.000000  3.190527
hill_q_2 <- hillR::hill_taxa(moll, q  = 2)
hill_q_2
##    Baladi   Bukovec    Cudrak   Dubcova  Grigovci      Grun    HLplos    HLrosn 
##  5.135974  4.710801  6.335092  6.170802  6.848935  9.418294  2.333333  2.461538 
##  Hrncarky  HrubBrod   HuteDol  ChmelLou  ChmelStu    Chmura   Jasenka  Javoruvk 
##  3.161407  6.219446  4.801650  4.951100  3.766021  5.707854  9.121039 10.333115 
##  Kalabova   Klubina  Kralovec    Krocil      Lany   Machala   Machova   Mechnac 
## 11.765048  4.909091  7.656738  6.472579  3.487956  6.167871  7.879654  5.402835 
##   Milonov    NizKel   Obidova   Pisojov   PivoLou  Pivovari   Rajnoch   Semetin 
##  2.884959  5.439989  3.666667  4.993326  3.719388  3.662414  3.692308  9.722616 
##   Skanzen     Solan    Spanie  StudVrch     Tlsta  Trubiska U Pavliku   ValKlob 
##  5.216402  4.032060  9.006746  4.668522  8.485881  5.085655  8.889610  4.639494 
##   Vlarsky  VresStra   VrchPre 
## 11.643730  4.000000  2.327273
res_hill <- data.frame(hill_q_0, hill_q_1, hill_q_2)
colnames(res_hill) <- c("q=0", "q=1", "q=2")
head(res_hill)
##          q=0       q=1      q=2
## Baladi    19  7.143260 5.135974
## Bukovec    9  5.940757 4.710801
## Cudrak    10  7.375416 6.335092
## Dubcova   14  8.663178 6.170802
## Grigovci  13  8.836557 6.848935
## Grun      20 11.818495 9.418294
library(entropart)
## Warning: package 'entropart' was built under R version 4.1.3
mc<- MetaCommunity (moll)
## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.
## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.

## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.

## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.

## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.

## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.
## Warning in FUN(newX[, i], ...): Sample coverage is 0, most bias corrections will
## return NaN.
## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.
## Warning in FUN(newX[, i], ...): Sample coverage is 0, most bias corrections will
## return NaN.
## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.

## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.

## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.

## Warning in FUN(newX[, i], ...): Zhang-Huang sample coverage cannot be estimated
## because one probability is over 1/2. Chao estimator is returned.
## Warning in FUN(newX[, i], ...): Sample coverage is 0, most bias corrections will
## return NaN.
plot(mc)

summary(DivPart(q=0, mc), Correction="None")
## HCDT diversity partitioning of order 0 of metaCommunity mc
## 
## Alpha diversity of communities: 
## PlaPol CarMin CarTri VerPyg VerSub VerAnt VerAng VerMou VerPus ColEde CocLub 
##      7     35     31     32     33     32     15      6      3     13     36 
## CocLul PupMus PupPra AcaAcu ValCos ValPul TruCyl PunPyg AliBip MacTum MacVen 
##      4      2      1      6     13     32      4     30      3      3      2 
## VesTur SucPut SucObl OxyEle AegPur AegMin PerHam OxyCel OxyGla VitCon VitCry 
##      2     29     12      9     17      5     32      2      4      8      8 
## VitDia CecAci SemSem VitPel EucFul EucAld ZonNit DauBre DauRuf AriSil AriSub 
##      6      1      1     17     33      1      9     13     11      1      2 
## DerAgr DerLae DerPra PliLub PetUni PerBid TriHis MonInc MonVic EuoStr AriArb 
##      3      3      2     13      2      5      2     22      4      3      5 
## CepHor CepVin 
##      1      4 
## Total alpha diversity of the communities: 
## [1] 11.14035
## Beta diversity of the communities: 
##     None 
## 3.859843 
## Gamma diversity of the metacommunity: 
## None 
##   43
summary(DivPart(q=1, mc), Correction="None")
## HCDT diversity partitioning of order 1 of metaCommunity mc
## 
## Alpha diversity of communities: 
##    PlaPol    CarMin    CarTri    VerPyg    VerSub    VerAnt    VerAng    VerMou 
##  5.279094 16.579841 12.631003 15.301876 14.624005 19.724971  9.334348  5.512841 
##    VerPus    ColEde    CocLub    CocLul    PupMus    PupPra    AcaAcu    ValCos 
##  2.749459  9.102995 20.639566  1.380795  1.889882  1.000000  4.121986  7.963352 
##    ValPul    TruCyl    PunPyg    AliBip    MacTum    MacVen    VesTur    SucPut 
## 20.577094  3.216463 16.827651  2.217347  1.944227  1.466620  1.948206 12.678030 
##    SucObl    OxyEle    AegPur    AegMin    PerHam    OxyCel    OxyGla    VitCon 
##  4.319488  6.231501 10.081696  3.922429 16.334704  1.889882  3.864313  5.058307 
##    VitCry    VitDia    CecAci    SemSem    VitPel    EucFul    EucAld    ZonNit 
##  3.921992  4.262229  1.000000  1.000000 12.686988 16.910298  1.000000  2.990222 
##    DauBre    DauRuf    AriSil    AriSub    DerAgr    DerLae    DerPra    PliLub 
##  9.557372  8.333814  1.000000  2.000000  2.828427  2.586409  2.000000  7.953035 
##    PetUni    PerBid    TriHis    MonInc    MonVic    EuoStr    AriArb    CepHor 
##  1.356131  2.674595  1.944164 15.582068  3.596115  2.828427  3.711482  1.000000 
##    CepVin 
##  3.746748 
## Total alpha diversity of the communities: 
## [1] 4.38349
## Beta diversity of the communities: 
##    None 
## 5.64667 
## Gamma diversity of the metacommunity: 
##     None 
## 24.75212
summary(DivPart(q=2, mc), Correction="None")
## HCDT diversity partitioning of order 2 of metaCommunity mc
## 
## Alpha diversity of communities: 
##    PlaPol    CarMin    CarTri    VerPyg    VerSub    VerAnt    VerAng    VerMou 
##  4.357513 11.627463  7.631272 10.810048 10.181626 15.671691  7.120817  5.233065 
##    VerPus    ColEde    CocLub    CocLul    PupMus    PupPra    AcaAcu    ValCos 
##  2.571429  7.317440 15.829173  1.151266  1.800000  1.000000  3.550336  5.560577 
##    ValPul    TruCyl    PunPyg    AliBip    MacTum    MacVen    VesTur    SucPut 
## 15.583082  2.777778 13.009263  1.814815  1.640167  1.287892  1.901112  7.941799 
##    SucObl    OxyEle    AegPur    AegMin    PerHam    OxyCel    OxyGla    VitCon 
##  2.791605  5.104203  8.003891  3.270270 10.857732  1.800000  3.769231  3.830028 
##    VitCry    VitDia    CecAci    SemSem    VitPel    EucFul    EucAld    ZonNit 
##  2.949087  3.501608  1.000000  1.000000 10.042471 12.274927  1.000000  2.263960 
##    DauBre    DauRuf    AriSil    AriSub    DerAgr    DerLae    DerPra    PliLub 
##  7.754177  6.949239  1.000000  2.000000  2.666667  2.272727  2.000000  5.812191 
##    PetUni    PerBid    TriHis    MonInc    MonVic    EuoStr    AriArb    CepHor 
##  1.198020  1.959094  1.893770 11.238532  3.333333  2.666667  3.072727  1.000000 
##    CepVin 
##  3.555556 
## Total alpha diversity of the communities: 
## [1] 2.65027
## Beta diversity of the communities: 
##     None 
## 7.341057 
## Gamma diversity of the metacommunity: 
##     None 
## 19.45579
autoplot(DivProfile(q.seq = seq(0, 2, 0.1),MC=mc, Correction = "None"))

alfa.est0<-DivEst(q = 0, mc, Simulations = 100, Correction = "None")
plot(alfa.est0)

alfa.est1<-DivEst(q = 1, mc, Simulations = 100, Correction = "None")
plot(alfa.est1)

alfa.est2<-DivEst(q = 2, mc, Simulations = 100, Correction = "None")
plot(alfa.est2)

Exércicio 5: Diversidade Beta

séra usado os dados referente ao trabalho “Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses” o objetivo é analisar a diversidade Beta entre as áreas estudadas no trabalho.

dados<-read.csv("https://raw.githubusercontent.com/fplmelo/ecoa/main/content/en/courses/eco_num/betadiv/com_ltx_all.csv", row.names = "X")
dados<-as.data.frame(dados)
dim(dados)
## [1] 179  36
library(entropart)
mc1<- MetaCommunity (dados)

Começamos calculando a divesidade alfa, gama e beta oara cada plot de cada tratamento utilizando o q=0, q=1 e q=2.

AlphaDiversity(mc1, q=0, Correction = "None")
## $MetaCommunity
## [1] "mc1"
## 
## $Method
## [1] "Neutral"
## 
## $Type
## [1] "alpha"
## 
## $Order
## [1] 0
## 
## $Correction
## [1] "None"
## 
## $Normalized
## [1] TRUE
## 
## $Weights
##       LDL1       LDL3       LDL4       LDL5       LDL8       LDL9      LDL10 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      LDL11      LDL12      LDL13      LDL14      LDL15       IDL1       IDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       IDL5       IDL6       IDL7       IDL8       IDL9      IDL10      IDL11 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      IDL12      IDL13      IDL14      IDL15       HDL2       HDL3       HDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       HDL5       HDL6      HDL10      HDL11      HDL12      HDL13      HDL14 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      HDL15 
## 0.02777778 
## 
## $Communities
##  LDL1  LDL3  LDL4  LDL5  LDL8  LDL9 LDL10 LDL11 LDL12 LDL13 LDL14 LDL15  IDL1 
##    35    30    30    29    38    40    26    32    36    27    36    23    38 
##  IDL4  IDL5  IDL6  IDL7  IDL8  IDL9 IDL10 IDL11 IDL12 IDL13 IDL14 IDL15  HDL2 
##    31    31    32    38    29    41    32    27    40    40    35    46    38 
##  HDL3  HDL4  HDL5  HDL6 HDL10 HDL11 HDL12 HDL13 HDL14 HDL15 
##    40    25    26    25    27    15    18    21    39    29 
## 
## $Total
## [1] 31.80556
## 
## attr(,"class")
## [1] "MCdiversity"
AlphaDiversity(mc1, q=1, Correction = "None")
## $MetaCommunity
## [1] "mc1"
## 
## $Method
## [1] "Neutral"
## 
## $Type
## [1] "alpha"
## 
## $Order
## [1] 1
## 
## $Correction
## [1] "None"
## 
## $Normalized
## [1] TRUE
## 
## $Weights
##       LDL1       LDL3       LDL4       LDL5       LDL8       LDL9      LDL10 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      LDL11      LDL12      LDL13      LDL14      LDL15       IDL1       IDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       IDL5       IDL6       IDL7       IDL8       IDL9      IDL10      IDL11 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      IDL12      IDL13      IDL14      IDL15       HDL2       HDL3       HDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       HDL5       HDL6      HDL10      HDL11      HDL12      HDL13      HDL14 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      HDL15 
## 0.02777778 
## 
## $Communities
##      LDL1      LDL3      LDL4      LDL5      LDL8      LDL9     LDL10     LDL11 
## 27.222539 25.629042 22.941212 24.387995 25.468065 29.897721  7.311644 21.888908 
##     LDL12     LDL13     LDL14     LDL15      IDL1      IDL4      IDL5      IDL6 
## 29.349849 24.342215 25.964012 13.197723 30.755277 24.461617 19.699180 25.450513 
##      IDL7      IDL8      IDL9     IDL10     IDL11     IDL12     IDL13     IDL14 
## 25.265590 23.159886 25.854673 27.138127 18.074630 30.816146 33.977934 21.894257 
##     IDL15      HDL2      HDL3      HDL4      HDL5      HDL6     HDL10     HDL11 
## 35.997088 31.969923 30.800462 20.816537 17.365476 20.844865 20.562416  6.173823 
##     HDL12     HDL13     HDL14     HDL15 
## 11.350338 17.717858 31.130084 21.344945 
## 
## $Total
## [1] 22.28671
## 
## attr(,"class")
## [1] "MCdiversity"
AlphaDiversity(mc1, q=2, Correction = "None")
## $MetaCommunity
## [1] "mc1"
## 
## $Method
## [1] "Neutral"
## 
## $Type
## [1] "alpha"
## 
## $Order
## [1] 2
## 
## $Correction
## [1] "None"
## 
## $Normalized
## [1] TRUE
## 
## $Weights
##       LDL1       LDL3       LDL4       LDL5       LDL8       LDL9      LDL10 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      LDL11      LDL12      LDL13      LDL14      LDL15       IDL1       IDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       IDL5       IDL6       IDL7       IDL8       IDL9      IDL10      IDL11 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      IDL12      IDL13      IDL14      IDL15       HDL2       HDL3       HDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       HDL5       HDL6      HDL10      HDL11      HDL12      HDL13      HDL14 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      HDL15 
## 0.02777778 
## 
## $Communities
##      LDL1      LDL3      LDL4      LDL5      LDL8      LDL9     LDL10     LDL11 
## 20.353846 21.446602 17.147783 20.578231 17.963124 21.690323  3.275528 13.986877 
##     LDL12     LDL13     LDL14     LDL15      IDL1      IDL4      IDL5      IDL6 
## 23.485207 22.153846 18.558185  8.125604 24.557604 20.374570 13.586621 20.433476 
##      IDL7      IDL8      IDL9     IDL10     IDL11     IDL12     IDL13     IDL14 
## 17.016807 18.788820 16.346687 23.684444 12.686792 23.837838 28.285714 11.479245 
##     IDL15      HDL2      HDL3      HDL4      HDL5      HDL6     HDL10     HDL11 
## 27.842105 26.560976 23.040134 17.899408 11.505618 17.344262 14.727273  3.835894 
##     HDL12     HDL13     HDL14     HDL15 
##  8.294931 14.520000 25.137931 17.192837 
## 
## $Total
## [1] 14.11629
## 
## attr(,"class")
## [1] "MCdiversity"
BetaDiversity(mc1, q=0, Correction = "None")
## $MetaCommunity
## [1] "mc1"
## 
## $Method
## [1] "Neutral"
## 
## $Type
## [1] "beta"
## 
## $Order
## [1] 0
## 
## $Correction
## [1] "None"
## 
## $Normalized
## [1] TRUE
## 
## $Weights
##       LDL1       LDL3       LDL4       LDL5       LDL8       LDL9      LDL10 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      LDL11      LDL12      LDL13      LDL14      LDL15       IDL1       IDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       IDL5       IDL6       IDL7       IDL8       IDL9      IDL10      IDL11 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      IDL12      IDL13      IDL14      IDL15       HDL2       HDL3       HDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       HDL5       HDL6      HDL10      HDL11      HDL12      HDL13      HDL14 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      HDL15 
## 0.02777778 
## 
## $Total
## [1] 5.627948
## 
## attr(,"class")
## [1] "MCdiversity"
BetaDiversity(mc1, q=1, Correction = "None")
## $MetaCommunity
## [1] "mc1"
## 
## $Method
## [1] "Neutral"
## 
## $Type
## [1] "beta"
## 
## $Order
## [1] 1
## 
## $Correction
## [1] "None"
## 
## $Normalized
## [1] TRUE
## 
## $Weights
##       LDL1       LDL3       LDL4       LDL5       LDL8       LDL9      LDL10 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      LDL11      LDL12      LDL13      LDL14      LDL15       IDL1       IDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       IDL5       IDL6       IDL7       IDL8       IDL9      IDL10      IDL11 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      IDL12      IDL13      IDL14      IDL15       HDL2       HDL3       HDL4 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##       HDL5       HDL6      HDL10      HDL11      HDL12      HDL13      HDL14 
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 
##      HDL15 
## 0.02777778 
## 
## $Total
## [1] 4.25749
## 
## attr(,"class")
## [1] "MCdiversity"
BetaDiversity(mc1, q=2, Correction = "None")
GammaDiversity(mc1, q=0, Correction = "None")
## None 
##  179
GammaDiversity(mc1, q=1, Correction = "None")
##     None 
## 94.88546
GammaDiversity(mc1, q=2, Correction = "None")
##     None 
## 62.38163
Profile <- DivProfile(q.seq = seq(0, 2, 0.1), mc1, Biased = FALSE, Correction = "None")
plot(Profile)

Utilizando o pacote “betapart” analisamos a Beta diversidade de cada tratamento estudados, onde são dados três valores, o “beta.SIM” que é a dissimilaridade de Simpson o qual analisa apenas as mudanças composicionais da “rotatividade” de espécies. O ’beta.SOR” correspondo ao índice de Sorensen que vai explicar a variação totalda composição entre as amostragens, o que inclui os padrões de totatividade e aninhamento. E o “beta.SNE” representa a dissimilaridade aninhada-resultante e é calculada como a diferença entre βsor e βsim.

library(betapart)
## Warning: package 'betapart' was built under R version 4.1.3
dadosLDL<-dados[, 1:12]
dadosLDL<-ifelse(dadosLDL=="0",0,1) 

beta.core<-betapart.core(dadosLDL)
beta.multi<-beta.multi(dadosLDL)
beta.multi
## $beta.SIM
## [1] 0.9543153
## 
## $beta.SNE
## [1] 0.03262383
## 
## $beta.SOR
## [1] 0.9869392
dadosIDL<-dados[, 13:25]
dadosIDL<-ifelse(dadosIDL=="0",0,1)

beta.core<-betapart.core(dadosIDL)
beta.multi<-beta.multi(dadosIDL)
beta.multi
## $beta.SIM
## [1] 0.9315467
## 
## $beta.SNE
## [1] 0.05502664
## 
## $beta.SOR
## [1] 0.9865734
dadosHDL<-dados[, 26:36]
dadosHDL<-ifelse(dadosHDL=="0",0,1)

beta.core<-betapart.core(dadosHDL)
beta.multi<-beta.multi(dadosHDL)
beta.multi
## $beta.SIM
## [1] 0.9430244
## 
## $beta.SNE
## [1] 0.04421616
## 
## $beta.SOR
## [1] 0.9872406

Exércicio 6: Diversidade Funcional

De acordo com a difinicção geral adotada por diversos autores, diversidade funcional nada mais é que o valor e a variedade das espécies (gama) e características do organismo que influenciam o funcionamento do ecossistema. Aqui utilizamos exemplo do capitulo oito do livro “Introdução ao R com aplicações em biodiversidade e conservação”.

library(FD)
## Carregando pacotes exigidos: ade4
## Carregando pacotes exigidos: ape
## Carregando pacotes exigidos: geometry
library(ade4)
library(ecodados)
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
library(ggplot2)
library(ggrepel)
library(tidyverse)
library(picante)
## Carregando pacotes exigidos: nlme
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
comun_fren_dat <- ecodados::fundiv_frenette2012a_comu
ambie_fren_dat <- ecodados::fundiv_frenette2012a_amb
trait_fren_dat <- ecodados::fundiv_frenette2012a_trait
trait_dat      <- ecodados::fundiv_barbaro2009a_trait
comun_dat      <- ecodados::fundiv_barbaro2009a_comu
ambie_dat      <- ecodados::fundiv_barbaro2009a_amb

Após carregar os dados fornecidos pelos autores, foi feito o índice de “dis(similaridade)” que nada mais é do que calcular o nível de semelhança entre as comunidades estudadas (similaridade) e calcular também a distancias entre esssas memas comunidades (dissimilaridade), ambas as medidas estão relacionadas a diversidade beta da área amostrada. Podemos observar que foi utilizada a distância euclidiana usada para expressar a distância entre duas amostras, baseadas atraves de um plano cartesiano.

trait_cont <- trait_fren_dat
trait_pad <- decostand(trait_cont, "standardize")
euclid_dis <- vegdist(trait_pad, "euclidean")

pcoa_traits_cont <- pcoa(euclid_dis, correction="cailliez") 
eixos_cont <- as.data.frame(pcoa_traits_cont$vectors[,1:2]) 

eixos_cont %>% 
  ggplot(aes(x=Axis.1, y=Axis.2)) + 
  geom_point(pch=21, size=3, color = "black", fill="#4575b4") + 
   geom_text_repel(aes(Axis.1, Axis.2, label = rownames(eixos_cont))) +
  xlab("PCO 1") + ylab("PCO 2") + 
  theme(axis.title.x = element_text(face="bold", size=14),
        axis.text.x = element_text(vjust=0.5, size=12)) + 
  theme(axis.title.y = element_text(face="bold", size=14),
        axis.text.y = element_text(vjust=0.5, size=12)) + 
  geom_hline(yintercept = 0, linetype=2) + 
  geom_vline(xintercept = 0, linetype=2)+ 
  theme(legend.position = "top", legend.title=element_blank()) -> plot_trait_cont
plot_trait_cont

ggsave("trait_cont.pdf", plot_trait_cont, height = 14, width = 14, dpi = 600, units = "cm")
trait_dat %>% 
  dplyr::select_if(is.character) -> trait_cat 
dist_categ <- gowdis(trait_cat)
pcoa_traits_cat <- pcoa(dist_categ, correction="cailliez")
eixos_cat <- as.data.frame(pcoa_traits_cat$vectors[,1:2]) # Selecionar os dois primeiros eixos
library(ggplot2)
library(tidyverse)
library(dplyr)
library(ggrepel)
eixos_cat %>% 
  ggplot(aes(x=Axis.1, y=Axis.2)) + 
  geom_point(pch=21, size=3, color = "black", fill="#4575b4") + 
   geom_text_repel(aes(Axis.1, Axis.2, label = rownames(eixos_cat))) +
  xlab("PCO 1") + ylab("PCO 2") + 
  theme(axis.title.x = element_text(face="bold", size=14),
        axis.text.x = element_text(vjust=0.5, size=12)) + 
  theme(axis.title.y = element_text(face="bold", size=14),
        axis.text.y = element_text(vjust=0.5, size=12)) + 
  geom_hline(yintercept = 0, linetype=2) + 
  geom_vline(xintercept = 0, linetype=2)+ 
  theme(legend.position = "top", legend.title=element_blank()) -> plot_trait_cat
plot_trait_cat

ggsave("trait_cat.pdf", plot_trait_cat, height = 14, width = 14, dpi = 600, units = "cm")

trait_dat %>% 
  dplyr::summarise_all(class) %>% 
  tidyr::gather(variable, class)
##    variable     class
## 1     trend character
## 2   redlist character
## 3     regio   integer
## 4      biog character
## 5     activ character
## 6      diet character
## 7    winter character
## 8     color character
## 9     breed character
## 10     body   integer
## 11     wing character
## 12   period character

São usados variaveis qualitativas do tipo categoricas e ordinais

trait_dat$regio <- as.ordered(trait_dat$regio)
trait_dat$body <- as.ordered(trait_dat$body)
# c\tegóricos
trait_categ <- cbind.data.frame(trend=trait_dat$trend, redlist=trait_dat$redlist, biog=trait_dat$biog, activ=trait_dat$activ,  diet=trait_dat$diet, winter=trait_dat$winter,color=trait_dat$color, breed=trait_dat$breed,wing=trait_dat$wing, period=trait_dat$period)

# Ordinais
trait_ord <- cbind.data.frame(regio=trait_dat$regio, body=trait_dat$body)
rownames(trait_categ) <- rownames(trait_dat)
rownames(trait_ord) <- rownames(trait_dat)
library(FD)
library(ade4)
library(ecodados)
library(gridExtra)
library(ggplot2)
library(ggrepel)
library(tidyverse)
library(picante)


ktab_list <- ktab.list.df(list(trait_categ, trait_ord))
dist_mist <- dist.ktab(ktab_list, type= c("N", "O"))

pcoa_traits_mist <- pcoa(dist_mist, correction="cailliez")
eixos_mist <- as.data.frame(pcoa_traits_mist$vectors[,1:2])  # exportar 2 eixos

eixos_mist %>% 
  ggplot(aes(x=Axis.1, y=Axis.2)) + 
  geom_point(pch=21, size=3, color = "black", fill="#d73027") + 
  geom_text_repel(aes(Axis.1, Axis.2, label = rownames(eixos_mist)))+
  xlab("PCO 1") + ylab("PCO 2") + 
  theme(axis.title.x = element_text(face="bold", size=14),
        axis.text.x = element_text(vjust=0.5, size=12)) + 
  theme(axis.title.y = element_text(face="bold", size=14),
        axis.text.y = element_text(vjust=0.5, size=12)) + 
  geom_hline(yintercept = 0, linetype=2) + 
  geom_vline(xintercept = 0, linetype=2)+ 
  theme(legend.position = "top", legend.title=element_blank()) -> plot_trait_mist
plot_trait_mist

ggsave("trait_mist.pdf", plot_trait_mist, height = 14, width = 14, dpi = 600, units = "cm")
grid.arrange(plot_trait_cat, plot_trait_mist, ncol=2)

##Riqueza fincional (Fric) A partir disso é calculada a riqueza funcional que é o número de espécies funcionais da comunidade presente na área de estudo. Isso é feito através de uma matriz. Essa métrica vai fornecer informações importantes a respeito da comunidade, uma baixa riqueza funcional por exemplo, pode indicar que recursos do ambiente necessarios para a comunidade não estão em uso, reduzindo a produtividade local.

richness <- dbFD(dist_mist, comun_dat)$nbsp
## FRic: Dimensionality reduction was required. The last 17 PCoA axes (out of 19 in total) were removed. 
## FRic: Quality of the reduced-space representation = 0.3243851 
## CWM: When 'x' is a distance matrix, CWM cannot be calculated.
dist_mist
##            sp1       sp2       sp3       sp4       sp5       sp6       sp7
## sp2  0.5000000                                                            
## sp3  0.7107801 0.6808389                                                  
## sp4  0.7771900 0.8538292 0.7179711                                        
## sp5  0.6107116 0.7345988 0.7381353 0.5106682                              
## sp6  0.5041691 0.6487320 0.6527339 0.6522593 0.5177440                    
## sp7  0.5041691 0.5809646 0.7137190 0.7132850 0.5177440 0.4082483          
## sp8  0.9574271 0.9128709 0.8447140 0.8106696 0.7689990 0.8466582 0.8466582
## sp9  0.8322170 0.7743619 0.8705685 0.7862568 0.6712758 0.8618286 0.7590006
## sp10 0.8196798 0.8447140 0.8164966 0.7259317 0.6556685 0.7452327 0.8497285
## sp11 0.7381353 0.7658396 0.6755013 0.7674028 0.7671647 0.5971604 0.5971604
## sp12 0.8322170 0.8264198 0.7689102 0.8859268 0.8370252 0.7019605 0.7019605
## sp13 0.6454972 0.7637626 0.8196798 0.7845499 0.6516846 0.6192712 0.6192712
## sp14 0.9128709 0.7637626 0.7395100 0.8605338 0.9172565 0.7959251 0.8466582
## sp15 0.8684391 0.7100609 0.7423352 0.8468228 0.8274814 0.7637626 0.8164966
## sp16 0.8660254 0.8660254 0.6808389 0.6290397 0.7892837 0.7664984 0.8190563
## sp17 0.2886751 0.5773503 0.7671647 0.7771900 0.6107116 0.5809646 0.5809646
## sp18 0.6652707 0.5160455 0.7689102 0.8859268 0.7307151 0.7019605 0.6398556
## sp19 0.7892837 0.6755013 0.8184398 0.7432689 0.8164966 0.7754948 0.7197631
## sp20 0.6149610 0.6479535 0.5381778 0.7674028 0.7671647 0.5971604 0.7233721
## sp21 0.6755013 0.6755013 0.7658396 0.7432689 0.8164966 0.7197631 0.6593372
## sp22 0.6107116 0.6107116 0.7658396 0.8480067 0.7637626 0.5927834 0.5927834
## sp23 0.6573806 0.5906064 0.6921158 0.7395100 0.8199027 0.7096247 0.7096247
## sp24 0.5292494 0.5948301 0.7155949 0.8234825 0.7375481 0.5252793 0.5252793
## sp25 0.8404178 0.7345988 0.7093497 0.7432689 0.6454972 0.7754948 0.7197631
## sp26 0.8886143 0.7892837 0.8184398 0.7973594 0.7071068 0.8274814 0.7754948
## sp27 0.8347284 0.8289488 0.7716277 0.7712263 0.7920294 0.6652707 0.6652707
## sp28 0.6454972 0.7637626 0.7671647 0.8290703 0.7345988 0.5809646 0.5809646
## sp29 0.7137190 0.6839065 0.7100609 0.7660943 0.5971604 0.7107801 0.5818433
## sp30 0.8347284 0.8289488 0.7155949 0.6543114 0.7920294 0.6652707 0.6652707
## sp31 0.8259233 0.6573806 0.8035489 0.8447140 0.8199027 0.7096247 0.7660943
## sp32 0.9213121 0.8259233 0.9013088 0.7938566 0.9159187 0.8680825 0.8186781
## sp33 0.8414675 0.7842952 0.8794158 0.8705685 0.8355590 0.7276576 0.7276576
## sp34 0.7520331 0.7456127 0.6813161 0.6558429 0.7252023 0.6787075 0.5421967
## sp35 0.8322170 0.8264198 0.7689102 0.8859268 0.8370252 0.7019605 0.7019605
## sp36 0.6944209 0.7995447 0.7942658 0.6558429 0.6652707 0.6142561 0.7375481
##            sp8       sp9      sp10      sp11      sp12      sp13      sp14
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9  0.5160455                                                            
## sp10 0.5448624 0.4177992                                                  
## sp11 0.6867080 0.7182727 0.7127595                                        
## sp12 0.5160455 0.7071068 0.7126637 0.4272966                              
## sp13 0.7071068 0.6652707 0.6495191 0.5887001 0.6652707                    
## sp14 0.7637626 0.8264198 0.7938566 0.7449169 0.5913006 0.8660254          
## sp15 0.6192712 0.6950778 0.6560273 0.8051504 0.6950778 0.8945186 0.5478718
## sp16 0.7637626 0.8753873 0.8447140 0.8184398 0.7185423 1.0000000 0.6454972
## sp17 0.9574271 0.8322170 0.8196798 0.7925762 0.8808623 0.6454972 0.9574271
## sp18 0.7743619 0.5773503 0.6515798 0.6577099 0.7071068 0.6652707 0.7185423
## sp19 0.8213969 0.7241058 0.7988958 0.7395100 0.7795271 0.6516846 0.7689990
## sp20 0.8971628 0.8261854 0.7127595 0.6454972 0.7182727 0.7164039 0.6230847
## sp21 0.8213969 0.7795271 0.8494515 0.6808389 0.7241058 0.5842598 0.7689990
## sp22 0.7127595 0.7241058 0.7449169 0.5448624 0.5980489 0.4179627 0.7689990
## sp23 0.8814629 0.8425832 0.8605338 0.7432689 0.7915890 0.6660657 0.7259317
## sp24 0.7526397 0.7417301 0.7470295 0.5253079 0.6192712 0.3992684 0.8061016
## sp25 0.7127595 0.6640752 0.7449169 0.7395100 0.7241058 0.8706470 0.7127595
## sp26 0.5842598 0.6640752 0.7449169 0.8447140 0.7241058 0.9172565 0.7127595
## sp27 0.6950778 0.8466582 0.8513047 0.5253079 0.5478718 0.7590006 0.6950778
## sp28 0.8164966 0.7805458 0.7671647 0.6793455 0.7805458 0.5773503 0.8660254
## sp29 0.8248465 0.6256088 0.7417301 0.7197631 0.8008660 0.7452327 0.8248465
## sp30 0.7526397 0.7959251 0.8008660 0.5994011 0.7417301 0.7590006 0.7526397
## sp31 0.7259317 0.6781935 0.6381106 0.7432689 0.7370752 0.7812235 0.6002584
## sp32 0.7259317 0.7370752 0.8106696 0.8480067 0.7370752 0.8814629 0.6002584
## sp33 0.6136882 0.6660657 0.6719621 0.7165635 0.6002584 0.7435692 0.6136882
## sp34 0.8312616 0.7689990 0.8751661 0.5078283 0.6516846 0.7856703 0.6640752
## sp35 0.5160455 0.7071068 0.7126637 0.4272966 0.0000000 0.6652707 0.5913006
## sp36 0.7241058 0.8213969 0.7182727 0.7126637 0.7127595 0.7307151 0.7241058
##           sp15      sp16      sp17      sp18      sp19      sp20      sp21
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16 0.6487320                                                            
## sp17 0.9151611 0.9128709                                                  
## sp18 0.6950778 0.9217572 0.7252023                                        
## sp19 0.8763897 0.8404178 0.7345988 0.6640752                              
## sp20 0.8051504 0.7658396 0.6793455 0.6577099 0.6808389                    
## sp21 0.8763897 0.7892837 0.7345988 0.6640752 0.4082483 0.6808389          
## sp22 0.7754948 0.8886143 0.6755013 0.5980489 0.5773503 0.6808389 0.4082483
## sp23 0.8186781 0.7738320 0.7179711 0.6136882 0.5055430 0.6849200 0.2981729
## sp24 0.7743619 0.8777753 0.6028584 0.6192712 0.6063788 0.6652932 0.4483621
## sp25 0.6593372 0.6755013 0.7892837 0.7241058 0.8164966 0.8447140 0.8660254
## sp26 0.5177440 0.6755013 0.8404178 0.7241058 0.8660254 0.9381942 0.9128709
## sp27 0.7185423 0.7214496 0.7832230 0.8466582 0.7859359 0.7805650 0.8372745
## sp28 0.7664984 0.9128709 0.5773503 0.7252023 0.7345988 0.7381353 0.7345988
## sp29 0.7395100 0.7964891 0.6527339 0.6889991 0.6939744 0.7197631 0.8051504
## sp30 0.7743619 0.7770604 0.7832230 0.7959251 0.6715866 0.7252230 0.7310006
## sp31 0.5035545 0.8259233 0.7738320 0.6136882 0.7110371 0.7432689 0.8199027
## sp32 0.6482545 0.6573806 0.8749186 0.7915890 0.5821572 0.7973594 0.7110371
## sp33 0.5194903 0.7842952 0.7904013 0.7259317 0.7224104 0.7725261 0.8297852
## sp34 0.8372745 0.6874627 0.8055353 0.7127595 0.7185423 0.6515798 0.6580043
## sp35 0.6950778 0.7185423 0.8808623 0.7071068 0.7795271 0.7182727 0.7241058
## sp36 0.6063788 0.6874627 0.7520331 0.8213969 0.8753873 0.7689102 0.7743619
##           sp22      sp23      sp24      sp25      sp26      sp27      sp28
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16                                                                      
## sp17                                                                      
## sp18                                                                      
## sp19                                                                      
## sp20                                                                      
## sp21                                                                      
## sp22                                                                      
## sp23 0.5055430                                                            
## sp24 0.1853695 0.5194903                                                  
## sp25 0.8164966 0.8199027 0.8372745                                        
## sp26 0.8660254 0.8692374 0.8856421 0.4082483                              
## sp27 0.7310006 0.8774225 0.7071068 0.6715866 0.6715866                    
## sp28 0.6107116 0.7738320 0.5292494 0.7892837 0.7892837 0.6028584          
## sp29 0.7516208 0.8468228 0.7126637 0.5611897 0.6939744 0.6515798 0.5854299
## sp30 0.7310006 0.7766618 0.7071068 0.7310006 0.7310006 0.5000000 0.5292494
## sp31 0.7110371 0.7637626 0.7210202 0.5821572 0.5821572 0.6607094 0.5906064
## sp32 0.8199027 0.7637626 0.8285752 0.7674028 0.6498003 0.6607094 0.7179711
## sp33 0.7224104 0.8753873 0.7096247 0.7224104 0.5959950 0.5035545 0.5398157
## sp34 0.7185423 0.7224104 0.7197631 0.6580043 0.7743619 0.5927834 0.7520331
## sp35 0.5980489 0.7915890 0.6192712 0.7241058 0.7241058 0.5478718 0.7805458
## sp36 0.6580043 0.7779525 0.6593372 0.7743619 0.7185423 0.6593372 0.7520331
##           sp29      sp30      sp31      sp32      sp33      sp34      sp35
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16                                                                      
## sp17                                                                      
## sp18                                                                      
## sp19                                                                      
## sp20                                                                      
## sp21                                                                      
## sp22                                                                      
## sp23                                                                      
## sp24                                                                      
## sp25                                                                      
## sp26                                                                      
## sp27                                                                      
## sp28                                                                      
## sp29                                                                      
## sp30 0.7126637                                                            
## sp31 0.6834536 0.5943093                                                  
## sp32 0.7419179 0.5943093 0.5773503                                        
## sp33 0.6543114 0.5804313 0.4277495 0.4277495                              
## sp34 0.6652932 0.5177440 0.7779525 0.7224104 0.7674028                    
## sp35 0.8008660 0.7417301 0.7370752 0.7370752 0.6002584 0.6516846          
## sp36 0.7805650 0.7754948 0.7779525 0.8297852 0.7110371 0.7637626 0.7127595
fric <- dbFD(dist_mist, comun_dat)$FRic
## FRic: Dimensionality reduction was required. The last 17 PCoA axes (out of 19 in total) were removed. 
## FRic: Quality of the reduced-space representation = 0.3243851 
## CWM: When 'x' is a distance matrix, CWM cannot be calculated.
dend <- hclust(dist_mist, "average")
tree_dend <-as.phylo(dend)
FD <- pd(comun_dat, tree_dend)$PD

Divergencia Funcional

A divergência funcional vai fornecer informações a repeito da diferença entre as comunidade pelo ponto de vista funcional, por exemplo uma lta divergência funcional pode indicar um alto grau de diferenciação de nicho e, portanto, baixa concorrência de recursos. Assim, comunidades com alta divergência funcional podem ter aumentado a função ecossistêmica como resultado de um melhor uso dos recursos disponiveis.

library(FD)
library(tidyverse)
library(ecodados)
library(vegan)
library(SYNCSA)

dist_mist
##            sp1       sp2       sp3       sp4       sp5       sp6       sp7
## sp2  0.5000000                                                            
## sp3  0.7107801 0.6808389                                                  
## sp4  0.7771900 0.8538292 0.7179711                                        
## sp5  0.6107116 0.7345988 0.7381353 0.5106682                              
## sp6  0.5041691 0.6487320 0.6527339 0.6522593 0.5177440                    
## sp7  0.5041691 0.5809646 0.7137190 0.7132850 0.5177440 0.4082483          
## sp8  0.9574271 0.9128709 0.8447140 0.8106696 0.7689990 0.8466582 0.8466582
## sp9  0.8322170 0.7743619 0.8705685 0.7862568 0.6712758 0.8618286 0.7590006
## sp10 0.8196798 0.8447140 0.8164966 0.7259317 0.6556685 0.7452327 0.8497285
## sp11 0.7381353 0.7658396 0.6755013 0.7674028 0.7671647 0.5971604 0.5971604
## sp12 0.8322170 0.8264198 0.7689102 0.8859268 0.8370252 0.7019605 0.7019605
## sp13 0.6454972 0.7637626 0.8196798 0.7845499 0.6516846 0.6192712 0.6192712
## sp14 0.9128709 0.7637626 0.7395100 0.8605338 0.9172565 0.7959251 0.8466582
## sp15 0.8684391 0.7100609 0.7423352 0.8468228 0.8274814 0.7637626 0.8164966
## sp16 0.8660254 0.8660254 0.6808389 0.6290397 0.7892837 0.7664984 0.8190563
## sp17 0.2886751 0.5773503 0.7671647 0.7771900 0.6107116 0.5809646 0.5809646
## sp18 0.6652707 0.5160455 0.7689102 0.8859268 0.7307151 0.7019605 0.6398556
## sp19 0.7892837 0.6755013 0.8184398 0.7432689 0.8164966 0.7754948 0.7197631
## sp20 0.6149610 0.6479535 0.5381778 0.7674028 0.7671647 0.5971604 0.7233721
## sp21 0.6755013 0.6755013 0.7658396 0.7432689 0.8164966 0.7197631 0.6593372
## sp22 0.6107116 0.6107116 0.7658396 0.8480067 0.7637626 0.5927834 0.5927834
## sp23 0.6573806 0.5906064 0.6921158 0.7395100 0.8199027 0.7096247 0.7096247
## sp24 0.5292494 0.5948301 0.7155949 0.8234825 0.7375481 0.5252793 0.5252793
## sp25 0.8404178 0.7345988 0.7093497 0.7432689 0.6454972 0.7754948 0.7197631
## sp26 0.8886143 0.7892837 0.8184398 0.7973594 0.7071068 0.8274814 0.7754948
## sp27 0.8347284 0.8289488 0.7716277 0.7712263 0.7920294 0.6652707 0.6652707
## sp28 0.6454972 0.7637626 0.7671647 0.8290703 0.7345988 0.5809646 0.5809646
## sp29 0.7137190 0.6839065 0.7100609 0.7660943 0.5971604 0.7107801 0.5818433
## sp30 0.8347284 0.8289488 0.7155949 0.6543114 0.7920294 0.6652707 0.6652707
## sp31 0.8259233 0.6573806 0.8035489 0.8447140 0.8199027 0.7096247 0.7660943
## sp32 0.9213121 0.8259233 0.9013088 0.7938566 0.9159187 0.8680825 0.8186781
## sp33 0.8414675 0.7842952 0.8794158 0.8705685 0.8355590 0.7276576 0.7276576
## sp34 0.7520331 0.7456127 0.6813161 0.6558429 0.7252023 0.6787075 0.5421967
## sp35 0.8322170 0.8264198 0.7689102 0.8859268 0.8370252 0.7019605 0.7019605
## sp36 0.6944209 0.7995447 0.7942658 0.6558429 0.6652707 0.6142561 0.7375481
##            sp8       sp9      sp10      sp11      sp12      sp13      sp14
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9  0.5160455                                                            
## sp10 0.5448624 0.4177992                                                  
## sp11 0.6867080 0.7182727 0.7127595                                        
## sp12 0.5160455 0.7071068 0.7126637 0.4272966                              
## sp13 0.7071068 0.6652707 0.6495191 0.5887001 0.6652707                    
## sp14 0.7637626 0.8264198 0.7938566 0.7449169 0.5913006 0.8660254          
## sp15 0.6192712 0.6950778 0.6560273 0.8051504 0.6950778 0.8945186 0.5478718
## sp16 0.7637626 0.8753873 0.8447140 0.8184398 0.7185423 1.0000000 0.6454972
## sp17 0.9574271 0.8322170 0.8196798 0.7925762 0.8808623 0.6454972 0.9574271
## sp18 0.7743619 0.5773503 0.6515798 0.6577099 0.7071068 0.6652707 0.7185423
## sp19 0.8213969 0.7241058 0.7988958 0.7395100 0.7795271 0.6516846 0.7689990
## sp20 0.8971628 0.8261854 0.7127595 0.6454972 0.7182727 0.7164039 0.6230847
## sp21 0.8213969 0.7795271 0.8494515 0.6808389 0.7241058 0.5842598 0.7689990
## sp22 0.7127595 0.7241058 0.7449169 0.5448624 0.5980489 0.4179627 0.7689990
## sp23 0.8814629 0.8425832 0.8605338 0.7432689 0.7915890 0.6660657 0.7259317
## sp24 0.7526397 0.7417301 0.7470295 0.5253079 0.6192712 0.3992684 0.8061016
## sp25 0.7127595 0.6640752 0.7449169 0.7395100 0.7241058 0.8706470 0.7127595
## sp26 0.5842598 0.6640752 0.7449169 0.8447140 0.7241058 0.9172565 0.7127595
## sp27 0.6950778 0.8466582 0.8513047 0.5253079 0.5478718 0.7590006 0.6950778
## sp28 0.8164966 0.7805458 0.7671647 0.6793455 0.7805458 0.5773503 0.8660254
## sp29 0.8248465 0.6256088 0.7417301 0.7197631 0.8008660 0.7452327 0.8248465
## sp30 0.7526397 0.7959251 0.8008660 0.5994011 0.7417301 0.7590006 0.7526397
## sp31 0.7259317 0.6781935 0.6381106 0.7432689 0.7370752 0.7812235 0.6002584
## sp32 0.7259317 0.7370752 0.8106696 0.8480067 0.7370752 0.8814629 0.6002584
## sp33 0.6136882 0.6660657 0.6719621 0.7165635 0.6002584 0.7435692 0.6136882
## sp34 0.8312616 0.7689990 0.8751661 0.5078283 0.6516846 0.7856703 0.6640752
## sp35 0.5160455 0.7071068 0.7126637 0.4272966 0.0000000 0.6652707 0.5913006
## sp36 0.7241058 0.8213969 0.7182727 0.7126637 0.7127595 0.7307151 0.7241058
##           sp15      sp16      sp17      sp18      sp19      sp20      sp21
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16 0.6487320                                                            
## sp17 0.9151611 0.9128709                                                  
## sp18 0.6950778 0.9217572 0.7252023                                        
## sp19 0.8763897 0.8404178 0.7345988 0.6640752                              
## sp20 0.8051504 0.7658396 0.6793455 0.6577099 0.6808389                    
## sp21 0.8763897 0.7892837 0.7345988 0.6640752 0.4082483 0.6808389          
## sp22 0.7754948 0.8886143 0.6755013 0.5980489 0.5773503 0.6808389 0.4082483
## sp23 0.8186781 0.7738320 0.7179711 0.6136882 0.5055430 0.6849200 0.2981729
## sp24 0.7743619 0.8777753 0.6028584 0.6192712 0.6063788 0.6652932 0.4483621
## sp25 0.6593372 0.6755013 0.7892837 0.7241058 0.8164966 0.8447140 0.8660254
## sp26 0.5177440 0.6755013 0.8404178 0.7241058 0.8660254 0.9381942 0.9128709
## sp27 0.7185423 0.7214496 0.7832230 0.8466582 0.7859359 0.7805650 0.8372745
## sp28 0.7664984 0.9128709 0.5773503 0.7252023 0.7345988 0.7381353 0.7345988
## sp29 0.7395100 0.7964891 0.6527339 0.6889991 0.6939744 0.7197631 0.8051504
## sp30 0.7743619 0.7770604 0.7832230 0.7959251 0.6715866 0.7252230 0.7310006
## sp31 0.5035545 0.8259233 0.7738320 0.6136882 0.7110371 0.7432689 0.8199027
## sp32 0.6482545 0.6573806 0.8749186 0.7915890 0.5821572 0.7973594 0.7110371
## sp33 0.5194903 0.7842952 0.7904013 0.7259317 0.7224104 0.7725261 0.8297852
## sp34 0.8372745 0.6874627 0.8055353 0.7127595 0.7185423 0.6515798 0.6580043
## sp35 0.6950778 0.7185423 0.8808623 0.7071068 0.7795271 0.7182727 0.7241058
## sp36 0.6063788 0.6874627 0.7520331 0.8213969 0.8753873 0.7689102 0.7743619
##           sp22      sp23      sp24      sp25      sp26      sp27      sp28
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16                                                                      
## sp17                                                                      
## sp18                                                                      
## sp19                                                                      
## sp20                                                                      
## sp21                                                                      
## sp22                                                                      
## sp23 0.5055430                                                            
## sp24 0.1853695 0.5194903                                                  
## sp25 0.8164966 0.8199027 0.8372745                                        
## sp26 0.8660254 0.8692374 0.8856421 0.4082483                              
## sp27 0.7310006 0.8774225 0.7071068 0.6715866 0.6715866                    
## sp28 0.6107116 0.7738320 0.5292494 0.7892837 0.7892837 0.6028584          
## sp29 0.7516208 0.8468228 0.7126637 0.5611897 0.6939744 0.6515798 0.5854299
## sp30 0.7310006 0.7766618 0.7071068 0.7310006 0.7310006 0.5000000 0.5292494
## sp31 0.7110371 0.7637626 0.7210202 0.5821572 0.5821572 0.6607094 0.5906064
## sp32 0.8199027 0.7637626 0.8285752 0.7674028 0.6498003 0.6607094 0.7179711
## sp33 0.7224104 0.8753873 0.7096247 0.7224104 0.5959950 0.5035545 0.5398157
## sp34 0.7185423 0.7224104 0.7197631 0.6580043 0.7743619 0.5927834 0.7520331
## sp35 0.5980489 0.7915890 0.6192712 0.7241058 0.7241058 0.5478718 0.7805458
## sp36 0.6580043 0.7779525 0.6593372 0.7743619 0.7185423 0.6593372 0.7520331
##           sp29      sp30      sp31      sp32      sp33      sp34      sp35
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16                                                                      
## sp17                                                                      
## sp18                                                                      
## sp19                                                                      
## sp20                                                                      
## sp21                                                                      
## sp22                                                                      
## sp23                                                                      
## sp24                                                                      
## sp25                                                                      
## sp26                                                                      
## sp27                                                                      
## sp28                                                                      
## sp29                                                                      
## sp30 0.7126637                                                            
## sp31 0.6834536 0.5943093                                                  
## sp32 0.7419179 0.5943093 0.5773503                                        
## sp33 0.6543114 0.5804313 0.4277495 0.4277495                              
## sp34 0.6652932 0.5177440 0.7779525 0.7224104 0.7674028                    
## sp35 0.8008660 0.7417301 0.7370752 0.7370752 0.6002584 0.6516846          
## sp36 0.7805650 0.7754948 0.7779525 0.8297852 0.7110371 0.7637626 0.7127595
fdiv <- dbFD(dist_mist, comun_dat)$FDiv
## FRic: Dimensionality reduction was required. The last 17 PCoA axes (out of 19 in total) were removed. 
## FRic: Quality of the reduced-space representation = 0.3243851 
## CWM: When 'x' is a distance matrix, CWM cannot be calculated.
fdis <- dbFD(dist_mist, comun_dat)$FDis
## FRic: Dimensionality reduction was required. The last 17 PCoA axes (out of 19 in total) were removed. 
## FRic: Quality of the reduced-space representation = 0.3243851 
## CWM: When 'x' is a distance matrix, CWM cannot be calculated.

Regularidade Funcional

Regularidade ou uniformidade funcional vai verificar se há irregularidades ou discrepâncias no valores dos atributos distribuidos no espaço funcional. Um exemplo dessa métrica, a distribuição da biomassa de uma comunidade é distribuida no espaço do nicho para que seja ultilizada por toda comunidade de forma efetiva, se a distribuição dessa biomassa não é uniforme em alguma parte do nicho isso pode nos dizer que a área mesmo ocupada possui partes subutilizadas, isso tenderá a diminuir a produtividade e a confiabilidade, e aumentar a oportunidade para os invasores.

library(FD)
library(tidyverse)
library(ecodados)
library(vegan)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
dist_mist
##            sp1       sp2       sp3       sp4       sp5       sp6       sp7
## sp2  0.5000000                                                            
## sp3  0.7107801 0.6808389                                                  
## sp4  0.7771900 0.8538292 0.7179711                                        
## sp5  0.6107116 0.7345988 0.7381353 0.5106682                              
## sp6  0.5041691 0.6487320 0.6527339 0.6522593 0.5177440                    
## sp7  0.5041691 0.5809646 0.7137190 0.7132850 0.5177440 0.4082483          
## sp8  0.9574271 0.9128709 0.8447140 0.8106696 0.7689990 0.8466582 0.8466582
## sp9  0.8322170 0.7743619 0.8705685 0.7862568 0.6712758 0.8618286 0.7590006
## sp10 0.8196798 0.8447140 0.8164966 0.7259317 0.6556685 0.7452327 0.8497285
## sp11 0.7381353 0.7658396 0.6755013 0.7674028 0.7671647 0.5971604 0.5971604
## sp12 0.8322170 0.8264198 0.7689102 0.8859268 0.8370252 0.7019605 0.7019605
## sp13 0.6454972 0.7637626 0.8196798 0.7845499 0.6516846 0.6192712 0.6192712
## sp14 0.9128709 0.7637626 0.7395100 0.8605338 0.9172565 0.7959251 0.8466582
## sp15 0.8684391 0.7100609 0.7423352 0.8468228 0.8274814 0.7637626 0.8164966
## sp16 0.8660254 0.8660254 0.6808389 0.6290397 0.7892837 0.7664984 0.8190563
## sp17 0.2886751 0.5773503 0.7671647 0.7771900 0.6107116 0.5809646 0.5809646
## sp18 0.6652707 0.5160455 0.7689102 0.8859268 0.7307151 0.7019605 0.6398556
## sp19 0.7892837 0.6755013 0.8184398 0.7432689 0.8164966 0.7754948 0.7197631
## sp20 0.6149610 0.6479535 0.5381778 0.7674028 0.7671647 0.5971604 0.7233721
## sp21 0.6755013 0.6755013 0.7658396 0.7432689 0.8164966 0.7197631 0.6593372
## sp22 0.6107116 0.6107116 0.7658396 0.8480067 0.7637626 0.5927834 0.5927834
## sp23 0.6573806 0.5906064 0.6921158 0.7395100 0.8199027 0.7096247 0.7096247
## sp24 0.5292494 0.5948301 0.7155949 0.8234825 0.7375481 0.5252793 0.5252793
## sp25 0.8404178 0.7345988 0.7093497 0.7432689 0.6454972 0.7754948 0.7197631
## sp26 0.8886143 0.7892837 0.8184398 0.7973594 0.7071068 0.8274814 0.7754948
## sp27 0.8347284 0.8289488 0.7716277 0.7712263 0.7920294 0.6652707 0.6652707
## sp28 0.6454972 0.7637626 0.7671647 0.8290703 0.7345988 0.5809646 0.5809646
## sp29 0.7137190 0.6839065 0.7100609 0.7660943 0.5971604 0.7107801 0.5818433
## sp30 0.8347284 0.8289488 0.7155949 0.6543114 0.7920294 0.6652707 0.6652707
## sp31 0.8259233 0.6573806 0.8035489 0.8447140 0.8199027 0.7096247 0.7660943
## sp32 0.9213121 0.8259233 0.9013088 0.7938566 0.9159187 0.8680825 0.8186781
## sp33 0.8414675 0.7842952 0.8794158 0.8705685 0.8355590 0.7276576 0.7276576
## sp34 0.7520331 0.7456127 0.6813161 0.6558429 0.7252023 0.6787075 0.5421967
## sp35 0.8322170 0.8264198 0.7689102 0.8859268 0.8370252 0.7019605 0.7019605
## sp36 0.6944209 0.7995447 0.7942658 0.6558429 0.6652707 0.6142561 0.7375481
##            sp8       sp9      sp10      sp11      sp12      sp13      sp14
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9  0.5160455                                                            
## sp10 0.5448624 0.4177992                                                  
## sp11 0.6867080 0.7182727 0.7127595                                        
## sp12 0.5160455 0.7071068 0.7126637 0.4272966                              
## sp13 0.7071068 0.6652707 0.6495191 0.5887001 0.6652707                    
## sp14 0.7637626 0.8264198 0.7938566 0.7449169 0.5913006 0.8660254          
## sp15 0.6192712 0.6950778 0.6560273 0.8051504 0.6950778 0.8945186 0.5478718
## sp16 0.7637626 0.8753873 0.8447140 0.8184398 0.7185423 1.0000000 0.6454972
## sp17 0.9574271 0.8322170 0.8196798 0.7925762 0.8808623 0.6454972 0.9574271
## sp18 0.7743619 0.5773503 0.6515798 0.6577099 0.7071068 0.6652707 0.7185423
## sp19 0.8213969 0.7241058 0.7988958 0.7395100 0.7795271 0.6516846 0.7689990
## sp20 0.8971628 0.8261854 0.7127595 0.6454972 0.7182727 0.7164039 0.6230847
## sp21 0.8213969 0.7795271 0.8494515 0.6808389 0.7241058 0.5842598 0.7689990
## sp22 0.7127595 0.7241058 0.7449169 0.5448624 0.5980489 0.4179627 0.7689990
## sp23 0.8814629 0.8425832 0.8605338 0.7432689 0.7915890 0.6660657 0.7259317
## sp24 0.7526397 0.7417301 0.7470295 0.5253079 0.6192712 0.3992684 0.8061016
## sp25 0.7127595 0.6640752 0.7449169 0.7395100 0.7241058 0.8706470 0.7127595
## sp26 0.5842598 0.6640752 0.7449169 0.8447140 0.7241058 0.9172565 0.7127595
## sp27 0.6950778 0.8466582 0.8513047 0.5253079 0.5478718 0.7590006 0.6950778
## sp28 0.8164966 0.7805458 0.7671647 0.6793455 0.7805458 0.5773503 0.8660254
## sp29 0.8248465 0.6256088 0.7417301 0.7197631 0.8008660 0.7452327 0.8248465
## sp30 0.7526397 0.7959251 0.8008660 0.5994011 0.7417301 0.7590006 0.7526397
## sp31 0.7259317 0.6781935 0.6381106 0.7432689 0.7370752 0.7812235 0.6002584
## sp32 0.7259317 0.7370752 0.8106696 0.8480067 0.7370752 0.8814629 0.6002584
## sp33 0.6136882 0.6660657 0.6719621 0.7165635 0.6002584 0.7435692 0.6136882
## sp34 0.8312616 0.7689990 0.8751661 0.5078283 0.6516846 0.7856703 0.6640752
## sp35 0.5160455 0.7071068 0.7126637 0.4272966 0.0000000 0.6652707 0.5913006
## sp36 0.7241058 0.8213969 0.7182727 0.7126637 0.7127595 0.7307151 0.7241058
##           sp15      sp16      sp17      sp18      sp19      sp20      sp21
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16 0.6487320                                                            
## sp17 0.9151611 0.9128709                                                  
## sp18 0.6950778 0.9217572 0.7252023                                        
## sp19 0.8763897 0.8404178 0.7345988 0.6640752                              
## sp20 0.8051504 0.7658396 0.6793455 0.6577099 0.6808389                    
## sp21 0.8763897 0.7892837 0.7345988 0.6640752 0.4082483 0.6808389          
## sp22 0.7754948 0.8886143 0.6755013 0.5980489 0.5773503 0.6808389 0.4082483
## sp23 0.8186781 0.7738320 0.7179711 0.6136882 0.5055430 0.6849200 0.2981729
## sp24 0.7743619 0.8777753 0.6028584 0.6192712 0.6063788 0.6652932 0.4483621
## sp25 0.6593372 0.6755013 0.7892837 0.7241058 0.8164966 0.8447140 0.8660254
## sp26 0.5177440 0.6755013 0.8404178 0.7241058 0.8660254 0.9381942 0.9128709
## sp27 0.7185423 0.7214496 0.7832230 0.8466582 0.7859359 0.7805650 0.8372745
## sp28 0.7664984 0.9128709 0.5773503 0.7252023 0.7345988 0.7381353 0.7345988
## sp29 0.7395100 0.7964891 0.6527339 0.6889991 0.6939744 0.7197631 0.8051504
## sp30 0.7743619 0.7770604 0.7832230 0.7959251 0.6715866 0.7252230 0.7310006
## sp31 0.5035545 0.8259233 0.7738320 0.6136882 0.7110371 0.7432689 0.8199027
## sp32 0.6482545 0.6573806 0.8749186 0.7915890 0.5821572 0.7973594 0.7110371
## sp33 0.5194903 0.7842952 0.7904013 0.7259317 0.7224104 0.7725261 0.8297852
## sp34 0.8372745 0.6874627 0.8055353 0.7127595 0.7185423 0.6515798 0.6580043
## sp35 0.6950778 0.7185423 0.8808623 0.7071068 0.7795271 0.7182727 0.7241058
## sp36 0.6063788 0.6874627 0.7520331 0.8213969 0.8753873 0.7689102 0.7743619
##           sp22      sp23      sp24      sp25      sp26      sp27      sp28
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16                                                                      
## sp17                                                                      
## sp18                                                                      
## sp19                                                                      
## sp20                                                                      
## sp21                                                                      
## sp22                                                                      
## sp23 0.5055430                                                            
## sp24 0.1853695 0.5194903                                                  
## sp25 0.8164966 0.8199027 0.8372745                                        
## sp26 0.8660254 0.8692374 0.8856421 0.4082483                              
## sp27 0.7310006 0.8774225 0.7071068 0.6715866 0.6715866                    
## sp28 0.6107116 0.7738320 0.5292494 0.7892837 0.7892837 0.6028584          
## sp29 0.7516208 0.8468228 0.7126637 0.5611897 0.6939744 0.6515798 0.5854299
## sp30 0.7310006 0.7766618 0.7071068 0.7310006 0.7310006 0.5000000 0.5292494
## sp31 0.7110371 0.7637626 0.7210202 0.5821572 0.5821572 0.6607094 0.5906064
## sp32 0.8199027 0.7637626 0.8285752 0.7674028 0.6498003 0.6607094 0.7179711
## sp33 0.7224104 0.8753873 0.7096247 0.7224104 0.5959950 0.5035545 0.5398157
## sp34 0.7185423 0.7224104 0.7197631 0.6580043 0.7743619 0.5927834 0.7520331
## sp35 0.5980489 0.7915890 0.6192712 0.7241058 0.7241058 0.5478718 0.7805458
## sp36 0.6580043 0.7779525 0.6593372 0.7743619 0.7185423 0.6593372 0.7520331
##           sp29      sp30      sp31      sp32      sp33      sp34      sp35
## sp2                                                                       
## sp3                                                                       
## sp4                                                                       
## sp5                                                                       
## sp6                                                                       
## sp7                                                                       
## sp8                                                                       
## sp9                                                                       
## sp10                                                                      
## sp11                                                                      
## sp12                                                                      
## sp13                                                                      
## sp14                                                                      
## sp15                                                                      
## sp16                                                                      
## sp17                                                                      
## sp18                                                                      
## sp19                                                                      
## sp20                                                                      
## sp21                                                                      
## sp22                                                                      
## sp23                                                                      
## sp24                                                                      
## sp25                                                                      
## sp26                                                                      
## sp27                                                                      
## sp28                                                                      
## sp29                                                                      
## sp30 0.7126637                                                            
## sp31 0.6834536 0.5943093                                                  
## sp32 0.7419179 0.5943093 0.5773503                                        
## sp33 0.6543114 0.5804313 0.4277495 0.4277495                              
## sp34 0.6652932 0.5177440 0.7779525 0.7224104 0.7674028                    
## sp35 0.8008660 0.7417301 0.7370752 0.7370752 0.6002584 0.6516846          
## sp36 0.7805650 0.7754948 0.7779525 0.8297852 0.7110371 0.7637626 0.7127595
feve <- dbFD(dist_mist, comun_dat)$FEve
## FRic: Dimensionality reduction was required. The last 17 PCoA axes (out of 19 in total) were removed. 
## FRic: Quality of the reduced-space representation = 0.3243851 
## CWM: When 'x' is a distance matrix, CWM cannot be calculated.
locais <- rownames(comun_dat)

metricas <- data.frame(richness=richness,
                       FD_gp = FD,
                       fric = fric,
                       fdiv = fdiv,
                       fdis = fdis,
                       feve = feve)
ggpairs(metricas)

Métricas de diversidade funcional (beta)

library(FD)
library(tidyverse)
library(ecodados)
library(vegan)
library(GGally)
library(betapart)
library(vegan)

comun_fren_pa <- as.matrix(decostand(comun_fren_dat, "pa"))
trait <- as.matrix(trait_fren_dat)
 
rowSums(comun_fren_pa)>ncol(trait)
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   17 
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
##   18   19   20   21   22   23   24   25   26   27   28   29   31   32   33   34 
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
##   41   42   43   44   45   46   47   48   49   50   51   53   54   55 
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
colnames(comun_fren_pa)==rownames(trait)
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE
cwm_fren <- functcomp(trait_pad, as.matrix(comun_fren_dat))
cwm_fren
##             LA         SLA         LDMC         LN15         LCC
## 1  -0.24117001 -0.34855154  0.197452005  0.187400303 -0.53673676
## 2  -0.39773712  0.23266219 -0.090932698 -0.285977720  0.16431901
## 3  -0.18571342  0.20107562 -0.398772647 -0.125064251 -0.43046175
## 4  -0.22840640  0.16041005  0.804963068 -0.370425340  0.71938526
## 5  -0.16647900  0.34869559  0.022322127 -0.204193092  0.20513913
## 6  -0.32588213  0.36645830  0.049968287 -0.335257153  0.47130894
## 7  -0.43197058 -0.25619948  0.882004760  0.096681649  0.42065181
## 8  -0.33857863  1.12929965  0.278478893 -0.339493573  0.35571124
## 9  -0.40637654  0.66868021  0.377931295 -0.759687717  0.67746099
## 10 -0.33465801  0.26219601  0.683907823 -0.531993528  0.48456065
## 11 -0.35362891  0.44031044 -0.098078566 -0.447057493  0.25490829
## 12 -0.17542712  0.46363786 -0.252119368 -0.375615215  0.03807885
## 13 -0.23670889  0.64165706 -0.243427434 -0.510792769  0.16037083
## 14 -0.17552077  0.38780017 -0.221048163 -0.169623873 -0.11858724
## 15 -0.13274039  0.36304974 -0.049173336 -0.254725433 -0.03772986
## 17  0.01771351  0.87327677 -0.145441057 -0.489096566  0.08335821
## 18  1.03239586  0.50046791 -0.426467881 -0.416310755  0.02468425
## 19  0.37208764  1.45649761 -0.804115966  0.388010050 -0.20704973
## 20  1.13432791  0.75003603 -0.294438976 -0.499286730 -0.06243781
## 21  1.35442421 -0.70515495  2.082205988 -1.038022002  0.81956154
## 22 -0.36252857 -0.11915470  0.470138892 -0.349437843  0.55666135
## 23 -0.29349787  0.19703824  0.679820129 -0.474449656  0.71142400
## 24 -0.33836216  0.08304760  0.099230530 -0.121483271  0.35394645
## 25  0.31915111 -0.25335758  1.057707296 -0.542238715  0.63662030
## 26 -0.24534578 -0.21751810  0.695937334 -0.007139066  0.47627258
## 27 -0.20960264 -0.58180437  0.394392498 -0.518763303  0.37889078
## 28 -0.26982346 -0.42908491  0.450840875 -0.202161091  0.02367337
## 29 -0.32058272 -0.29318472  0.453475403 -0.212532176  0.10144194
## 31 -0.38641680 -0.38582263  0.554819836  0.173638980  0.67867808
## 32 -0.31712244 -0.11381172  0.791643497  0.096268499  0.32899087
## 33 -0.32213376 -0.48103699  1.038751044  0.205328512  0.30745238
## 34 -0.33013501 -0.65581527  1.293037498  0.231480875  0.26741920
## 41 -0.21326809 -0.50951184  0.308211438  0.621624073 -0.02416227
## 42 -0.26935232  0.21916126  0.572210470 -0.361020644  0.59665773
## 43 -0.22062318  0.11645607  0.340636401  0.151210561  0.27108509
## 44 -0.26028393 -0.26173176  0.172017848  0.244822665  0.23292430
## 45 -0.23379351 -0.25943724  0.278658873  0.250480329  0.21130657
## 46 -0.33192013  0.74464867  0.130344698 -0.929207679  0.45776144
## 47  0.34630198  0.63422133 -0.042007884 -0.730381834  0.17446721
## 48  0.39131426  1.01748971 -0.358288180  0.112660259 -0.12592045
## 49  0.42699578  0.72427942  0.001705993 -0.893869698  0.29221358
## 50 -0.13939830  0.90998495 -0.158000274 -0.706916062  0.41680064
## 51 -0.27746336 -0.02797998  0.838975452 -0.400596491  0.68387800
## 53  0.42752854 -0.40185894  0.806015665 -0.411297259  0.40868170
## 54  0.03358955 -0.54014447  0.465576291 -0.403175303  0.33532396
## 55  0.40337693 -0.42511472  1.072441309 -0.737290886  0.79404728
comun_fren_dat
##    sp1 sp2 sp3 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14 sp15 sp17 sp18 sp19
## 1    0  74   0   5   5   0   0   0    0   47    3    2    0    0   14    0    0
## 2    0  10   0   6   0   0   0   0    2    4    2   24    0    0   47    0    0
## 3    0   1   0   0   0   0   0   0    0    0    0    0    1    0   24    0    0
## 4    0   3   0   0   0   0   0   0    0    0    0    2    0    0    3    0    0
## 5    0   0   0  15   0   0   0   0    0   27    0    2    0    0    0    0    0
## 6   23   0  22   2   0   0   7   0    4    0    0    0    0    0    0    0    0
## 7    2   0   0   3   0   0   0   0    0    0    0    2    0    2    0    0    0
## 8    7   0   0   7   0   0  10   0   43    0    0    0    0    2    0    0    0
## 9    0   0   5   8   0   0   8   0    1    0    0    0    0    0    0    0    0
## 10   1   0   0   4   0   0  16   0    0    0    0    0    0    1    0    0    5
## 11   0   0   0   2   0   0   0   0    0    0    1    0    0    0   21    0    0
## 12   0   5   0   1   0   0   0   0    0    0    0    0    0    0   35    0    0
## 13   0   7   0   3   0   0   0   0    0    0    0    0    0    0   29    0    0
## 14   0   1   0   0   0   0   0   0    0    0    0    0    0    0    4    0    0
## 15   0   8   0   4   0   0   0   0    0    0    0    0    0    0    0    0    0
## 17   0   0   0  34   0   0  29   0    8    0    0    0    6    0    0    3    0
## 18   0   0   0   3   0   0   0  59    0    0    0    9    9    0    0    0   30
## 19   0   0   0  21   3   0 128   0    1    0    0    3    1    0    0    0    0
## 20   0   0   0   8   0   0   0  38    6    0    0    7    1    0    0    1    0
## 21   0   0   0   1   1   0   0   0    0    0    0   17    0    0    0  138    0
## 22   0   0   0   0   1   0   0   0    0    0    4   17    0    0    6    0   14
## 23   0   0   0   0   4   0   0   0    0    0    0   12    0    0    1    0    0
## 24   0   0   0   1   1   0   0   0    3    0    2    1    0    0   50    0    5
## 25   0   0   0   0   4   0   0   0    0    0    0    8    0    0   22   36    0
## 26   0   0   0   0   0   0   0   0    0   47   25    0    0    0    6    0    0
## 27   0  11   0   1   0  29   0   0    0    0  221    0    0    0    9    0    0
## 28   0  47   0   1  24   0   0   0    0   47   78    0    0    0   28    0    0
## 29   0  18   0   1   0   0   0   0    0    0   66    0    0    0   23    0    0
## 31  15   0 134  11   0   0   0   0    0    0    0    0    0    0    0    0    0
## 32   0   0   1  82   0   0   5   0    0    0    0    0    0   46    0    0    0
## 33   0   0   0  53   0   0   1   0    0    0    0    0    0   57    0    0    7
## 34   0   0   0  15   0   0   2   0    3    0    0    0    0   26    0    0    0
## 41   0   0   0   8   3   0   0   0    0  171   15    1    0    0    0    0    0
## 42   0   0   0  19   0   0   0   0    2   32    0    0    0    0    0    0    0
## 43   0   0   2   3   1   0   0   0   12   62    2    1    4    0    0    0    0
## 44   0   0  11   4  12   0   0   0    2   66   12   31    0    0    0    0   19
## 45   0   0   0  10   2   0   0   0    0   84    6    0    3    0    0    0    0
## 46   0   0   0   4  20   0  16   0   10    0    0    1    3    0    0    0    0
## 47   0   0   0  12  13   0   0  45   14    0    0    0   11    0    0    0    0
## 48   0   0   0   7   0   0 133   0    1    0    0   13    3    0    0   18    0
## 49   0   0   0   1   5   0   0  50    0    0    0    1    0    0    0    0    0
## 50   0   0   0  10  22   0  75   0    4    0    0    0   45    0    0    0    0
## 51   0   0   0   1   2   0   0   0    0    3    0   44    0    0    0    0    0
## 53   0   0   0   0  13   0   0   1    0    0    0  109    0    0    0   66    0
## 54   0   0   1   0  12   0   0   0    0    0  113   78    0    0   41   45    0
## 55   0   0  16   0  55   0   0   0    0    0    0   11    0    0   23   94   36
##    sp20 sp21 sp22 sp23 sp24 sp25 sp27 sp28 sp29 sp30 sp31 sp32 sp33 sp34 sp35
## 1     1    0    0    0   21    5    0    0    1    4    0  113    0    0    4
## 2     0    0    0    0    5   21    0    0    0   63    0   29    0    0    0
## 3     0    9    1    0   64   12    0    1   30    6    0   21    0    0    0
## 4     1    5    0    0    8    1    0    0    0    0    0  298    0    0    0
## 5     6   14    1    0   42    6    0    5    0   15    0   21    0    0    1
## 6     0    0   14   13    0    0    0    0    0   42    0    0    2    4    0
## 7     0    0    1    2    0    0   41    0    0   71    0    0   80   19    0
## 8     0    0    3    0    0    0    0    0    0   59    0    0   13   12    0
## 9     0    0    1    2    0    0   14    0    0  139    0    0    9    3    0
## 10    0    0    0   17    0    0    0    0    0  135    0    0   75   16    0
## 11   12    7    3    0   16   10    0    9    0   48    1    5    0    0    0
## 12    6    5   11    0  103    0    0    0    0   27    0   17    0    0    0
## 13    1   22   14    0   70    0    0    0    0   63    0    6    0    0    0
## 14   48    5    2    0   63    1    0   12    0    3    0    7    0    0    0
## 15    9   11    1    0   57    0    0   12    0    0    1   31    0    0    0
## 17    0    0    0   68    0    0    0    0    0   28    0    0    0    0    0
## 18    0    0    0   52    0    0    0    0    0   31    5    0    0    0    0
## 19    0    0    0    6    0    1    0    0    0   41    0    0    0    0    0
## 20    0    0    0   35    0    1    0    0    0   24    1    0    0    0    0
## 21    0    1    6    0    0    0    0    0    0    1    0   80    0    0    2
## 22    0    0    7    1    0    1    0    0    0    7    0   46    0    2   19
## 23    0    0    2    0    0    0    0    0    0   20    2  112    0    0    0
## 24    0    0    2    2    0    1    0    0    0    8    0   73    0    0    0
## 25    0    0    2    1    0    0    0    0    0    2    0   97    0    1    1
## 26    0    0    0    0    0    2    0    3    0    2    0  142    0    0    0
## 27    0    0    0    0    0    0    0    0    0    0    0   13    0    0    1
## 28    0    1    2    0   34    1    0    1    0    0    0  124    0    9   38
## 29    2    1    2    0    3    0    0    0   12    0    0  110    0   20    0
## 31    0    0    1    0    0    0    0    0    0    8    0    0   67   65    0
## 32    0    0    0    0    0    0    0    0    0    2    0    0  123   10    0
## 33    0    0    0    0    0    0    8    0    0    5    0    0   68  213    0
## 34    0    0    0    0    0    0    0    0    0    1    0    0  106  140    0
## 41    2    7    1    0    4   24    0    8    0   28    0   16    0    3    0
## 42   12    3    0    0    3   25    0    0    0   46    0  194    0    0    0
## 43   26   16    0    0    0    7    0    0    0    1    3  107    0    0    0
## 44    3   12    0   11    0    3    0    1    0    2    1   34    0   12    0
## 45    1    2    1    0    0   64    0    0    0    2    0   57    0    1    0
## 46    0    0    0   17    0    7    0    0    0  162   24    0    0    1    0
## 47    0    0    2  113    0   18    0    0    0  100    3    0    0    0    0
## 48    0    0    2   59    0    1    0    0    0   61    0    0    0    0    0
## 49    0    0    0   33    0    2    0    0    0  162   20    0    0    0    0
## 50    0    0    0   21    0    3    0    0    0  182   11    0    0    0    0
## 51    0    0    0    3    0    2    0    0    0    1    0  315    0    0   49
## 53    0    1    0    0    0    0    0   10    0    6    3   36    0    0    0
## 54    0    0    0    0    0    1    0    1    0    0    0    1    0    0    0
## 55    0    0    2    0    0    0    0    0    0    0    0  165    0    0    0
ambie_fren_dat
##     Grazing Aridity Exclosure Bare.ground.2009 Altitude
## 1    Grazed   5.003         0             77.6      928
## 2    Grazed   5.003         0             84.9      976
## 3    Grazed   5.109         0             85.7      936
## 4    Grazed   5.109         0             59.2      937
## 5    Grazed   5.003         0             85.0      937
## 6    Grazed   2.625         0             78.8     1628
## 7    Grazed   2.625         0             75.2     1599
## 8    Grazed   2.985         0             73.7     1611
## 9    Grazed   2.625         0             71.8     1598
## 10   Grazed   2.985         0             72.5     1593
## 11   Grazed   5.109         0             81.5      917
## 12   Grazed   5.109         0             81.3      929
## 13   Grazed   5.109         0             75.2      941
## 14   Grazed   5.109         0             84.9      945
## 15   Grazed   5.109         0             92.1      927
## 17   Grazed   4.254         0             75.3     1286
## 18   Grazed   4.088         0             76.7     1314
## 19   Grazed   4.425         0             62.8     1302
## 20   Grazed   4.425         0             74.8     1302
## 21   Grazed   4.536         0             82.6      978
## 22   Grazed   4.533         0             90.1      919
## 23   Grazed   4.533         0             85.7      921
## 24   Grazed   4.397         0             90.3      911
## 25   Grazed   3.903         0             84.4      938
## 26 Ungrazed   5.003        13             75.7      950
## 27 Ungrazed   5.003        13             75.3      946
## 28 Ungrazed   5.003        13             75.3      947
## 29 Ungrazed   5.003        13             59.8      955
## 31 Ungrazed   2.625         5             76.5     1628
## 32 Ungrazed   2.625         5             43.5     1617
## 33 Ungrazed   2.625         5             57.0     1611
## 34 Ungrazed   2.625         5             68.5     1611
## 41 Ungrazed   4.965        50             84.8     1050
## 42 Ungrazed   4.965        50             45.8     1048
## 43 Ungrazed   4.965        50             68.3     1063
## 44 Ungrazed   4.965        50             83.9     1064
## 45 Ungrazed   4.965        50             74.0     1068
## 46 Ungrazed   4.254         1             70.0     1291
## 47 Ungrazed   4.254         1             65.5     1297
## 48 Ungrazed   4.254         1             55.5     1293
## 49 Ungrazed   4.254         1             60.3     1302
## 50 Ungrazed   4.425         1             52.3     1302
## 51 Ungrazed   4.536        11             52.5      988
## 53 Ungrazed   3.906        11             80.5     1034
## 54 Ungrazed   3.906        11             79.3     1034
## 55 Ungrazed   3.906        11             59.3     1034
trait_fren_dat
##           LA    SLA    LDMC   LN15     LCC
## sp1   22.201  5.393 257.969  3.210 432.680
## sp2   27.803  3.642 194.628  6.257 281.276
## sp3   14.960  9.524 236.038  5.051 468.355
## sp5   30.828 15.949 244.372 -0.421 450.266
## sp6   50.863  4.505 315.679 -1.904 463.876
## sp7  286.552  8.619 201.724  3.193 450.805
## sp8  182.924 20.532 119.861  7.623 389.473
## sp9  629.033 15.377 143.187  3.340 393.802
## sp10  17.820 26.600 247.820  4.549 419.162
## sp11  55.044  3.751 301.926  8.052 404.560
## sp12  14.048  5.933 325.822  1.669 443.315
## sp13   3.643  9.843 209.086  4.929 420.098
## sp14  35.037 13.796 178.776 -0.400 462.883
## sp15  37.975  8.975 306.213 10.228 419.355
## sp17  10.163  8.379 154.654  5.182 403.914
## sp18 430.583  1.906 598.311 -1.167 462.227
## sp19   9.744  8.334 210.496  3.841 458.277
## sp20  25.373 11.740 231.553  4.023 405.811
## sp21  76.946 20.456 139.723  3.147 433.548
## sp22   4.296 12.278 227.964  3.833 426.892
## sp23  71.477 11.130 270.938  2.336 408.617
## sp24  78.794 13.624 235.067  1.997 420.955
## sp25  25.448 10.468 234.652  3.026 433.149
## sp27   2.255  5.392 279.853 10.324 425.468
## sp28   3.851  3.513 301.856  6.186 401.162
## sp29  23.231  4.510 158.147  5.936 294.205
## sp30   6.978 14.850 311.852 -0.157 457.671
## sp31   9.564 10.946 159.904  3.021 369.946
## sp32  40.091 10.578 358.145  2.499 455.474
## sp33  18.449  4.445 432.189  4.480 432.073
## sp34  29.501  4.860 410.760  3.689 433.906
## sp35  21.275  3.577 441.302  0.170 448.661
## Passo 1: calcular a distância funcional

trait_pad <- decostand(trait_fren_dat, "standardize")
euclid_dis <- vegdist(trait_pad, "euclidean")
## Passo 2: calcular a Divergência funcional (FDis) e Regularidade Funcional (FEve)

fdis <- dbFD(euclid_dis, comun_fren_dat)$FDis# Fdis=0 em locais com somente uma espécie
## FRic: No dimensionality reduction was required. All 5 PCoA axes were kept as 'traits'. 
## CWM: When 'x' is a distance matrix, CWM cannot be calculated.
feve <- dbFD(euclid_dis, comun_fren_dat)$FEve
## FRic: No dimensionality reduction was required. All 5 PCoA axes were kept as 'traits'. 
## CWM: When 'x' is a distance matrix, CWM cannot be calculated.
## Passo 3: Utilizar um modelo linear para comparar o efeito da aridez sobre FDis (predição 1) e FEve (predição 2)

lm_dat <- data.frame(aridez = ambie_fren_dat$Aridity, fdis = fdis, feve = feve)

mod1 <- lm(fdis ~ aridez, data = lm_dat)
plot(mod1)

anova(mod1) # Conclusão: a aridez não tem efeito sobre a divergência funcional
## Analysis of Variance Table
## 
## Response: fdis
##           Df Sum Sq Mean Sq F value Pr(>F)
## aridez     1 0.2083 0.20834  0.9945 0.3241
## Residuals 44 9.2179 0.20950
mod2 <- lm(feve ~ aridez, data = lm_dat)
plot(mod2)

anova(mod2)
## Analysis of Variance Table
## 
## Response: feve
##           Df  Sum Sq  Mean Sq F value Pr(>F)
## aridez     1 0.02098 0.020979  1.0447 0.3123
## Residuals 44 0.88353 0.020080
## Passo 4: gráfico para visualizar os dois resultados  

lm_dat %>% 
  ggplot(aes(x=aridez, y=fdis)) + 
  geom_point(pch=21, size=3, color = "black", fill="royalblue") + 
  xlab("Aridez") + ylab("Divergência Funcional (FDis)") + 
  theme(axis.title.x = element_text(face="bold", size=14),
        axis.text.x = element_text(vjust=0.5, size=12)) + 
  theme(axis.title.y = element_text(face="bold", size=14),
        axis.text.y = element_text(vjust=0.5, size=12)) + 
  theme(legend.position = "top", legend.title=element_blank()) -> plot_pred1
plot_pred1

lm_dat %>% 
  ggplot(aes(x=aridez, y=feve)) + 
  geom_point(pch=21, size=3, color = "black", fill="#d73027") + 
  xlab("Aridez") + ylab("Regularidade Funcional (FEve)") + 
  theme(axis.title.x = element_text(face="bold", size=14),
        axis.text.x = element_text(vjust=0.5, size=12)) + 
  theme(axis.title.y = element_text(face="bold", size=14),
        axis.text.y = element_text(vjust=0.5, size=12)) + 
  theme(legend.position = "top", legend.title=element_blank()) -> plot_pred2
plot_pred2

grid.arrange(plot_pred1, plot_pred2, ncol=2)

### Exemplo 2: o pastejo influencia a diversidade beta funcional de 34 espécies de plantas (Frenette-Dussault et al. 2012)


# Dados

comun_fren_dat # matriz de espécies por localidade
##    sp1 sp2 sp3 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14 sp15 sp17 sp18 sp19
## 1    0  74   0   5   5   0   0   0    0   47    3    2    0    0   14    0    0
## 2    0  10   0   6   0   0   0   0    2    4    2   24    0    0   47    0    0
## 3    0   1   0   0   0   0   0   0    0    0    0    0    1    0   24    0    0
## 4    0   3   0   0   0   0   0   0    0    0    0    2    0    0    3    0    0
## 5    0   0   0  15   0   0   0   0    0   27    0    2    0    0    0    0    0
## 6   23   0  22   2   0   0   7   0    4    0    0    0    0    0    0    0    0
## 7    2   0   0   3   0   0   0   0    0    0    0    2    0    2    0    0    0
## 8    7   0   0   7   0   0  10   0   43    0    0    0    0    2    0    0    0
## 9    0   0   5   8   0   0   8   0    1    0    0    0    0    0    0    0    0
## 10   1   0   0   4   0   0  16   0    0    0    0    0    0    1    0    0    5
## 11   0   0   0   2   0   0   0   0    0    0    1    0    0    0   21    0    0
## 12   0   5   0   1   0   0   0   0    0    0    0    0    0    0   35    0    0
## 13   0   7   0   3   0   0   0   0    0    0    0    0    0    0   29    0    0
## 14   0   1   0   0   0   0   0   0    0    0    0    0    0    0    4    0    0
## 15   0   8   0   4   0   0   0   0    0    0    0    0    0    0    0    0    0
## 17   0   0   0  34   0   0  29   0    8    0    0    0    6    0    0    3    0
## 18   0   0   0   3   0   0   0  59    0    0    0    9    9    0    0    0   30
## 19   0   0   0  21   3   0 128   0    1    0    0    3    1    0    0    0    0
## 20   0   0   0   8   0   0   0  38    6    0    0    7    1    0    0    1    0
## 21   0   0   0   1   1   0   0   0    0    0    0   17    0    0    0  138    0
## 22   0   0   0   0   1   0   0   0    0    0    4   17    0    0    6    0   14
## 23   0   0   0   0   4   0   0   0    0    0    0   12    0    0    1    0    0
## 24   0   0   0   1   1   0   0   0    3    0    2    1    0    0   50    0    5
## 25   0   0   0   0   4   0   0   0    0    0    0    8    0    0   22   36    0
## 26   0   0   0   0   0   0   0   0    0   47   25    0    0    0    6    0    0
## 27   0  11   0   1   0  29   0   0    0    0  221    0    0    0    9    0    0
## 28   0  47   0   1  24   0   0   0    0   47   78    0    0    0   28    0    0
## 29   0  18   0   1   0   0   0   0    0    0   66    0    0    0   23    0    0
## 31  15   0 134  11   0   0   0   0    0    0    0    0    0    0    0    0    0
## 32   0   0   1  82   0   0   5   0    0    0    0    0    0   46    0    0    0
## 33   0   0   0  53   0   0   1   0    0    0    0    0    0   57    0    0    7
## 34   0   0   0  15   0   0   2   0    3    0    0    0    0   26    0    0    0
## 41   0   0   0   8   3   0   0   0    0  171   15    1    0    0    0    0    0
## 42   0   0   0  19   0   0   0   0    2   32    0    0    0    0    0    0    0
## 43   0   0   2   3   1   0   0   0   12   62    2    1    4    0    0    0    0
## 44   0   0  11   4  12   0   0   0    2   66   12   31    0    0    0    0   19
## 45   0   0   0  10   2   0   0   0    0   84    6    0    3    0    0    0    0
## 46   0   0   0   4  20   0  16   0   10    0    0    1    3    0    0    0    0
## 47   0   0   0  12  13   0   0  45   14    0    0    0   11    0    0    0    0
## 48   0   0   0   7   0   0 133   0    1    0    0   13    3    0    0   18    0
## 49   0   0   0   1   5   0   0  50    0    0    0    1    0    0    0    0    0
## 50   0   0   0  10  22   0  75   0    4    0    0    0   45    0    0    0    0
## 51   0   0   0   1   2   0   0   0    0    3    0   44    0    0    0    0    0
## 53   0   0   0   0  13   0   0   1    0    0    0  109    0    0    0   66    0
## 54   0   0   1   0  12   0   0   0    0    0  113   78    0    0   41   45    0
## 55   0   0  16   0  55   0   0   0    0    0    0   11    0    0   23   94   36
##    sp20 sp21 sp22 sp23 sp24 sp25 sp27 sp28 sp29 sp30 sp31 sp32 sp33 sp34 sp35
## 1     1    0    0    0   21    5    0    0    1    4    0  113    0    0    4
## 2     0    0    0    0    5   21    0    0    0   63    0   29    0    0    0
## 3     0    9    1    0   64   12    0    1   30    6    0   21    0    0    0
## 4     1    5    0    0    8    1    0    0    0    0    0  298    0    0    0
## 5     6   14    1    0   42    6    0    5    0   15    0   21    0    0    1
## 6     0    0   14   13    0    0    0    0    0   42    0    0    2    4    0
## 7     0    0    1    2    0    0   41    0    0   71    0    0   80   19    0
## 8     0    0    3    0    0    0    0    0    0   59    0    0   13   12    0
## 9     0    0    1    2    0    0   14    0    0  139    0    0    9    3    0
## 10    0    0    0   17    0    0    0    0    0  135    0    0   75   16    0
## 11   12    7    3    0   16   10    0    9    0   48    1    5    0    0    0
## 12    6    5   11    0  103    0    0    0    0   27    0   17    0    0    0
## 13    1   22   14    0   70    0    0    0    0   63    0    6    0    0    0
## 14   48    5    2    0   63    1    0   12    0    3    0    7    0    0    0
## 15    9   11    1    0   57    0    0   12    0    0    1   31    0    0    0
## 17    0    0    0   68    0    0    0    0    0   28    0    0    0    0    0
## 18    0    0    0   52    0    0    0    0    0   31    5    0    0    0    0
## 19    0    0    0    6    0    1    0    0    0   41    0    0    0    0    0
## 20    0    0    0   35    0    1    0    0    0   24    1    0    0    0    0
## 21    0    1    6    0    0    0    0    0    0    1    0   80    0    0    2
## 22    0    0    7    1    0    1    0    0    0    7    0   46    0    2   19
## 23    0    0    2    0    0    0    0    0    0   20    2  112    0    0    0
## 24    0    0    2    2    0    1    0    0    0    8    0   73    0    0    0
## 25    0    0    2    1    0    0    0    0    0    2    0   97    0    1    1
## 26    0    0    0    0    0    2    0    3    0    2    0  142    0    0    0
## 27    0    0    0    0    0    0    0    0    0    0    0   13    0    0    1
## 28    0    1    2    0   34    1    0    1    0    0    0  124    0    9   38
## 29    2    1    2    0    3    0    0    0   12    0    0  110    0   20    0
## 31    0    0    1    0    0    0    0    0    0    8    0    0   67   65    0
## 32    0    0    0    0    0    0    0    0    0    2    0    0  123   10    0
## 33    0    0    0    0    0    0    8    0    0    5    0    0   68  213    0
## 34    0    0    0    0    0    0    0    0    0    1    0    0  106  140    0
## 41    2    7    1    0    4   24    0    8    0   28    0   16    0    3    0
## 42   12    3    0    0    3   25    0    0    0   46    0  194    0    0    0
## 43   26   16    0    0    0    7    0    0    0    1    3  107    0    0    0
## 44    3   12    0   11    0    3    0    1    0    2    1   34    0   12    0
## 45    1    2    1    0    0   64    0    0    0    2    0   57    0    1    0
## 46    0    0    0   17    0    7    0    0    0  162   24    0    0    1    0
## 47    0    0    2  113    0   18    0    0    0  100    3    0    0    0    0
## 48    0    0    2   59    0    1    0    0    0   61    0    0    0    0    0
## 49    0    0    0   33    0    2    0    0    0  162   20    0    0    0    0
## 50    0    0    0   21    0    3    0    0    0  182   11    0    0    0    0
## 51    0    0    0    3    0    2    0    0    0    1    0  315    0    0   49
## 53    0    1    0    0    0    0    0   10    0    6    3   36    0    0    0
## 54    0    0    0    0    0    1    0    1    0    0    0    1    0    0    0
## 55    0    0    2    0    0    0    0    0    0    0    0  165    0    0    0
ambie_fren_dat # matriz de variáveis ambientais por localidade
##     Grazing Aridity Exclosure Bare.ground.2009 Altitude
## 1    Grazed   5.003         0             77.6      928
## 2    Grazed   5.003         0             84.9      976
## 3    Grazed   5.109         0             85.7      936
## 4    Grazed   5.109         0             59.2      937
## 5    Grazed   5.003         0             85.0      937
## 6    Grazed   2.625         0             78.8     1628
## 7    Grazed   2.625         0             75.2     1599
## 8    Grazed   2.985         0             73.7     1611
## 9    Grazed   2.625         0             71.8     1598
## 10   Grazed   2.985         0             72.5     1593
## 11   Grazed   5.109         0             81.5      917
## 12   Grazed   5.109         0             81.3      929
## 13   Grazed   5.109         0             75.2      941
## 14   Grazed   5.109         0             84.9      945
## 15   Grazed   5.109         0             92.1      927
## 17   Grazed   4.254         0             75.3     1286
## 18   Grazed   4.088         0             76.7     1314
## 19   Grazed   4.425         0             62.8     1302
## 20   Grazed   4.425         0             74.8     1302
## 21   Grazed   4.536         0             82.6      978
## 22   Grazed   4.533         0             90.1      919
## 23   Grazed   4.533         0             85.7      921
## 24   Grazed   4.397         0             90.3      911
## 25   Grazed   3.903         0             84.4      938
## 26 Ungrazed   5.003        13             75.7      950
## 27 Ungrazed   5.003        13             75.3      946
## 28 Ungrazed   5.003        13             75.3      947
## 29 Ungrazed   5.003        13             59.8      955
## 31 Ungrazed   2.625         5             76.5     1628
## 32 Ungrazed   2.625         5             43.5     1617
## 33 Ungrazed   2.625         5             57.0     1611
## 34 Ungrazed   2.625         5             68.5     1611
## 41 Ungrazed   4.965        50             84.8     1050
## 42 Ungrazed   4.965        50             45.8     1048
## 43 Ungrazed   4.965        50             68.3     1063
## 44 Ungrazed   4.965        50             83.9     1064
## 45 Ungrazed   4.965        50             74.0     1068
## 46 Ungrazed   4.254         1             70.0     1291
## 47 Ungrazed   4.254         1             65.5     1297
## 48 Ungrazed   4.254         1             55.5     1293
## 49 Ungrazed   4.254         1             60.3     1302
## 50 Ungrazed   4.425         1             52.3     1302
## 51 Ungrazed   4.536        11             52.5      988
## 53 Ungrazed   3.906        11             80.5     1034
## 54 Ungrazed   3.906        11             79.3     1034
## 55 Ungrazed   3.906        11             59.3     1034
trait_fren_dat # matriz de atributos contínuos por espécie
##           LA    SLA    LDMC   LN15     LCC
## sp1   22.201  5.393 257.969  3.210 432.680
## sp2   27.803  3.642 194.628  6.257 281.276
## sp3   14.960  9.524 236.038  5.051 468.355
## sp5   30.828 15.949 244.372 -0.421 450.266
## sp6   50.863  4.505 315.679 -1.904 463.876
## sp7  286.552  8.619 201.724  3.193 450.805
## sp8  182.924 20.532 119.861  7.623 389.473
## sp9  629.033 15.377 143.187  3.340 393.802
## sp10  17.820 26.600 247.820  4.549 419.162
## sp11  55.044  3.751 301.926  8.052 404.560
## sp12  14.048  5.933 325.822  1.669 443.315
## sp13   3.643  9.843 209.086  4.929 420.098
## sp14  35.037 13.796 178.776 -0.400 462.883
## sp15  37.975  8.975 306.213 10.228 419.355
## sp17  10.163  8.379 154.654  5.182 403.914
## sp18 430.583  1.906 598.311 -1.167 462.227
## sp19   9.744  8.334 210.496  3.841 458.277
## sp20  25.373 11.740 231.553  4.023 405.811
## sp21  76.946 20.456 139.723  3.147 433.548
## sp22   4.296 12.278 227.964  3.833 426.892
## sp23  71.477 11.130 270.938  2.336 408.617
## sp24  78.794 13.624 235.067  1.997 420.955
## sp25  25.448 10.468 234.652  3.026 433.149
## sp27   2.255  5.392 279.853 10.324 425.468
## sp28   3.851  3.513 301.856  6.186 401.162
## sp29  23.231  4.510 158.147  5.936 294.205
## sp30   6.978 14.850 311.852 -0.157 457.671
## sp31   9.564 10.946 159.904  3.021 369.946
## sp32  40.091 10.578 358.145  2.499 455.474
## sp33  18.449  4.445 432.189  4.480 432.073
## sp34  29.501  4.860 410.760  3.689 433.906
## sp35  21.275  3.577 441.302  0.170 448.661
# Hipótese e predições:

# Hipótese: o pastejo determina a ocorrência de espécies de plantas com diferentes atributos funcionais 
# Predição 1: a composição funcional de plantas é diferente entre áreas com e sem pastejo


## Passo 1: calcular a distância funcional

cwm_dis <- vegdist(cwm_fren, "euclidean")

## Passo 2: calcular os valores de composição funcional (CWM)

cwm_fren <- functcomp(trait_pad, as.matrix(comun_fren_dat))

## Passo 3: testar se a composição funcional varia entre as áreas com uma PERMANOVA

perman_fren <- adonis(cwm_fren~Grazing, data = ambie_fren_dat)

## Passo 4: comparar a variação dentro de cada grupo com Betadisper 

betad_fren <- betadisper(cwm_dis, ambie_fren_dat$Grazing)
permutest(betad_fren)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)
## Groups     1  0.0539 0.053858 0.1946    999  0.679
## Residuals 44 12.1763 0.276735
plot(betad_fren)