Please analyze the attached data set. The data set has header that are numberings. The first column is the response and the remaining are predictors. If you noticed that the first 3 predictors are what we used for our midterm. The original data set is huge (many predictors), please be careful when you conduct linear model. You may encounter errors if you didn’t deal with the high dimensionality. Good luck.
glass <- read.table("C:/Users/Saeah Go/OneDrive/Desktop/PSU/Fa2021/STAT364/Final/final.txt", header = T) # load the data using read.table() functionFirst thing I need to do is, import the data which is stored in “final.txt”. To read the given file, final.txt, I used the read.table() function. I indicated file path and use the option header = T since the dataset has header in the first row.
We know that the first column density is the response and others are the predictors. The glass dataset has 498 variables and 474 observations. Since the number of variables (498) is greater than the number of observations (474), we can see that we should use shrinkage methods to find a good model.
To reduce our dataset, let’s compute the correlation of the coefficient first.
When we have two independent variables that are very highly correlated, we definitely should remove one of them because we run into the multicollinearity conundrum and our regression model’s regression coefficients related to the two highly correlated variables will be unreliable.
In other words, if two variables are so highly correlated they will obviously impart nearly exactly the same information to our regression model. But, by including both we are actually weakening the model. My goal is to reduce the number of variables from 498 to 50.
First of all, I’ve looked at the correlation with the variable X17.
subset(cor(glass, glass$X17) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 TRUE
## X18 FALSE
## X19 FALSE
## X20 TRUE
## X21 FALSE
## X22 FALSE
## X23 TRUE
## X24 FALSE
## X25 FALSE
## X26 FALSE
## X27 FALSE
## X28 FALSE
## X29 FALSE
## X30 FALSE
## X31 FALSE
## X32 FALSE
## X33 FALSE
## X34 FALSE
## X35 FALSE
## X36 FALSE
## X37 FALSE
## X38 FALSE
## X39 FALSE
## X40 FALSE
## X41 FALSE
## X42 FALSE
## X43 FALSE
## X44 FALSE
## X45 FALSE
## X46 FALSE
## X1 TRUE
## X2 FALSE
## X3 FALSE
## X4 TRUE
## X5 FALSE
## X6 FALSE
## X7 TRUE
## X8 FALSE
## X9 FALSE
## X10 TRUE
## X11 FALSE
## X12 FALSE
## X13 FALSE
## X14 FALSE
## X15.1 FALSE
## X16.1 FALSE
## X17.1 FALSE
## X18.1 FALSE
## X19.1 FALSE
## X20.1 FALSE
## X21.1 FALSE
## X22.1 FALSE
## X23.1 FALSE
## X24.1 FALSE
## X25.1 FALSE
## X26.1 FALSE
## X27.1 FALSE
## X28.1 FALSE
## X29.1 FALSE
## X30.1 FALSE
## X31.1 FALSE
## X32.1 FALSE
## X33.1 FALSE
## X34.1 FALSE
## X35.1 FALSE
## X36.1 FALSE
## X37.1 FALSE
## X38.1 FALSE
## X39.1 FALSE
## X40.1 FALSE
## X41.1 FALSE
## X42.1 FALSE
## X43.1 FALSE
## X44.1 FALSE
## X45.1 FALSE
## X46.1 FALSE
## X47 FALSE
## X48 FALSE
## X49 FALSE
## X50 FALSE
## X51 FALSE
## X52 FALSE
## X53 FALSE
## X54 FALSE
## X55 FALSE
## X56 FALSE
## X57 FALSE
## X58 FALSE
## X59 FALSE
## X60 FALSE
## X61 FALSE
## X62 FALSE
## X63 FALSE
## X64 FALSE
## X65 FALSE
## X66 FALSE
## X67 FALSE
## X68 FALSE
## X69 FALSE
## X70 FALSE
## X71 FALSE
## X72 FALSE
## X73 FALSE
## X74 FALSE
## X75 FALSE
## X76 FALSE
## X77 FALSE
## X78 FALSE
## X79 FALSE
## X80 FALSE
## X81 FALSE
## X82 FALSE
## X83 FALSE
## X84 FALSE
## X85 FALSE
## X86 FALSE
## X87 FALSE
## X88 TRUE
## X89 FALSE
## X90 FALSE
## X91 TRUE
## X92 FALSE
## X93 FALSE
## X94 TRUE
## X95 FALSE
## X96 FALSE
## X97 FALSE
## X98 FALSE
## X99 FALSE
## X100 FALSE
## X101 FALSE
## X102 FALSE
## X103 FALSE
## X104 FALSE
## X105 FALSE
## X106 FALSE
## X107 TRUE
## X108 FALSE
## X109 FALSE
## X110 FALSE
## X111 FALSE
## X112 FALSE
## X113 FALSE
## X114 FALSE
## X115 FALSE
## X116 FALSE
## X117 FALSE
## X118 FALSE
## X119 FALSE
## X120 FALSE
## X121 FALSE
## X122 FALSE
## X123 FALSE
## X124 FALSE
## X125 FALSE
## X126 FALSE
## X127 FALSE
## X128 FALSE
## X129 FALSE
## X130 FALSE
## X131 FALSE
## X132 FALSE
## X133 FALSE
## X134 FALSE
## X135 FALSE
## X136 FALSE
## X137 FALSE
## X138 FALSE
## X139 FALSE
## X140 FALSE
## X141 FALSE
## X142 FALSE
## X143 FALSE
## X144 FALSE
## X145 FALSE
## X146 FALSE
## X147 FALSE
## X148 FALSE
## X149 FALSE
## X150 FALSE
## X151 FALSE
## X152 FALSE
## X153 FALSE
## X154 FALSE
## X155 FALSE
## X156 FALSE
## X157 FALSE
## X158 FALSE
## X159 FALSE
## X160 FALSE
## X161 FALSE
## X162 FALSE
## X163 FALSE
## X164 FALSE
## X165 FALSE
## X166 TRUE
## X167 FALSE
## X168 FALSE
## X169 TRUE
## X170 FALSE
## X171 FALSE
## X172 FALSE
## X173 FALSE
## X174 FALSE
## X175 FALSE
## X176 FALSE
## X177 FALSE
## X178 FALSE
## X179 TRUE
## X180 FALSE
## X181 FALSE
## X182 TRUE
## X183 FALSE
## X184 FALSE
## X185 FALSE
## X186 FALSE
## X187 FALSE
## X188 FALSE
## X189 FALSE
## X190 FALSE
## X191 FALSE
## X192 FALSE
## X193 FALSE
## X194 FALSE
## X195 FALSE
## X196 FALSE
## X197 FALSE
## X198 FALSE
## X199 FALSE
## X200 FALSE
## X201 FALSE
## X202 FALSE
## X203 FALSE
## X204 FALSE
## X205 FALSE
## X206 FALSE
## X207 FALSE
## X208 FALSE
## X209 FALSE
## X210 FALSE
## X211 FALSE
## X212 FALSE
## X213 FALSE
## X214 FALSE
## X215 FALSE
## X216 FALSE
## X217 FALSE
## X218 FALSE
## X219 FALSE
## X220 FALSE
## X221 FALSE
## X222 FALSE
## X223 FALSE
## X224 FALSE
## X225 FALSE
## X226 FALSE
## X227 FALSE
## X228 FALSE
## X229 FALSE
## X230 FALSE
## X231 FALSE
## X232 FALSE
## X233 FALSE
## X234 FALSE
## X235 FALSE
## X236 FALSE
## X237 FALSE
## X238 FALSE
## X239 FALSE
## X240 FALSE
## X241 FALSE
## X242 FALSE
## X243 FALSE
## X244 FALSE
## X245 FALSE
## X246 FALSE
## X247 FALSE
## X248 FALSE
## X249 FALSE
## X250 FALSE
## X251 FALSE
## X252 FALSE
## X253 FALSE
## X254 FALSE
## X255 FALSE
## X256 FALSE
## X257 FALSE
## X258 FALSE
## X259 FALSE
## X260 FALSE
## X261 FALSE
## X262 FALSE
## X263 FALSE
## X264 FALSE
## X265 FALSE
## X266 FALSE
## X267 FALSE
## X268 FALSE
## X269 FALSE
## X270 FALSE
## X271 FALSE
## X272 FALSE
## X273 FALSE
## X274 FALSE
## X275 FALSE
## X276 FALSE
## X277 FALSE
## X278 FALSE
## X279 FALSE
## X280 FALSE
## X281 FALSE
## X282 FALSE
## X283 FALSE
## X284 FALSE
## X285 FALSE
## X286 FALSE
## X287 FALSE
## X288 FALSE
## X289 FALSE
## X290 FALSE
## X291 FALSE
## X292 FALSE
## X293 FALSE
## X294 FALSE
## X295 FALSE
## X296 FALSE
## X297 FALSE
## X298 FALSE
## X299 FALSE
## X300 FALSE
## X301 FALSE
## X302 FALSE
## X303 FALSE
## X304 FALSE
## X305 FALSE
## X306 FALSE
## X307 FALSE
## X308 FALSE
## X309 FALSE
## X310 FALSE
## X311 FALSE
## X312 FALSE
## X313 FALSE
## X314 FALSE
## X315 FALSE
## X316 FALSE
## X317 FALSE
## X318 FALSE
## X319 FALSE
## X320 FALSE
## X321 FALSE
## X322 FALSE
## X323 FALSE
## X324 FALSE
## X325 FALSE
## X326 FALSE
## X327 FALSE
## X328 FALSE
## X329 FALSE
## X330 FALSE
## X331 FALSE
## X332 FALSE
## X333 FALSE
## X334 FALSE
## X335 FALSE
## X336 FALSE
## X337 FALSE
## X338 FALSE
## X339 FALSE
## X340 FALSE
## X341 FALSE
## X342 FALSE
## X343 FALSE
## X344 FALSE
## X345 FALSE
## X346 FALSE
## X347 FALSE
## X348 FALSE
## X349 FALSE
## X350 FALSE
## X351 FALSE
## X352 FALSE
## X353 FALSE
## X354 FALSE
## X355 FALSE
## X356 FALSE
## X357 FALSE
## X358 FALSE
## X359 FALSE
## X360 FALSE
## X361 FALSE
## X362 FALSE
## X363 FALSE
## X364 FALSE
## X365 FALSE
## X366 FALSE
## X367 FALSE
## X368 FALSE
## X369 FALSE
## X370 FALSE
## X371 FALSE
## X372 FALSE
## X373 FALSE
## X374 FALSE
## X375 FALSE
## X376 FALSE
## X377 FALSE
## X378 FALSE
## X379 FALSE
## X380 FALSE
## X381 FALSE
## X382 FALSE
## X383 FALSE
## X384 FALSE
## X385 FALSE
## X386 FALSE
## X387 FALSE
## X388 FALSE
## X389 FALSE
## X390 FALSE
## X391 FALSE
## X392 FALSE
## X393 FALSE
## X394 FALSE
## X395 FALSE
## X396 FALSE
## X397 FALSE
## X398 FALSE
## X399 FALSE
## X400 FALSE
## X401 FALSE
## X402 FALSE
## X403 FALSE
## X404 FALSE
## X405 FALSE
## X406 FALSE
## X407 FALSE
## X408 FALSE
## X409 FALSE
## X410 FALSE
## X411 FALSE
## X412 FALSE
## X413 FALSE
## X414 FALSE
## X415 FALSE
## X416 FALSE
## X417 FALSE
## X418 FALSE
## X419 FALSE
## X420 FALSE
## X421 FALSE
## X422 FALSE
## X423 FALSE
## X424 FALSE
## X425 FALSE
## X426 FALSE
## X427 FALSE
## X428 FALSE
## X429 FALSE
## X430 FALSE
## X431 FALSE
## X432 FALSE
## X433 FALSE
## X434 FALSE
## X435 FALSE
## X436 FALSE
## X437 FALSE
## X438 FALSE
## X439 FALSE
## X440 FALSE
## X441 FALSE
## X442 FALSE
## X443 FALSE
## X444 FALSE
## X445 FALSE
## X446 FALSE
## X447 FALSE
## X448 FALSE
## X449 FALSE
## X450 FALSE
## X451 FALSE
## X452 FALSE
## X453 FALSE
## X454 FALSE
## X455 FALSE
## X456 FALSE
## X457 FALSE
## X458 FALSE
## X459 FALSE
## X460 FALSE
## X461 FALSE
## X462 FALSE
## X463 FALSE
## X464 FALSE
## X465 FALSE
When I’m looking at the result, X17 is highly correlated with X20, X23, X1, X4, X7, X10, X88, X91, X94, X107, X166, X169, X179, and X182. So I will update the glass dataset without these variables.
simp_glass <- glass %>%
select(-c(X20, X23, X1, X4, X7, X10, X88, X91, X94, X107, X166, X169, X179, X182)) # update the datasetSo I create a reduced dataset called simp_glass, I could check that now we have 484 variables.
For the next step, I chose X29 and see if there are some variables highly correlated.
subset(cor(simp_glass, simp_glass$X29) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 FALSE
## X18 FALSE
## X19 FALSE
## X21 FALSE
## X22 FALSE
## X24 FALSE
## X25 FALSE
## X26 FALSE
## X27 FALSE
## X28 FALSE
## X29 TRUE
## X30 FALSE
## X31 FALSE
## X32 TRUE
## X33 FALSE
## X34 FALSE
## X35 TRUE
## X36 FALSE
## X37 FALSE
## X38 TRUE
## X39 FALSE
## X40 FALSE
## X41 TRUE
## X42 FALSE
## X43 FALSE
## X44 TRUE
## X45 FALSE
## X46 FALSE
## X2 FALSE
## X3 FALSE
## X5 FALSE
## X6 FALSE
## X8 FALSE
## X9 FALSE
## X11 FALSE
## X12 FALSE
## X13 TRUE
## X14 FALSE
## X15.1 FALSE
## X16.1 TRUE
## X17.1 FALSE
## X18.1 FALSE
## X19.1 TRUE
## X20.1 FALSE
## X21.1 FALSE
## X22.1 TRUE
## X23.1 FALSE
## X24.1 FALSE
## X25.1 TRUE
## X26.1 FALSE
## X27.1 FALSE
## X28.1 TRUE
## X29.1 FALSE
## X30.1 FALSE
## X31.1 FALSE
## X32.1 FALSE
## X33.1 FALSE
## X34.1 FALSE
## X35.1 FALSE
## X36.1 FALSE
## X37.1 FALSE
## X38.1 FALSE
## X39.1 FALSE
## X40.1 FALSE
## X41.1 FALSE
## X42.1 TRUE
## X43.1 FALSE
## X44.1 FALSE
## X45.1 TRUE
## X46.1 FALSE
## X47 FALSE
## X48 TRUE
## X49 FALSE
## X50 FALSE
## X51 TRUE
## X52 FALSE
## X53 FALSE
## X54 TRUE
## X55 FALSE
## X56 FALSE
## X57 TRUE
## X58 FALSE
## X59 FALSE
## X60 FALSE
## X61 FALSE
## X62 FALSE
## X63 FALSE
## X64 FALSE
## X65 FALSE
## X66 FALSE
## X67 FALSE
## X68 FALSE
## X69 FALSE
## X70 FALSE
## X71 FALSE
## X72 FALSE
## X73 FALSE
## X74 FALSE
## X75 FALSE
## X76 FALSE
## X77 FALSE
## X78 FALSE
## X79 FALSE
## X80 FALSE
## X81 FALSE
## X82 FALSE
## X83 FALSE
## X84 FALSE
## X85 FALSE
## X86 FALSE
## X87 FALSE
## X89 FALSE
## X90 FALSE
## X92 FALSE
## X93 FALSE
## X95 FALSE
## X96 FALSE
## X97 TRUE
## X98 FALSE
## X99 FALSE
## X100 TRUE
## X101 FALSE
## X102 FALSE
## X103 TRUE
## X104 FALSE
## X105 FALSE
## X106 TRUE
## X108 FALSE
## X109 TRUE
## X110 FALSE
## X111 FALSE
## X112 TRUE
## X113 FALSE
## X114 FALSE
## X115 FALSE
## X116 FALSE
## X117 FALSE
## X118 FALSE
## X119 FALSE
## X120 FALSE
## X121 FALSE
## X122 FALSE
## X123 TRUE
## X124 FALSE
## X125 FALSE
## X126 TRUE
## X127 FALSE
## X128 FALSE
## X129 TRUE
## X130 FALSE
## X131 FALSE
## X132 TRUE
## X133 FALSE
## X134 FALSE
## X135 TRUE
## X136 FALSE
## X137 FALSE
## X138 TRUE
## X139 FALSE
## X140 FALSE
## X141 FALSE
## X142 FALSE
## X143 FALSE
## X144 FALSE
## X145 FALSE
## X146 FALSE
## X147 FALSE
## X148 FALSE
## X149 FALSE
## X150 FALSE
## X151 FALSE
## X152 FALSE
## X153 FALSE
## X154 FALSE
## X155 FALSE
## X156 FALSE
## X157 FALSE
## X158 FALSE
## X159 FALSE
## X160 FALSE
## X161 FALSE
## X162 FALSE
## X163 FALSE
## X164 FALSE
## X165 FALSE
## X167 FALSE
## X168 FALSE
## X170 FALSE
## X171 FALSE
## X172 TRUE
## X173 FALSE
## X174 FALSE
## X175 TRUE
## X176 FALSE
## X177 FALSE
## X178 TRUE
## X180 FALSE
## X181 TRUE
## X183 FALSE
## X184 TRUE
## X185 FALSE
## X186 FALSE
## X187 TRUE
## X188 FALSE
## X189 FALSE
## X190 FALSE
## X191 FALSE
## X192 FALSE
## X193 FALSE
## X194 FALSE
## X195 TRUE
## X196 FALSE
## X197 FALSE
## X198 TRUE
## X199 FALSE
## X200 FALSE
## X201 TRUE
## X202 FALSE
## X203 FALSE
## X204 TRUE
## X205 FALSE
## X206 FALSE
## X207 TRUE
## X208 FALSE
## X209 FALSE
## X210 TRUE
## X211 FALSE
## X212 FALSE
## X213 FALSE
## X214 FALSE
## X215 FALSE
## X216 FALSE
## X217 FALSE
## X218 FALSE
## X219 FALSE
## X220 FALSE
## X221 FALSE
## X222 FALSE
## X223 FALSE
## X224 FALSE
## X225 FALSE
## X226 FALSE
## X227 FALSE
## X228 FALSE
## X229 FALSE
## X230 FALSE
## X231 FALSE
## X232 FALSE
## X233 FALSE
## X234 FALSE
## X235 FALSE
## X236 FALSE
## X237 FALSE
## X238 TRUE
## X239 FALSE
## X240 FALSE
## X241 TRUE
## X242 FALSE
## X243 FALSE
## X244 TRUE
## X245 FALSE
## X246 TRUE
## X247 TRUE
## X248 FALSE
## X249 TRUE
## X250 TRUE
## X251 FALSE
## X252 FALSE
## X253 TRUE
## X254 FALSE
## X255 FALSE
## X256 FALSE
## X257 FALSE
## X258 TRUE
## X259 FALSE
## X260 FALSE
## X261 TRUE
## X262 FALSE
## X263 FALSE
## X264 TRUE
## X265 FALSE
## X266 FALSE
## X267 TRUE
## X268 FALSE
## X269 FALSE
## X270 TRUE
## X271 FALSE
## X272 FALSE
## X273 TRUE
## X274 FALSE
## X275 FALSE
## X276 FALSE
## X277 FALSE
## X278 FALSE
## X279 FALSE
## X280 FALSE
## X281 FALSE
## X282 FALSE
## X283 FALSE
## X284 FALSE
## X285 FALSE
## X286 FALSE
## X287 FALSE
## X288 FALSE
## X289 FALSE
## X290 FALSE
## X291 FALSE
## X292 FALSE
## X293 FALSE
## X294 FALSE
## X295 TRUE
## X296 TRUE
## X297 TRUE
## X298 TRUE
## X299 TRUE
## X300 TRUE
## X301 TRUE
## X302 TRUE
## X303 TRUE
## X304 TRUE
## X305 TRUE
## X306 TRUE
## X307 TRUE
## X308 TRUE
## X309 FALSE
## X310 TRUE
## X311 TRUE
## X312 TRUE
## X313 FALSE
## X314 FALSE
## X315 TRUE
## X316 FALSE
## X317 FALSE
## X318 TRUE
## X319 FALSE
## X320 FALSE
## X321 TRUE
## X322 FALSE
## X323 FALSE
## X324 TRUE
## X325 FALSE
## X326 FALSE
## X327 TRUE
## X328 FALSE
## X329 FALSE
## X330 FALSE
## X331 TRUE
## X332 FALSE
## X333 FALSE
## X334 TRUE
## X335 FALSE
## X336 FALSE
## X337 TRUE
## X338 FALSE
## X339 FALSE
## X340 TRUE
## X341 FALSE
## X342 FALSE
## X343 TRUE
## X344 FALSE
## X345 FALSE
## X346 TRUE
## X347 TRUE
## X348 TRUE
## X349 TRUE
## X350 TRUE
## X351 TRUE
## X352 TRUE
## X353 TRUE
## X354 TRUE
## X355 TRUE
## X356 TRUE
## X357 FALSE
## X358 TRUE
## X359 TRUE
## X360 TRUE
## X361 FALSE
## X362 FALSE
## X363 TRUE
## X364 FALSE
## X365 FALSE
## X366 TRUE
## X367 FALSE
## X368 FALSE
## X369 TRUE
## X370 FALSE
## X371 FALSE
## X372 TRUE
## X373 FALSE
## X374 FALSE
## X375 FALSE
## X376 TRUE
## X377 FALSE
## X378 FALSE
## X379 TRUE
## X380 FALSE
## X381 FALSE
## X382 TRUE
## X383 FALSE
## X384 FALSE
## X385 TRUE
## X386 FALSE
## X387 FALSE
## X388 TRUE
## X389 TRUE
## X390 TRUE
## X391 TRUE
## X392 TRUE
## X393 TRUE
## X394 TRUE
## X395 TRUE
## X396 FALSE
## X397 TRUE
## X398 TRUE
## X399 TRUE
## X400 FALSE
## X401 FALSE
## X402 TRUE
## X403 FALSE
## X404 FALSE
## X405 TRUE
## X406 FALSE
## X407 FALSE
## X408 TRUE
## X409 FALSE
## X410 FALSE
## X411 FALSE
## X412 TRUE
## X413 FALSE
## X414 FALSE
## X415 TRUE
## X416 FALSE
## X417 FALSE
## X418 TRUE
## X419 FALSE
## X420 FALSE
## X421 TRUE
## X422 TRUE
## X423 TRUE
## X424 TRUE
## X425 TRUE
## X426 FALSE
## X427 TRUE
## X428 TRUE
## X429 TRUE
## X430 FALSE
## X431 FALSE
## X432 TRUE
## X433 FALSE
## X434 FALSE
## X435 TRUE
## X436 FALSE
## X437 FALSE
## X438 FALSE
## X439 TRUE
## X440 FALSE
## X441 FALSE
## X442 TRUE
## X443 FALSE
## X444 FALSE
## X445 TRUE
## X446 TRUE
## X447 FALSE
## X448 TRUE
## X449 TRUE
## X450 TRUE
## X451 FALSE
## X452 FALSE
## X453 TRUE
## X454 FALSE
## X455 FALSE
## X456 FALSE
## X457 FALSE
## X458 FALSE
## X459 FALSE
## X460 TRUE
## X461 TRUE
## X462 TRUE
## X463 FALSE
## X464 FALSE
## X465 FALSE
When I’m looking at the result, X29 is highly correlated with X32, X35, X38, X41, X44, X13, X16.1, X19.1, X22.1, X25.1, X28.1, X42.1, X45.1, X48, X51, X54, X57, X97, X100, X103, X106, X109, X112, X123, X126, X129, X132, X135, X138, X172, X175, X178, X181, X184, X187, X195, X198, X201, X204, X207, X210, X238, X241, X244, X246, X247, X249, X250, X253, X258, X261, X264, X267, X270, X273, X295:X308, X310:X312, X315, X318, X321, X324, X327, X331, X334, X337, X340, X343, X346:X356, X358:X360, X363, X366, X369, X372, X376, X379, X382, X385, X388:X395, X397:X399, X402, X405, X408, X412, X415, X418, X421:X425, X427:X429, X432, X435, X439, X442, X445, X446, X448, X449, X450, X453, X460, X461, and X462. So I update the glass dataset again excluding these variables.
simp_glass <- simp_glass %>%
select(-c(X32, X35, X38, X41, X44, X13, X16.1, X19.1, X22.1, X25.1, X28.1, X42.1, X45.1, X48, X51, X54, X57, X97, X100, X103, X106, X109, X112, X123, X126, X129, X132, X135, X138, X172, X175, X178, X181, X184, X187, X195, X198, X201, X204, X207, X210, X238, X241, X244, X246, X247, X249, X250, X253, X258, X261, X264, X267, X270, X273, X295:X308, X310:X312, X315, X318, X321, X324, X327, X331, X334, X337, X340, X343, X346:X356, X358:X360, X363, X366, X369, X372, X376, X379, X382, X385, X388:X395, X397:X399, X402, X405, X408, X412, X415, X418, X421:X425, X427:X429, X432, X435, X439, X442, X445, X446, X448, X449, X450, X453, X460, X461, X462))Now I have 356 variables, so I chose X31.
subset(cor(simp_glass, simp_glass$X31) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 FALSE
## X18 FALSE
## X19 FALSE
## X21 FALSE
## X22 FALSE
## X24 FALSE
## X25 FALSE
## X26 FALSE
## X27 FALSE
## X28 FALSE
## X29 FALSE
## X30 FALSE
## X31 TRUE
## X33 TRUE
## X34 TRUE
## X36 TRUE
## X37 TRUE
## X39 TRUE
## X40 TRUE
## X42 FALSE
## X43 FALSE
## X45 FALSE
## X46 FALSE
## X2 FALSE
## X3 FALSE
## X5 FALSE
## X6 FALSE
## X8 FALSE
## X9 FALSE
## X11 FALSE
## X12 FALSE
## X14 FALSE
## X15.1 TRUE
## X17.1 FALSE
## X18.1 TRUE
## X20.1 FALSE
## X21.1 TRUE
## X23.1 FALSE
## X24.1 FALSE
## X26.1 FALSE
## X27.1 FALSE
## X29.1 FALSE
## X30.1 FALSE
## X31.1 FALSE
## X32.1 FALSE
## X33.1 FALSE
## X34.1 FALSE
## X35.1 FALSE
## X36.1 FALSE
## X37.1 FALSE
## X38.1 FALSE
## X39.1 FALSE
## X40.1 FALSE
## X41.1 FALSE
## X43.1 FALSE
## X44.1 TRUE
## X46.1 FALSE
## X47 TRUE
## X49 FALSE
## X50 FALSE
## X52 FALSE
## X53 FALSE
## X55 FALSE
## X56 FALSE
## X58 FALSE
## X59 FALSE
## X60 FALSE
## X61 FALSE
## X62 FALSE
## X63 FALSE
## X64 FALSE
## X65 FALSE
## X66 FALSE
## X67 FALSE
## X68 FALSE
## X69 FALSE
## X70 FALSE
## X71 FALSE
## X72 FALSE
## X73 FALSE
## X74 FALSE
## X75 FALSE
## X76 FALSE
## X77 FALSE
## X78 FALSE
## X79 FALSE
## X80 FALSE
## X81 FALSE
## X82 FALSE
## X83 FALSE
## X84 FALSE
## X85 FALSE
## X86 FALSE
## X87 FALSE
## X89 FALSE
## X90 FALSE
## X92 FALSE
## X93 FALSE
## X95 FALSE
## X96 FALSE
## X98 FALSE
## X99 TRUE
## X101 FALSE
## X102 TRUE
## X104 FALSE
## X105 FALSE
## X108 FALSE
## X110 FALSE
## X111 FALSE
## X113 FALSE
## X114 FALSE
## X115 FALSE
## X116 FALSE
## X117 FALSE
## X118 FALSE
## X119 FALSE
## X120 FALSE
## X121 FALSE
## X122 FALSE
## X124 FALSE
## X125 TRUE
## X127 FALSE
## X128 TRUE
## X130 FALSE
## X131 FALSE
## X133 FALSE
## X134 FALSE
## X136 FALSE
## X137 FALSE
## X139 FALSE
## X140 FALSE
## X141 FALSE
## X142 FALSE
## X143 FALSE
## X144 FALSE
## X145 FALSE
## X146 FALSE
## X147 FALSE
## X148 FALSE
## X149 FALSE
## X150 FALSE
## X151 FALSE
## X152 FALSE
## X153 FALSE
## X154 FALSE
## X155 FALSE
## X156 FALSE
## X157 FALSE
## X158 FALSE
## X159 FALSE
## X160 FALSE
## X161 FALSE
## X162 FALSE
## X163 FALSE
## X164 FALSE
## X165 FALSE
## X167 FALSE
## X168 FALSE
## X170 FALSE
## X171 FALSE
## X173 FALSE
## X174 TRUE
## X176 FALSE
## X177 FALSE
## X180 FALSE
## X183 FALSE
## X185 FALSE
## X186 FALSE
## X188 FALSE
## X189 FALSE
## X190 FALSE
## X191 FALSE
## X192 FALSE
## X193 FALSE
## X194 FALSE
## X196 FALSE
## X197 TRUE
## X199 FALSE
## X200 TRUE
## X202 FALSE
## X203 TRUE
## X205 FALSE
## X206 FALSE
## X208 FALSE
## X209 FALSE
## X211 FALSE
## X212 FALSE
## X213 FALSE
## X214 FALSE
## X215 FALSE
## X216 FALSE
## X217 FALSE
## X218 FALSE
## X219 FALSE
## X220 FALSE
## X221 FALSE
## X222 FALSE
## X223 FALSE
## X224 FALSE
## X225 FALSE
## X226 FALSE
## X227 FALSE
## X228 FALSE
## X229 FALSE
## X230 FALSE
## X231 FALSE
## X232 FALSE
## X233 FALSE
## X234 FALSE
## X235 FALSE
## X236 FALSE
## X237 FALSE
## X239 FALSE
## X240 FALSE
## X242 FALSE
## X243 FALSE
## X245 FALSE
## X248 FALSE
## X251 FALSE
## X252 FALSE
## X254 FALSE
## X255 FALSE
## X256 FALSE
## X257 FALSE
## X259 FALSE
## X260 TRUE
## X262 FALSE
## X263 TRUE
## X265 FALSE
## X266 TRUE
## X268 FALSE
## X269 TRUE
## X271 FALSE
## X272 FALSE
## X274 FALSE
## X275 FALSE
## X276 FALSE
## X277 FALSE
## X278 FALSE
## X279 FALSE
## X280 FALSE
## X281 FALSE
## X282 FALSE
## X283 FALSE
## X284 FALSE
## X285 FALSE
## X286 FALSE
## X287 FALSE
## X288 FALSE
## X289 FALSE
## X290 FALSE
## X291 FALSE
## X292 FALSE
## X293 FALSE
## X294 FALSE
## X309 FALSE
## X313 FALSE
## X314 TRUE
## X316 TRUE
## X317 TRUE
## X319 TRUE
## X320 TRUE
## X322 TRUE
## X323 TRUE
## X325 FALSE
## X326 FALSE
## X328 FALSE
## X329 FALSE
## X330 TRUE
## X332 TRUE
## X333 TRUE
## X335 TRUE
## X336 TRUE
## X338 TRUE
## X339 TRUE
## X341 TRUE
## X342 FALSE
## X344 FALSE
## X345 FALSE
## X357 FALSE
## X361 TRUE
## X362 TRUE
## X364 TRUE
## X365 TRUE
## X367 TRUE
## X368 TRUE
## X370 FALSE
## X371 FALSE
## X373 FALSE
## X374 FALSE
## X375 TRUE
## X377 TRUE
## X378 TRUE
## X380 TRUE
## X381 TRUE
## X383 TRUE
## X384 FALSE
## X386 FALSE
## X387 FALSE
## X396 FALSE
## X400 TRUE
## X401 TRUE
## X403 TRUE
## X404 TRUE
## X406 FALSE
## X407 FALSE
## X409 FALSE
## X410 FALSE
## X411 TRUE
## X413 TRUE
## X414 TRUE
## X416 TRUE
## X417 FALSE
## X419 FALSE
## X420 FALSE
## X426 FALSE
## X430 TRUE
## X431 TRUE
## X433 TRUE
## X434 FALSE
## X436 FALSE
## X437 FALSE
## X438 TRUE
## X440 TRUE
## X441 FALSE
## X443 FALSE
## X444 FALSE
## X447 FALSE
## X451 FALSE
## X452 FALSE
## X454 FALSE
## X455 FALSE
## X456 FALSE
## X457 FALSE
## X458 FALSE
## X459 FALSE
## X463 FALSE
## X464 FALSE
## X465 FALSE
When I’m looking at the result, X31 is highly correlated with X33, X34, X36, X37, X39, X40, X15.1, X18.1, X21.1, X44.1, X47, X99, X102, X125, X128, X174, X197, X200, X203, X260, X263, X266, X269, X314, X316, X317, X319, X320, X322, X323, X330, X332, X333, X335, X336, X338, X339, X341, X361, X362, X364, X365, X367, X368, X375, X377, X378, X380, X381, X383, X400, X401, X403, X404, X411, X413, X414, X416, X430, X431, X433, X438, and X440. So I update the glass dataset again by removing these variables.
simp_glass <- simp_glass %>%
select(-c(X33, X34, X36, X37, X39, X40, X15.1, X18.1, X21.1, X44.1, X47, X99, X102, X125, X128, X174, X197, X200, X203, X260, X263, X266, X269, X314, X316, X317, X319, X320, X322, X323, X330, X332, X333, X335, X336, X338, X339, X341, X361, X362, X364, X365, X367, X368, X375, X377, X378, X380, X381, X383, X400, X401, X403, X404, X411, X413, X414, X416, X430, X431, X433, X438, X440))Removed 63 variables, and left 293 variables.
Again, I decided to look at X19.
subset(cor(simp_glass, simp_glass$X19) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 FALSE
## X18 TRUE
## X19 TRUE
## X21 TRUE
## X22 TRUE
## X24 FALSE
## X25 TRUE
## X26 FALSE
## X27 FALSE
## X28 TRUE
## X29 FALSE
## X30 FALSE
## X31 FALSE
## X42 FALSE
## X43 TRUE
## X45 FALSE
## X46 FALSE
## X2 FALSE
## X3 TRUE
## X5 FALSE
## X6 TRUE
## X8 FALSE
## X9 TRUE
## X11 FALSE
## X12 TRUE
## X14 FALSE
## X17.1 FALSE
## X20.1 FALSE
## X23.1 FALSE
## X24.1 FALSE
## X26.1 FALSE
## X27.1 TRUE
## X29.1 FALSE
## X30.1 FALSE
## X31.1 TRUE
## X32.1 TRUE
## X33.1 FALSE
## X34.1 TRUE
## X35.1 TRUE
## X36.1 FALSE
## X37.1 TRUE
## X38.1 TRUE
## X39.1 FALSE
## X40.1 TRUE
## X41.1 TRUE
## X43.1 TRUE
## X46.1 TRUE
## X49 TRUE
## X50 TRUE
## X52 TRUE
## X53 TRUE
## X55 TRUE
## X56 TRUE
## X58 FALSE
## X59 FALSE
## X60 TRUE
## X61 TRUE
## X62 TRUE
## X63 TRUE
## X64 TRUE
## X65 TRUE
## X66 TRUE
## X67 TRUE
## X68 TRUE
## X69 TRUE
## X70 TRUE
## X71 TRUE
## X72 TRUE
## X73 TRUE
## X74 TRUE
## X75 TRUE
## X76 FALSE
## X77 TRUE
## X78 TRUE
## X79 FALSE
## X80 TRUE
## X81 TRUE
## X82 TRUE
## X83 TRUE
## X84 TRUE
## X85 FALSE
## X86 TRUE
## X87 TRUE
## X89 FALSE
## X90 TRUE
## X92 FALSE
## X93 TRUE
## X95 FALSE
## X96 TRUE
## X98 FALSE
## X101 FALSE
## X104 FALSE
## X105 FALSE
## X108 FALSE
## X110 FALSE
## X111 TRUE
## X113 FALSE
## X114 FALSE
## X115 TRUE
## X116 TRUE
## X117 FALSE
## X118 FALSE
## X119 TRUE
## X120 FALSE
## X121 FALSE
## X122 TRUE
## X124 FALSE
## X127 FALSE
## X130 FALSE
## X131 FALSE
## X133 FALSE
## X134 TRUE
## X136 FALSE
## X137 TRUE
## X139 FALSE
## X140 FALSE
## X141 TRUE
## X142 TRUE
## X143 TRUE
## X144 TRUE
## X145 TRUE
## X146 TRUE
## X147 TRUE
## X148 TRUE
## X149 TRUE
## X150 TRUE
## X151 TRUE
## X152 TRUE
## X153 TRUE
## X154 FALSE
## X155 TRUE
## X156 TRUE
## X157 FALSE
## X158 TRUE
## X159 TRUE
## X160 TRUE
## X161 TRUE
## X162 TRUE
## X163 FALSE
## X164 TRUE
## X165 TRUE
## X167 FALSE
## X168 TRUE
## X170 FALSE
## X171 TRUE
## X173 FALSE
## X176 FALSE
## X177 FALSE
## X180 FALSE
## X183 FALSE
## X185 FALSE
## X186 TRUE
## X188 FALSE
## X189 FALSE
## X190 FALSE
## X191 TRUE
## X192 FALSE
## X193 FALSE
## X194 TRUE
## X196 FALSE
## X199 FALSE
## X202 FALSE
## X205 FALSE
## X206 FALSE
## X208 FALSE
## X209 TRUE
## X211 FALSE
## X212 FALSE
## X213 TRUE
## X214 TRUE
## X215 TRUE
## X216 TRUE
## X217 TRUE
## X218 TRUE
## X219 TRUE
## X220 TRUE
## X221 TRUE
## X222 TRUE
## X223 FALSE
## X224 TRUE
## X225 TRUE
## X226 FALSE
## X227 TRUE
## X228 TRUE
## X229 TRUE
## X230 TRUE
## X231 TRUE
## X232 FALSE
## X233 TRUE
## X234 TRUE
## X235 FALSE
## X236 FALSE
## X237 TRUE
## X239 FALSE
## X240 FALSE
## X242 FALSE
## X243 FALSE
## X245 FALSE
## X248 FALSE
## X251 FALSE
## X252 TRUE
## X254 FALSE
## X255 FALSE
## X256 FALSE
## X257 TRUE
## X259 FALSE
## X262 FALSE
## X265 FALSE
## X268 FALSE
## X271 FALSE
## X272 TRUE
## X274 FALSE
## X275 FALSE
## X276 TRUE
## X277 TRUE
## X278 TRUE
## X279 TRUE
## X280 TRUE
## X281 TRUE
## X282 TRUE
## X283 FALSE
## X284 TRUE
## X285 TRUE
## X286 FALSE
## X287 TRUE
## X288 TRUE
## X289 TRUE
## X290 TRUE
## X291 TRUE
## X292 FALSE
## X293 TRUE
## X294 TRUE
## X309 TRUE
## X313 FALSE
## X325 FALSE
## X326 TRUE
## X328 FALSE
## X329 FALSE
## X342 TRUE
## X344 FALSE
## X345 FALSE
## X357 FALSE
## X370 FALSE
## X371 TRUE
## X373 FALSE
## X374 FALSE
## X384 TRUE
## X386 FALSE
## X387 FALSE
## X396 FALSE
## X406 FALSE
## X407 TRUE
## X409 FALSE
## X410 FALSE
## X417 TRUE
## X419 FALSE
## X420 FALSE
## X426 FALSE
## X434 TRUE
## X436 FALSE
## X437 FALSE
## X441 TRUE
## X443 FALSE
## X444 FALSE
## X447 TRUE
## X451 FALSE
## X452 TRUE
## X454 FALSE
## X455 FALSE
## X456 TRUE
## X457 FALSE
## X458 TRUE
## X459 TRUE
## X463 FALSE
## X464 FALSE
## X465 FALSE
In this case, X18, X21, X22, X25, X28, X43, X3, X6, X9, X12, X27.1, X31.1, X32.1, X34.1, X35.1, X37.1, X38.1, X40.1:X56, X60:X75, X77, X78, X80:X84, X86, X87, X90, X93, X96, X111, X115, X116, X119, X122, X134, X137, X141:X153, X155, X156, X158:X162, X164, X165, X168, X171, X186, X191, X194, X209, X213:X222, X224, X225, X227:X231, X233, X234, X237, X252, X257, X272, X276:X282, X284, X285, X287:X291, X293:X309, X326, X342, X371, X384, X407, X417, X434, X441, X447, X452, X456, X458, and X459 are highly correlated with X19. Thus I will remove these.
simp_glass <- simp_glass %>%
select(-c(X18, X21, X22, X25, X28, X43, X3, X6, X9, X12, X27.1, X31.1, X32.1, X34.1, X35.1, X37.1, X38.1, X40.1:X56, X60:X75, X77, X78, X80:X84, X86, X87, X90, X93, X96, X111, X115, X116, X119, X122, X134, X137, X141:X153, X155, X156, X158:X162, X164, X165, X168, X171, X186, X191, X194, X209, X213:X222, X224, X225, X227:X231, X233, X234, X237, X252, X257, X272, X276:X282, X284, X285, X287:X291, X293:X309, X326, X342, X371, X384, X407, X417, X434, X441, X447, X452, X456, X458, X459))143 variables are removed, not we have 136 variables.
Again, I decided to look at X26.
subset(cor(simp_glass, simp_glass$X26) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 FALSE
## X19 FALSE
## X24 FALSE
## X26 TRUE
## X27 FALSE
## X29 FALSE
## X30 FALSE
## X31 FALSE
## X42 FALSE
## X45 FALSE
## X46 FALSE
## X2 FALSE
## X5 FALSE
## X8 FALSE
## X11 FALSE
## X14 FALSE
## X17.1 FALSE
## X20.1 FALSE
## X23.1 FALSE
## X24.1 FALSE
## X26.1 FALSE
## X29.1 FALSE
## X30.1 FALSE
## X33.1 FALSE
## X36.1 FALSE
## X39.1 FALSE
## X58 FALSE
## X59 FALSE
## X76 FALSE
## X79 FALSE
## X85 FALSE
## X89 FALSE
## X92 FALSE
## X95 FALSE
## X98 FALSE
## X101 FALSE
## X104 FALSE
## X105 FALSE
## X108 TRUE
## X110 FALSE
## X113 FALSE
## X114 FALSE
## X117 FALSE
## X118 FALSE
## X120 FALSE
## X121 FALSE
## X124 FALSE
## X127 FALSE
## X130 FALSE
## X131 FALSE
## X133 FALSE
## X136 FALSE
## X139 FALSE
## X140 FALSE
## X154 FALSE
## X157 FALSE
## X163 FALSE
## X167 FALSE
## X170 FALSE
## X173 FALSE
## X176 FALSE
## X177 FALSE
## X180 TRUE
## X183 TRUE
## X185 FALSE
## X188 FALSE
## X189 FALSE
## X190 FALSE
## X192 FALSE
## X193 FALSE
## X196 FALSE
## X199 FALSE
## X202 FALSE
## X205 FALSE
## X206 FALSE
## X208 FALSE
## X211 FALSE
## X212 FALSE
## X223 FALSE
## X226 FALSE
## X232 FALSE
## X235 TRUE
## X236 FALSE
## X239 TRUE
## X240 FALSE
## X242 TRUE
## X243 TRUE
## X245 TRUE
## X248 TRUE
## X251 FALSE
## X254 FALSE
## X255 TRUE
## X256 FALSE
## X259 FALSE
## X262 FALSE
## X265 FALSE
## X268 FALSE
## X271 FALSE
## X274 FALSE
## X275 FALSE
## X283 FALSE
## X286 FALSE
## X292 FALSE
## X313 FALSE
## X325 FALSE
## X328 FALSE
## X329 FALSE
## X344 FALSE
## X345 FALSE
## X357 FALSE
## X370 FALSE
## X373 FALSE
## X374 FALSE
## X386 FALSE
## X387 FALSE
## X396 FALSE
## X406 FALSE
## X409 FALSE
## X410 FALSE
## X419 FALSE
## X420 FALSE
## X426 FALSE
## X436 FALSE
## X437 FALSE
## X443 FALSE
## X444 FALSE
## X451 FALSE
## X454 FALSE
## X455 FALSE
## X457 FALSE
## X463 FALSE
## X464 FALSE
## X465 FALSE
In this case, there are fewer correlated variables compare to the above cases. Only 10 variables will be removed, X108, X180, X183, X235, X239, X242:X248, and X255.
simp_glass <- simp_glass %>%
select(-c(X108, X180, X183, X235, X239, X242:X248, X255))10 predictors are removed, now we have left 126.
Again, I decided to look at X24.
subset(cor(simp_glass, simp_glass$X24) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 FALSE
## X19 FALSE
## X24 TRUE
## X26 FALSE
## X27 TRUE
## X29 FALSE
## X30 TRUE
## X31 FALSE
## X42 TRUE
## X45 FALSE
## X46 FALSE
## X2 TRUE
## X5 TRUE
## X8 TRUE
## X11 TRUE
## X14 TRUE
## X17.1 TRUE
## X20.1 FALSE
## X23.1 FALSE
## X24.1 FALSE
## X26.1 TRUE
## X29.1 FALSE
## X30.1 FALSE
## X33.1 TRUE
## X36.1 TRUE
## X39.1 FALSE
## X58 FALSE
## X59 FALSE
## X76 FALSE
## X79 FALSE
## X85 FALSE
## X89 TRUE
## X92 TRUE
## X95 TRUE
## X98 TRUE
## X101 FALSE
## X104 FALSE
## X105 FALSE
## X110 TRUE
## X113 FALSE
## X114 FALSE
## X117 TRUE
## X118 TRUE
## X120 FALSE
## X121 TRUE
## X124 TRUE
## X127 TRUE
## X130 TRUE
## X131 TRUE
## X133 TRUE
## X136 TRUE
## X139 FALSE
## X140 FALSE
## X154 FALSE
## X157 FALSE
## X163 FALSE
## X167 TRUE
## X170 TRUE
## X173 FALSE
## X176 FALSE
## X177 FALSE
## X185 FALSE
## X188 FALSE
## X189 FALSE
## X190 TRUE
## X192 FALSE
## X193 TRUE
## X196 TRUE
## X199 TRUE
## X202 TRUE
## X205 TRUE
## X206 TRUE
## X208 TRUE
## X211 FALSE
## X212 FALSE
## X223 FALSE
## X226 FALSE
## X232 FALSE
## X236 FALSE
## X240 FALSE
## X251 FALSE
## X254 FALSE
## X256 TRUE
## X259 TRUE
## X262 TRUE
## X265 TRUE
## X268 TRUE
## X271 TRUE
## X274 FALSE
## X275 FALSE
## X283 FALSE
## X286 FALSE
## X292 FALSE
## X313 TRUE
## X325 TRUE
## X328 FALSE
## X329 FALSE
## X344 FALSE
## X345 FALSE
## X357 FALSE
## X370 TRUE
## X373 FALSE
## X374 FALSE
## X386 FALSE
## X387 FALSE
## X396 FALSE
## X406 TRUE
## X409 FALSE
## X410 FALSE
## X419 FALSE
## X420 FALSE
## X426 FALSE
## X436 FALSE
## X437 FALSE
## X443 FALSE
## X444 FALSE
## X451 TRUE
## X454 FALSE
## X455 FALSE
## X457 FALSE
## X463 FALSE
## X464 FALSE
## X465 FALSE
In this case, there are 47 correlated variables. The removed variables are: X27, X30, X42, X2:X17.1, X26.1, X33.1, X36.1, X89:X98, X110, X117, X118, X121:X136, X167, X170, X190, X193:X208, X256:X271, X313, X325, X370, X406, and X451.
simp_glass <- simp_glass %>%
select(-c(X27, X30, X42, X2:X17.1, X26.1, X33.1, X36.1, X89:X98, X110, X117, X118, X121:X136, X167, X170, X190, X193:X208, X256:X271, X313, X325, X370, X406, X451))We now have 79 variables. Since the density is our response variable, we have 78 predictors.
Again, I decided to look at X24.1.
subset(cor(simp_glass, simp_glass$X24.1) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 FALSE
## X19 FALSE
## X24 FALSE
## X26 FALSE
## X29 FALSE
## X31 FALSE
## X45 FALSE
## X46 FALSE
## X20.1 FALSE
## X23.1 FALSE
## X24.1 TRUE
## X29.1 FALSE
## X30.1 FALSE
## X39.1 FALSE
## X58 FALSE
## X59 FALSE
## X76 FALSE
## X79 FALSE
## X85 FALSE
## X101 FALSE
## X104 FALSE
## X105 TRUE
## X113 FALSE
## X114 FALSE
## X120 FALSE
## X139 FALSE
## X140 FALSE
## X154 FALSE
## X157 FALSE
## X163 FALSE
## X173 FALSE
## X176 FALSE
## X177 TRUE
## X185 FALSE
## X188 FALSE
## X189 FALSE
## X192 FALSE
## X211 FALSE
## X212 FALSE
## X223 FALSE
## X226 FALSE
## X232 FALSE
## X236 FALSE
## X240 TRUE
## X251 FALSE
## X254 FALSE
## X274 FALSE
## X275 FALSE
## X283 FALSE
## X286 FALSE
## X292 FALSE
## X328 FALSE
## X329 FALSE
## X344 FALSE
## X345 FALSE
## X357 FALSE
## X373 FALSE
## X374 FALSE
## X386 FALSE
## X387 FALSE
## X396 FALSE
## X409 FALSE
## X410 FALSE
## X419 FALSE
## X420 FALSE
## X426 FALSE
## X436 FALSE
## X437 FALSE
## X443 FALSE
## X444 FALSE
## X454 FALSE
## X455 FALSE
## X457 FALSE
## X463 FALSE
## X464 FALSE
## X465 FALSE
There are only three correlated variables with X24.1. X105, X177, and X240 will be removed.
simp_glass <- simp_glass %>%
select(-c(X105, X177, X240))Again, I decided to look at X45.
subset(cor(simp_glass, simp_glass$X45) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 FALSE
## X19 FALSE
## X24 FALSE
## X26 FALSE
## X29 FALSE
## X31 FALSE
## X45 TRUE
## X46 FALSE
## X20.1 FALSE
## X23.1 FALSE
## X24.1 FALSE
## X29.1 TRUE
## X30.1 FALSE
## X39.1 FALSE
## X58 FALSE
## X59 FALSE
## X76 FALSE
## X79 FALSE
## X85 FALSE
## X101 FALSE
## X104 FALSE
## X113 TRUE
## X114 FALSE
## X120 FALSE
## X139 FALSE
## X140 FALSE
## X154 FALSE
## X157 FALSE
## X163 FALSE
## X173 FALSE
## X176 FALSE
## X185 FALSE
## X188 TRUE
## X189 FALSE
## X192 FALSE
## X211 TRUE
## X212 FALSE
## X223 FALSE
## X226 FALSE
## X232 FALSE
## X236 FALSE
## X251 FALSE
## X254 TRUE
## X274 TRUE
## X275 FALSE
## X283 FALSE
## X286 FALSE
## X292 FALSE
## X328 TRUE
## X329 FALSE
## X344 TRUE
## X345 FALSE
## X357 FALSE
## X373 TRUE
## X374 FALSE
## X386 TRUE
## X387 FALSE
## X396 FALSE
## X409 TRUE
## X410 FALSE
## X419 TRUE
## X420 FALSE
## X426 FALSE
## X436 TRUE
## X437 FALSE
## X443 TRUE
## X444 FALSE
## X454 TRUE
## X455 FALSE
## X457 FALSE
## X463 TRUE
## X464 TRUE
## X465 FALSE
X45 is highly correlated with X29.1, X113, X188, X211, X254, X274, X328, X344, X373, X386, X409, X419, X436, X443, X454, X463, and X464.
simp_glass <- simp_glass %>%
select(-c(X29.1, X113, X188, X211, X254, X274, X328, X344, X373, X386, X409, X419, X436, X443, X454, X463, X464))17 variables are removed, now we only have 59 variables left.
Lastly, I decided to look at the correlation between X46 and the variables.
subset(cor(simp_glass, simp_glass$X46) > 0.8) # considered as very highly correlated if the value is higher than 0.8## [,1]
## density FALSE
## X15 FALSE
## X16 FALSE
## X17 FALSE
## X19 FALSE
## X24 FALSE
## X26 FALSE
## X29 FALSE
## X31 FALSE
## X45 FALSE
## X46 TRUE
## X20.1 FALSE
## X23.1 FALSE
## X24.1 FALSE
## X30.1 TRUE
## X39.1 FALSE
## X58 FALSE
## X59 FALSE
## X76 FALSE
## X79 FALSE
## X85 FALSE
## X101 FALSE
## X104 FALSE
## X114 TRUE
## X120 FALSE
## X139 FALSE
## X140 FALSE
## X154 FALSE
## X157 FALSE
## X163 FALSE
## X173 FALSE
## X176 FALSE
## X185 FALSE
## X189 TRUE
## X192 FALSE
## X212 FALSE
## X223 FALSE
## X226 FALSE
## X232 FALSE
## X236 FALSE
## X251 FALSE
## X275 FALSE
## X283 FALSE
## X286 FALSE
## X292 FALSE
## X329 TRUE
## X345 FALSE
## X357 FALSE
## X374 TRUE
## X387 TRUE
## X396 FALSE
## X410 TRUE
## X420 TRUE
## X426 FALSE
## X437 TRUE
## X444 TRUE
## X455 FALSE
## X457 FALSE
## X465 TRUE
X46 is highly correlated with X30.1, X114, X189, X329, X374, X387, X344, X410, X420, X409, X437, X444, and X465.
simp_glass <- simp_glass %>%
select(-c(X30.1, X114, X189, X329, X374, X387, X410, X420, X437, X444, X465))eleven variables are removed, now we only have 48 variables. Our goal was to reduce the number of variables close to 50 variables, so I thought it’s better to stop here.
lmod <- lm(density ~ ., data = simp_glass) # fit a model with the reduced dataset 'simp_glass'We need to do a model selection first, our goal is to select the “best” subset of predictors. For the testing-based procedures, there are 1. Backward Elimination 2. Forward Selection 3. Stepwise Regression. At first I thought maybe I should start with Stepwise Regression, but, since testing-based procedures has possibility to miss the “optimal” model and we still have a lot of predictors to do Stepwise Regression one by one (more than fifty predictors), I eventually not to try the testing-based procedures. Instead, I thought Criterion-Based Procedures would be a better choice. We can choose AIC, BIC, Mallow’s \(C_p\) etc. And I decided to try AIC (an information criterion)
require(leaps)## Loading required package: leaps
## Warning: package 'leaps' was built under R version 4.0.5
b <- regsubsets(density ~ ., data = simp_glass)
rs <- summary(b)
rs$which## (Intercept) X15 X16 X17 X19 X24 X26 X29 X31 X45 X46 X20.1
## 1 TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2 TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## 3 TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4 TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## 5 TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## 6 TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## 7 TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
## 8 TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
## X23.1 X24.1 X39.1 X58 X59 X76 X79 X85 X101 X104 X120 X139 X140
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## 7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## 8 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## X154 X157 X163 X173 X176 X185 X192 X212 X223 X226 X232 X236 X251
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## 5 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## 6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## X275 X283 X286 X292 X345 X357 X396 X426 X455 X457
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## 6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
AIC <- 474 * log(rs$rss/474) + (2:48) * 2
plot(AIC ~ I(1:47), ylab="AIC", xlab="Number of Predictors")step(lmod)## Start: AIC=-3344.77
## density ~ X15 + X16 + X17 + X19 + X24 + X26 + X29 + X31 + X45 +
## X46 + X20.1 + X23.1 + X24.1 + X39.1 + X58 + X59 + X76 + X79 +
## X85 + X101 + X104 + X120 + X139 + X140 + X154 + X157 + X163 +
## X173 + X176 + X185 + X192 + X212 + X223 + X226 + X232 + X236 +
## X251 + X275 + X283 + X286 + X292 + X345 + X357 + X396 + X426 +
## X455 + X457
##
## Df Sum of Sq RSS AIC
## - X396 1 0.00000 0.3336 -3346.8
## - X283 1 0.00001 0.3336 -3346.8
## - X223 1 0.00003 0.3336 -3346.7
## - X76 1 0.00003 0.3336 -3346.7
## - X457 1 0.00003 0.3336 -3346.7
## - X426 1 0.00004 0.3336 -3346.7
## - X154 1 0.00004 0.3336 -3346.7
## - X286 1 0.00009 0.3337 -3346.6
## - X292 1 0.00011 0.3337 -3346.6
## - X29 1 0.00012 0.3337 -3346.6
## - X226 1 0.00014 0.3338 -3346.6
## - X24 1 0.00018 0.3338 -3346.5
## - X157 1 0.00019 0.3338 -3346.5
## - X79 1 0.00023 0.3338 -3346.4
## - X232 1 0.00027 0.3339 -3346.4
## - X163 1 0.00040 0.3340 -3346.2
## - X85 1 0.00044 0.3340 -3346.1
## - X23.1 1 0.00085 0.3345 -3345.6
## - X17 1 0.00094 0.3345 -3345.4
## <none> 0.3336 -3344.8
## - X59 1 0.00146 0.3351 -3344.7
## - X140 1 0.00148 0.3351 -3344.7
## - X212 1 0.00148 0.3351 -3344.7
## - X275 1 0.00154 0.3351 -3344.6
## - X455 1 0.00178 0.3354 -3344.3
## - X20.1 1 0.00188 0.3355 -3344.1
## - X357 1 0.00189 0.3355 -3344.1
## - X39.1 1 0.00192 0.3355 -3344.0
## - X120 1 0.00200 0.3356 -3343.9
## - X192 1 0.00226 0.3359 -3343.6
## - X236 1 0.00271 0.3363 -3342.9
## - X58 1 0.00308 0.3367 -3342.4
## - X251 1 0.00315 0.3368 -3342.3
## - X104 1 0.00323 0.3368 -3342.2
## - X139 1 0.00411 0.3377 -3341.0
## - X101 1 0.00480 0.3384 -3340.0
## - X19 1 0.00515 0.3388 -3339.5
## - X26 1 0.00678 0.3404 -3337.2
## - X45 1 0.00717 0.3408 -3336.7
## - X185 1 0.00911 0.3427 -3334.0
## - X24.1 1 0.00923 0.3428 -3333.8
## - X345 1 0.01010 0.3437 -3332.6
## - X31 1 0.01067 0.3443 -3331.8
## - X46 1 0.01094 0.3445 -3331.5
## - X176 1 0.01346 0.3471 -3328.0
## - X173 1 0.01388 0.3475 -3327.4
## - X15 1 0.03220 0.3658 -3303.1
## - X16 1 2.91352 3.2471 -2268.1
##
## Step: AIC=-3346.76
## density ~ X15 + X16 + X17 + X19 + X24 + X26 + X29 + X31 + X45 +
## X46 + X20.1 + X23.1 + X24.1 + X39.1 + X58 + X59 + X76 + X79 +
## X85 + X101 + X104 + X120 + X139 + X140 + X154 + X157 + X163 +
## X173 + X176 + X185 + X192 + X212 + X223 + X226 + X232 + X236 +
## X251 + X275 + X283 + X286 + X292 + X345 + X357 + X426 + X455 +
## X457
##
## Df Sum of Sq RSS AIC
## - X283 1 0.00004 0.3337 -3348.7
## - X76 1 0.00006 0.3337 -3348.7
## - X457 1 0.00009 0.3337 -3348.6
## - X29 1 0.00011 0.3337 -3348.6
## - X154 1 0.00013 0.3337 -3348.6
## - X223 1 0.00014 0.3338 -3348.6
## - X426 1 0.00016 0.3338 -3348.5
## - X24 1 0.00018 0.3338 -3348.5
## - X286 1 0.00031 0.3339 -3348.3
## - X292 1 0.00032 0.3339 -3348.3
## - X226 1 0.00036 0.3340 -3348.2
## - X157 1 0.00039 0.3340 -3348.2
## - X79 1 0.00044 0.3340 -3348.1
## - X232 1 0.00068 0.3343 -3347.8
## - X85 1 0.00078 0.3344 -3347.7
## - X163 1 0.00084 0.3345 -3347.6
## - X23.1 1 0.00085 0.3345 -3347.6
## - X17 1 0.00099 0.3346 -3347.4
## <none> 0.3336 -3346.8
## - X59 1 0.00151 0.3351 -3346.6
## - X140 1 0.00155 0.3352 -3346.6
## - X212 1 0.00156 0.3352 -3346.5
## - X275 1 0.00164 0.3352 -3346.4
## - X20.1 1 0.00189 0.3355 -3346.1
## - X357 1 0.00189 0.3355 -3346.1
## - X455 1 0.00190 0.3355 -3346.1
## - X39.1 1 0.00197 0.3356 -3346.0
## - X120 1 0.00207 0.3357 -3345.8
## - X192 1 0.00236 0.3360 -3345.4
## - X236 1 0.00284 0.3365 -3344.7
## - X104 1 0.00323 0.3368 -3344.2
## - X251 1 0.00331 0.3369 -3344.1
## - X58 1 0.00354 0.3371 -3343.8
## - X139 1 0.00464 0.3383 -3342.2
## - X101 1 0.00481 0.3384 -3342.0
## - X19 1 0.00515 0.3388 -3341.5
## - X26 1 0.00693 0.3405 -3339.0
## - X45 1 0.00720 0.3408 -3338.6
## - X185 1 0.00911 0.3427 -3336.0
## - X24.1 1 0.00939 0.3430 -3335.6
## - X345 1 0.01094 0.3445 -3333.5
## - X46 1 0.01126 0.3449 -3333.0
## - X31 1 0.01138 0.3450 -3332.9
## - X176 1 0.01346 0.3471 -3330.0
## - X173 1 0.01389 0.3475 -3329.4
## - X15 1 0.03268 0.3663 -3304.5
## - X16 1 3.00526 3.3389 -2256.9
##
## Step: AIC=-3348.7
## density ~ X15 + X16 + X17 + X19 + X24 + X26 + X29 + X31 + X45 +
## X46 + X20.1 + X23.1 + X24.1 + X39.1 + X58 + X59 + X76 + X79 +
## X85 + X101 + X104 + X120 + X139 + X140 + X154 + X157 + X163 +
## X173 + X176 + X185 + X192 + X212 + X223 + X226 + X232 + X236 +
## X251 + X275 + X286 + X292 + X345 + X357 + X426 + X455 + X457
##
## Df Sum of Sq RSS AIC
## - X76 1 0.00002 0.3337 -3350.7
## - X457 1 0.00009 0.3337 -3350.6
## - X29 1 0.00009 0.3337 -3350.6
## - X426 1 0.00016 0.3338 -3350.5
## - X24 1 0.00021 0.3339 -3350.4
## - X154 1 0.00025 0.3339 -3350.3
## - X292 1 0.00029 0.3339 -3350.3
## - X286 1 0.00036 0.3340 -3350.2
## - X226 1 0.00049 0.3341 -3350.0
## - X157 1 0.00056 0.3342 -3349.9
## - X79 1 0.00064 0.3343 -3349.8
## - X232 1 0.00067 0.3343 -3349.8
## - X223 1 0.00067 0.3343 -3349.7
## - X85 1 0.00082 0.3345 -3349.5
## - X163 1 0.00088 0.3345 -3349.5
## - X23.1 1 0.00090 0.3346 -3349.4
## - X17 1 0.00095 0.3346 -3349.4
## <none> 0.3337 -3348.7
## - X59 1 0.00159 0.3352 -3348.5
## - X140 1 0.00163 0.3353 -3348.4
## - X212 1 0.00166 0.3353 -3348.3
## - X275 1 0.00176 0.3354 -3348.2
## - X357 1 0.00189 0.3355 -3348.0
## - X20.1 1 0.00195 0.3356 -3347.9
## - X39.1 1 0.00199 0.3356 -3347.9
## - X455 1 0.00204 0.3357 -3347.8
## - X120 1 0.00210 0.3358 -3347.7
## - X192 1 0.00239 0.3360 -3347.3
## - X236 1 0.00288 0.3365 -3346.6
## - X104 1 0.00323 0.3369 -3346.1
## - X251 1 0.00335 0.3370 -3346.0
## - X58 1 0.00388 0.3375 -3345.2
## - X101 1 0.00479 0.3384 -3343.9
## - X139 1 0.00503 0.3387 -3343.6
## - X19 1 0.00513 0.3388 -3343.5
## - X45 1 0.00734 0.3410 -3340.4
## - X26 1 0.00752 0.3412 -3340.1
## - X24.1 1 0.00940 0.3430 -3337.5
## - X185 1 0.01020 0.3439 -3336.4
## - X345 1 0.01102 0.3447 -3335.3
## - X46 1 0.01127 0.3449 -3335.0
## - X31 1 0.01140 0.3450 -3334.8
## - X176 1 0.01417 0.3478 -3331.0
## - X173 1 0.01512 0.3488 -3329.7
## - X15 1 0.03292 0.3666 -3306.1
## - X16 1 3.11020 3.4438 -2244.3
##
## Step: AIC=-3350.67
## density ~ X15 + X16 + X17 + X19 + X24 + X26 + X29 + X31 + X45 +
## X46 + X20.1 + X23.1 + X24.1 + X39.1 + X58 + X59 + X79 + X85 +
## X101 + X104 + X120 + X139 + X140 + X154 + X157 + X163 + X173 +
## X176 + X185 + X192 + X212 + X223 + X226 + X232 + X236 + X251 +
## X275 + X286 + X292 + X345 + X357 + X426 + X455 + X457
##
## Df Sum of Sq RSS AIC
## - X457 1 0.0001 0.3338 -3352.5
## - X29 1 0.0001 0.3338 -3352.5
## - X426 1 0.0002 0.3338 -3352.4
## - X24 1 0.0002 0.3339 -3352.4
## - X292 1 0.0003 0.3340 -3352.2
## - X286 1 0.0004 0.3340 -3352.1
## - X226 1 0.0005 0.3342 -3351.9
## - X157 1 0.0006 0.3343 -3351.8
## - X232 1 0.0007 0.3343 -3351.7
## - X79 1 0.0007 0.3344 -3351.6
## - X85 1 0.0008 0.3345 -3351.5
## - X163 1 0.0009 0.3345 -3351.5
## - X23.1 1 0.0009 0.3346 -3351.4
## - X17 1 0.0009 0.3346 -3351.4
## <none> 0.3337 -3350.7
## - X59 1 0.0016 0.3353 -3350.3
## - X140 1 0.0017 0.3354 -3350.2
## - X212 1 0.0018 0.3354 -3350.2
## - X275 1 0.0019 0.3355 -3350.0
## - X357 1 0.0019 0.3356 -3350.0
## - X20.1 1 0.0020 0.3357 -3349.8
## - X39.1 1 0.0021 0.3357 -3349.7
## - X455 1 0.0022 0.3359 -3349.6
## - X120 1 0.0022 0.3359 -3349.5
## - X192 1 0.0026 0.3362 -3349.1
## - X236 1 0.0031 0.3368 -3348.3
## - X104 1 0.0033 0.3369 -3348.1
## - X251 1 0.0036 0.3373 -3347.5
## - X58 1 0.0039 0.3375 -3347.2
## - X223 1 0.0046 0.3383 -3346.2
## - X101 1 0.0049 0.3386 -3345.8
## - X139 1 0.0050 0.3387 -3345.6
## - X19 1 0.0051 0.3388 -3345.5
## - X154 1 0.0054 0.3391 -3345.0
## - X45 1 0.0073 0.3410 -3342.4
## - X26 1 0.0075 0.3412 -3342.1
## - X24.1 1 0.0098 0.3435 -3339.0
## - X185 1 0.0103 0.3439 -3338.3
## - X345 1 0.0110 0.3447 -3337.3
## - X46 1 0.0113 0.3450 -3336.9
## - X31 1 0.0117 0.3453 -3336.4
## - X176 1 0.0144 0.3481 -3332.7
## - X173 1 0.0154 0.3490 -3331.3
## - X15 1 0.0330 0.3666 -3308.0
## - X16 1 3.1714 3.5051 -2237.9
##
## Step: AIC=-3352.54
## density ~ X15 + X16 + X17 + X19 + X24 + X26 + X29 + X31 + X45 +
## X46 + X20.1 + X23.1 + X24.1 + X39.1 + X58 + X59 + X79 + X85 +
## X101 + X104 + X120 + X139 + X140 + X154 + X157 + X163 + X173 +
## X176 + X185 + X192 + X212 + X223 + X226 + X232 + X236 + X251 +
## X275 + X286 + X292 + X345 + X357 + X426 + X455
##
## Df Sum of Sq RSS AIC
## - X29 1 0.0001 0.3338 -3354.5
## - X24 1 0.0002 0.3340 -3354.3
## - X426 1 0.0004 0.3341 -3354.0
## - X157 1 0.0010 0.3348 -3353.1
## - X17 1 0.0010 0.3348 -3353.1
## - X79 1 0.0010 0.3348 -3353.1
## - X23.1 1 0.0010 0.3348 -3353.1
## - X226 1 0.0011 0.3348 -3353.0
## - X286 1 0.0011 0.3349 -3352.9
## - X85 1 0.0014 0.3351 -3352.6
## <none> 0.3338 -3352.5
## - X59 1 0.0016 0.3354 -3352.3
## - X140 1 0.0017 0.3354 -3352.2
## - X212 1 0.0017 0.3355 -3352.1
## - X357 1 0.0018 0.3356 -3352.0
## - X275 1 0.0019 0.3356 -3351.9
## - X292 1 0.0019 0.3357 -3351.9
## - X163 1 0.0020 0.3358 -3351.7
## - X39.1 1 0.0020 0.3358 -3351.7
## - X20.1 1 0.0021 0.3358 -3351.6
## - X120 1 0.0022 0.3359 -3351.5
## - X455 1 0.0022 0.3359 -3351.5
## - X232 1 0.0023 0.3361 -3351.3
## - X192 1 0.0025 0.3363 -3351.0
## - X236 1 0.0031 0.3368 -3350.2
## - X104 1 0.0035 0.3372 -3349.6
## - X251 1 0.0036 0.3374 -3349.5
## - X58 1 0.0038 0.3376 -3349.2
## - X223 1 0.0045 0.3383 -3348.2
## - X139 1 0.0049 0.3387 -3347.6
## - X101 1 0.0050 0.3387 -3347.5
## - X19 1 0.0051 0.3388 -3347.4
## - X154 1 0.0053 0.3391 -3347.0
## - X26 1 0.0075 0.3412 -3344.1
## - X45 1 0.0076 0.3414 -3343.9
## - X185 1 0.0102 0.3440 -3340.3
## - X24.1 1 0.0103 0.3441 -3340.1
## - X46 1 0.0115 0.3453 -3338.5
## - X31 1 0.0116 0.3454 -3338.3
## - X345 1 0.0117 0.3455 -3338.2
## - X176 1 0.0143 0.3481 -3334.6
## - X173 1 0.0153 0.3491 -3333.3
## - X15 1 0.0376 0.3713 -3304.0
## - X16 1 3.2340 3.5677 -2231.5
##
## Step: AIC=-3354.46
## density ~ X15 + X16 + X17 + X19 + X24 + X26 + X31 + X45 + X46 +
## X20.1 + X23.1 + X24.1 + X39.1 + X58 + X59 + X79 + X85 + X101 +
## X104 + X120 + X139 + X140 + X154 + X157 + X163 + X173 + X176 +
## X185 + X192 + X212 + X223 + X226 + X232 + X236 + X251 + X275 +
## X286 + X292 + X345 + X357 + X426 + X455
##
## Df Sum of Sq RSS AIC
## - X24 1 0.0002 0.3341 -3356.1
## - X426 1 0.0006 0.3344 -3355.6
## - X79 1 0.0011 0.3350 -3354.8
## - X157 1 0.0011 0.3350 -3354.8
## - X226 1 0.0013 0.3351 -3354.7
## - X17 1 0.0013 0.3351 -3354.7
## <none> 0.3338 -3354.5
## - X286 1 0.0014 0.3352 -3354.5
## - X85 1 0.0015 0.3353 -3354.4
## - X59 1 0.0017 0.3355 -3354.1
## - X23.1 1 0.0017 0.3355 -3354.0
## - X140 1 0.0017 0.3356 -3354.0
## - X357 1 0.0018 0.3356 -3353.9
## - X212 1 0.0018 0.3356 -3353.9
## - X275 1 0.0019 0.3358 -3353.7
## - X39.1 1 0.0020 0.3359 -3353.6
## - X292 1 0.0021 0.3359 -3353.5
## - X163 1 0.0021 0.3360 -3353.4
## - X120 1 0.0022 0.3360 -3353.4
## - X455 1 0.0023 0.3361 -3353.3
## - X232 1 0.0024 0.3363 -3353.0
## - X192 1 0.0025 0.3363 -3352.9
## - X20.1 1 0.0027 0.3365 -3352.6
## - X236 1 0.0031 0.3369 -3352.1
## - X251 1 0.0036 0.3374 -3351.4
## - X58 1 0.0040 0.3378 -3350.8
## - X223 1 0.0045 0.3383 -3350.1
## - X104 1 0.0051 0.3390 -3349.2
## - X19 1 0.0052 0.3390 -3349.1
## - X139 1 0.0052 0.3391 -3349.1
## - X154 1 0.0053 0.3391 -3349.0
## - X101 1 0.0061 0.3399 -3347.9
## - X45 1 0.0075 0.3414 -3345.9
## - X26 1 0.0078 0.3417 -3345.5
## - X185 1 0.0103 0.3441 -3342.1
## - X345 1 0.0121 0.3459 -3339.6
## - X46 1 0.0124 0.3462 -3339.2
## - X31 1 0.0128 0.3466 -3338.6
## - X176 1 0.0150 0.3488 -3335.7
## - X173 1 0.0153 0.3491 -3335.2
## - X24.1 1 0.0171 0.3509 -3332.8
## - X15 1 0.0581 0.3919 -3280.5
## - X16 1 3.5558 3.8896 -2192.6
##
## Step: AIC=-3356.12
## density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 +
## X23.1 + X24.1 + X39.1 + X58 + X59 + X79 + X85 + X101 + X104 +
## X120 + X139 + X140 + X154 + X157 + X163 + X173 + X176 + X185 +
## X192 + X212 + X223 + X226 + X232 + X236 + X251 + X275 + X286 +
## X292 + X345 + X357 + X426 + X455
##
## Df Sum of Sq RSS AIC
## - X426 1 0.0006 0.3346 -3357.3
## - X157 1 0.0011 0.3352 -3356.6
## - X79 1 0.0011 0.3352 -3356.6
## - X226 1 0.0012 0.3352 -3356.5
## - X17 1 0.0013 0.3353 -3356.3
## - X286 1 0.0013 0.3354 -3356.3
## - X85 1 0.0014 0.3355 -3356.1
## <none> 0.3341 -3356.1
## - X23.1 1 0.0015 0.3356 -3356.0
## - X59 1 0.0016 0.3357 -3355.8
## - X140 1 0.0017 0.3358 -3355.7
## - X212 1 0.0018 0.3359 -3355.6
## - X292 1 0.0019 0.3359 -3355.5
## - X275 1 0.0020 0.3360 -3355.3
## - X357 1 0.0020 0.3360 -3355.3
## - X163 1 0.0020 0.3361 -3355.3
## - X39.1 1 0.0021 0.3362 -3355.1
## - X232 1 0.0023 0.3363 -3354.9
## - X455 1 0.0023 0.3364 -3354.8
## - X120 1 0.0024 0.3364 -3354.8
## - X20.1 1 0.0025 0.3365 -3354.6
## - X192 1 0.0028 0.3369 -3354.1
## - X236 1 0.0035 0.3376 -3353.1
## - X251 1 0.0043 0.3384 -3352.1
## - X223 1 0.0044 0.3384 -3352.0
## - X19 1 0.0050 0.3390 -3351.1
## - X154 1 0.0051 0.3392 -3350.9
## - X104 1 0.0052 0.3393 -3350.8
## - X58 1 0.0054 0.3394 -3350.6
## - X101 1 0.0062 0.3403 -3349.4
## - X139 1 0.0063 0.3404 -3349.2
## - X45 1 0.0075 0.3416 -3347.6
## - X26 1 0.0076 0.3417 -3347.4
## - X46 1 0.0122 0.3462 -3341.2
## - X345 1 0.0128 0.3469 -3340.3
## - X31 1 0.0138 0.3479 -3338.9
## - X24.1 1 0.0172 0.3513 -3334.3
## - X176 1 0.0229 0.3570 -3326.7
## - X173 1 0.0277 0.3618 -3320.3
## - X185 1 0.0308 0.3649 -3316.3
## - X15 1 0.0583 0.3923 -3281.9
## - X16 1 3.5767 3.9108 -2192.0
##
## Step: AIC=-3357.3
## density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 +
## X23.1 + X24.1 + X39.1 + X58 + X59 + X79 + X85 + X101 + X104 +
## X120 + X139 + X140 + X154 + X157 + X163 + X173 + X176 + X185 +
## X192 + X212 + X223 + X226 + X232 + X236 + X251 + X275 + X286 +
## X292 + X345 + X357 + X455
##
## Df Sum of Sq RSS AIC
## - X157 1 0.0005 0.3352 -3358.6
## - X79 1 0.0005 0.3352 -3358.6
## - X226 1 0.0006 0.3353 -3358.4
## - X85 1 0.0008 0.3355 -3358.1
## - X286 1 0.0010 0.3357 -3357.9
## - X23.1 1 0.0010 0.3357 -3357.8
## - X292 1 0.0013 0.3360 -3357.4
## <none> 0.3346 -3357.3
## - X163 1 0.0015 0.3361 -3357.3
## - X59 1 0.0015 0.3361 -3357.2
## - X140 1 0.0016 0.3362 -3357.1
## - X357 1 0.0016 0.3362 -3357.1
## - X212 1 0.0017 0.3363 -3356.9
## - X232 1 0.0018 0.3364 -3356.8
## - X275 1 0.0018 0.3365 -3356.7
## - X17 1 0.0019 0.3365 -3356.6
## - X20.1 1 0.0020 0.3366 -3356.5
## - X39.1 1 0.0020 0.3366 -3356.5
## - X455 1 0.0021 0.3368 -3356.3
## - X120 1 0.0022 0.3369 -3356.2
## - X192 1 0.0027 0.3373 -3355.6
## - X236 1 0.0034 0.3380 -3354.6
## - X251 1 0.0041 0.3387 -3353.6
## - X19 1 0.0044 0.3390 -3353.1
## - X223 1 0.0045 0.3392 -3352.9
## - X104 1 0.0047 0.3393 -3352.8
## - X154 1 0.0052 0.3399 -3351.9
## - X101 1 0.0056 0.3403 -3351.4
## - X45 1 0.0082 0.3428 -3347.9
## - X26 1 0.0084 0.3431 -3347.5
## - X58 1 0.0085 0.3432 -3347.4
## - X139 1 0.0095 0.3442 -3346.0
## - X46 1 0.0120 0.3466 -3342.6
## - X345 1 0.0123 0.3469 -3342.3
## - X31 1 0.0137 0.3484 -3340.2
## - X24.1 1 0.0181 0.3527 -3334.3
## - X176 1 0.0223 0.3570 -3328.7
## - X173 1 0.0272 0.3618 -3322.3
## - X185 1 0.0315 0.3661 -3316.7
## - X15 1 0.0578 0.3924 -3283.8
## - X16 1 4.0270 4.3617 -2142.3
##
## Step: AIC=-3358.58
## density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 +
## X23.1 + X24.1 + X39.1 + X58 + X59 + X79 + X85 + X101 + X104 +
## X120 + X139 + X140 + X154 + X163 + X173 + X176 + X185 + X192 +
## X212 + X223 + X226 + X232 + X236 + X251 + X275 + X286 + X292 +
## X345 + X357 + X455
##
## Df Sum of Sq RSS AIC
## - X79 1 0.0000 0.3352 -3360.5
## - X226 1 0.0003 0.3354 -3360.2
## - X286 1 0.0009 0.3361 -3359.3
## - X292 1 0.0011 0.3362 -3359.1
## - X23.1 1 0.0012 0.3364 -3358.9
## <none> 0.3352 -3358.6
## - X357 1 0.0014 0.3366 -3358.6
## - X85 1 0.0017 0.3368 -3358.2
## - X59 1 0.0017 0.3368 -3358.2
## - X140 1 0.0018 0.3370 -3358.0
## - X17 1 0.0018 0.3370 -3358.0
## - X212 1 0.0019 0.3371 -3357.9
## - X275 1 0.0021 0.3372 -3357.7
## - X20.1 1 0.0022 0.3374 -3357.4
## - X39.1 1 0.0022 0.3374 -3357.4
## - X455 1 0.0024 0.3376 -3357.2
## - X120 1 0.0025 0.3376 -3357.1
## - X192 1 0.0029 0.3381 -3356.4
## - X232 1 0.0031 0.3383 -3356.2
## - X236 1 0.0037 0.3388 -3355.4
## - X223 1 0.0042 0.3394 -3354.6
## - X163 1 0.0043 0.3395 -3354.5
## - X251 1 0.0044 0.3396 -3354.3
## - X19 1 0.0046 0.3398 -3354.1
## - X154 1 0.0050 0.3401 -3353.6
## - X104 1 0.0051 0.3402 -3353.4
## - X101 1 0.0061 0.3412 -3352.1
## - X26 1 0.0081 0.3433 -3349.2
## - X58 1 0.0084 0.3435 -3348.9
## - X45 1 0.0087 0.3438 -3348.4
## - X139 1 0.0094 0.3446 -3347.4
## - X345 1 0.0129 0.3481 -3342.7
## - X46 1 0.0129 0.3481 -3342.6
## - X31 1 0.0139 0.3491 -3341.3
## - X24.1 1 0.0182 0.3533 -3335.6
## - X176 1 0.0230 0.3582 -3329.1
## - X173 1 0.0277 0.3629 -3322.9
## - X185 1 0.0313 0.3665 -3318.2
## - X15 1 0.0573 0.3925 -3285.7
## - X16 1 4.0279 4.3630 -2144.1
##
## Step: AIC=-3360.55
## density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 +
## X23.1 + X24.1 + X39.1 + X58 + X59 + X85 + X101 + X104 + X120 +
## X139 + X140 + X154 + X163 + X173 + X176 + X185 + X192 + X212 +
## X223 + X226 + X232 + X236 + X251 + X275 + X286 + X292 + X345 +
## X357 + X455
##
## Df Sum of Sq RSS AIC
## - X23.1 1 0.0012 0.3364 -3360.8
## <none> 0.3352 -3360.5
## - X357 1 0.0014 0.3366 -3360.5
## - X59 1 0.0017 0.3369 -3360.2
## - X292 1 0.0018 0.3370 -3360.0
## - X140 1 0.0018 0.3370 -3360.0
## - X17 1 0.0018 0.3370 -3360.0
## - X286 1 0.0018 0.3370 -3360.0
## - X212 1 0.0019 0.3371 -3359.9
## - X226 1 0.0020 0.3371 -3359.8
## - X85 1 0.0020 0.3372 -3359.7
## - X275 1 0.0021 0.3372 -3359.6
## - X39.1 1 0.0022 0.3374 -3359.4
## - X20.1 1 0.0023 0.3374 -3359.4
## - X455 1 0.0024 0.3376 -3359.1
## - X120 1 0.0025 0.3376 -3359.1
## - X192 1 0.0029 0.3381 -3358.4
## - X236 1 0.0037 0.3388 -3357.4
## - X232 1 0.0037 0.3389 -3357.3
## - X163 1 0.0044 0.3396 -3356.4
## - X223 1 0.0044 0.3396 -3356.3
## - X251 1 0.0044 0.3396 -3356.3
## - X19 1 0.0046 0.3398 -3356.0
## - X104 1 0.0051 0.3403 -3355.4
## - X154 1 0.0053 0.3404 -3355.2
## - X101 1 0.0061 0.3413 -3354.0
## - X26 1 0.0081 0.3433 -3351.2
## - X58 1 0.0086 0.3438 -3350.5
## - X45 1 0.0088 0.3440 -3350.2
## - X139 1 0.0097 0.3449 -3349.0
## - X345 1 0.0129 0.3481 -3344.6
## - X46 1 0.0131 0.3483 -3344.4
## - X31 1 0.0139 0.3491 -3343.3
## - X24.1 1 0.0183 0.3534 -3337.4
## - X176 1 0.0230 0.3582 -3331.0
## - X173 1 0.0277 0.3629 -3324.9
## - X185 1 0.0316 0.3668 -3319.9
## - X15 1 0.0573 0.3925 -3287.7
## - X16 1 4.0279 4.3630 -2146.1
##
## Step: AIC=-3360.79
## density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 +
## X24.1 + X39.1 + X58 + X59 + X85 + X101 + X104 + X120 + X139 +
## X140 + X154 + X163 + X173 + X176 + X185 + X192 + X212 + X223 +
## X226 + X232 + X236 + X251 + X275 + X286 + X292 + X345 + X357 +
## X455
##
## Df Sum of Sq RSS AIC
## - X59 1 0.0008 0.3372 -3361.6
## - X140 1 0.0009 0.3373 -3361.5
## - X212 1 0.0010 0.3374 -3361.4
## - X275 1 0.0011 0.3375 -3361.2
## - X39.1 1 0.0013 0.3377 -3361.0
## - X85 1 0.0014 0.3378 -3360.8
## - X455 1 0.0014 0.3378 -3360.8
## - X292 1 0.0014 0.3378 -3360.8
## <none> 0.3364 -3360.8
## - X120 1 0.0015 0.3379 -3360.7
## - X357 1 0.0015 0.3379 -3360.7
## - X286 1 0.0017 0.3382 -3360.4
## - X226 1 0.0018 0.3382 -3360.3
## - X192 1 0.0019 0.3383 -3360.1
## - X236 1 0.0026 0.3390 -3359.2
## - X232 1 0.0033 0.3397 -3358.2
## - X251 1 0.0033 0.3397 -3358.2
## - X163 1 0.0038 0.3402 -3357.5
## - X223 1 0.0045 0.3409 -3356.4
## - X19 1 0.0048 0.3412 -3356.0
## - X154 1 0.0053 0.3417 -3355.4
## - X17 1 0.0061 0.3425 -3354.3
## - X20.1 1 0.0071 0.3435 -3352.9
## - X45 1 0.0079 0.3443 -3351.8
## - X26 1 0.0093 0.3457 -3349.9
## - X58 1 0.0095 0.3459 -3349.6
## - X139 1 0.0103 0.3467 -3348.5
## - X46 1 0.0123 0.3488 -3345.7
## - X345 1 0.0126 0.3490 -3345.3
## - X31 1 0.0130 0.3494 -3344.9
## - X24.1 1 0.0170 0.3534 -3339.4
## - X101 1 0.0230 0.3594 -3331.4
## - X104 1 0.0256 0.3620 -3328.1
## - X185 1 0.0317 0.3681 -3320.1
## - X173 1 0.0324 0.3688 -3319.2
## - X176 1 0.0331 0.3695 -3318.3
## - X15 1 0.0616 0.3981 -3283.1
## - X16 1 5.2634 5.5998 -2029.8
##
## Step: AIC=-3361.64
## density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 +
## X24.1 + X39.1 + X58 + X85 + X101 + X104 + X120 + X139 + X140 +
## X154 + X163 + X173 + X176 + X185 + X192 + X212 + X223 + X226 +
## X232 + X236 + X251 + X275 + X286 + X292 + X345 + X357 + X455
##
## Df Sum of Sq RSS AIC
## - X140 1 0.0003 0.3375 -3363.3
## - X212 1 0.0003 0.3375 -3363.3
## - X275 1 0.0004 0.3376 -3363.1
## - X455 1 0.0008 0.3380 -3362.6
## - X292 1 0.0011 0.3384 -3362.1
## - X85 1 0.0012 0.3385 -3361.9
## - X357 1 0.0014 0.3386 -3361.7
## <none> 0.3372 -3361.6
## - X226 1 0.0015 0.3387 -3361.6
## - X286 1 0.0015 0.3387 -3361.6
## - X232 1 0.0030 0.3402 -3359.5
## - X163 1 0.0035 0.3408 -3358.7
## - X19 1 0.0041 0.3413 -3358.0
## - X192 1 0.0045 0.3417 -3357.4
## - X223 1 0.0045 0.3418 -3357.3
## - X236 1 0.0049 0.3422 -3356.8
## - X154 1 0.0051 0.3424 -3356.5
## - X120 1 0.0053 0.3425 -3356.2
## - X251 1 0.0053 0.3426 -3356.2
## - X17 1 0.0055 0.3427 -3356.0
## - X39.1 1 0.0061 0.3433 -3355.2
## - X20.1 1 0.0066 0.3438 -3354.5
## - X45 1 0.0071 0.3443 -3353.8
## - X58 1 0.0092 0.3464 -3350.9
## - X139 1 0.0098 0.3470 -3350.1
## - X26 1 0.0108 0.3481 -3348.7
## - X31 1 0.0123 0.3495 -3346.7
## - X345 1 0.0129 0.3501 -3345.9
## - X46 1 0.0131 0.3504 -3345.5
## - X24.1 1 0.0164 0.3537 -3341.1
## - X101 1 0.0223 0.3595 -3333.3
## - X104 1 0.0249 0.3622 -3329.8
## - X185 1 0.0311 0.3683 -3321.9
## - X173 1 0.0316 0.3689 -3321.2
## - X176 1 0.0323 0.3695 -3320.3
## - X15 1 0.0608 0.3981 -3285.0
## - X16 1 5.5031 5.8403 -2011.9
##
## Step: AIC=-3363.28
## density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 +
## X24.1 + X39.1 + X58 + X85 + X101 + X104 + X120 + X139 + X154 +
## X163 + X173 + X176 + X185 + X192 + X212 + X223 + X226 + X232 +
## X236 + X251 + X275 + X286 + X292 + X345 + X357 + X455
##
## Df Sum of Sq RSS AIC
## - X212 1 0.0000 0.3375 -3365.3
## - X275 1 0.0005 0.3380 -3364.5
## <none> 0.3375 -3363.3
## - X85 1 0.0015 0.3390 -3363.1
## - X292 1 0.0015 0.3390 -3363.1
## - X357 1 0.0015 0.3390 -3363.1
## - X226 1 0.0018 0.3393 -3362.7
## - X286 1 0.0018 0.3393 -3362.7
## - X455 1 0.0024 0.3399 -3361.9
## - X232 1 0.0037 0.3412 -3360.1
## - X19 1 0.0043 0.3418 -3359.3
## - X163 1 0.0043 0.3418 -3359.2
## - X223 1 0.0052 0.3427 -3358.0
## - X17 1 0.0055 0.3430 -3357.6
## - X154 1 0.0060 0.3435 -3356.9
## - X39.1 1 0.0063 0.3438 -3356.5
## - X20.1 1 0.0065 0.3440 -3356.2
## - X45 1 0.0072 0.3447 -3355.2
## - X120 1 0.0074 0.3449 -3355.0
## - X58 1 0.0090 0.3465 -3352.8
## - X139 1 0.0096 0.3471 -3352.0
## - X192 1 0.0120 0.3495 -3348.8
## - X31 1 0.0121 0.3496 -3348.6
## - X345 1 0.0126 0.3501 -3347.9
## - X46 1 0.0145 0.3520 -3345.3
## - X24.1 1 0.0162 0.3537 -3343.0
## - X26 1 0.0170 0.3545 -3342.0
## - X236 1 0.0171 0.3545 -3341.9
## - X251 1 0.0185 0.3560 -3340.0
## - X101 1 0.0222 0.3597 -3335.1
## - X104 1 0.0250 0.3625 -3331.5
## - X185 1 0.0308 0.3683 -3323.9
## - X173 1 0.0315 0.3689 -3323.0
## - X176 1 0.0322 0.3697 -3322.1
## - X15 1 0.0608 0.3982 -3286.8
## - X16 1 5.5080 5.8455 -2013.5
##
## Step: AIC=-3365.25
## density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 +
## X24.1 + X39.1 + X58 + X85 + X101 + X104 + X120 + X139 + X154 +
## X163 + X173 + X176 + X185 + X192 + X223 + X226 + X232 + X236 +
## X251 + X275 + X286 + X292 + X345 + X357 + X455
##
## Df Sum of Sq RSS AIC
## <none> 0.3375 -3365.3
## - X357 1 0.0015 0.3390 -3365.1
## - X85 1 0.0015 0.3390 -3365.1
## - X292 1 0.0016 0.3391 -3365.1
## - X286 1 0.0018 0.3393 -3364.7
## - X226 1 0.0018 0.3393 -3364.7
## - X232 1 0.0038 0.3413 -3361.9
## - X163 1 0.0044 0.3419 -3361.1
## - X19 1 0.0048 0.3423 -3360.6
## - X223 1 0.0052 0.3427 -3360.0
## - X17 1 0.0057 0.3432 -3359.3
## - X154 1 0.0060 0.3435 -3358.9
## - X20.1 1 0.0068 0.3443 -3357.8
## - X39.1 1 0.0075 0.3450 -3356.9
## - X120 1 0.0083 0.3458 -3355.7
## - X45 1 0.0084 0.3459 -3355.6
## - X58 1 0.0111 0.3486 -3351.9
## - X139 1 0.0118 0.3493 -3350.9
## - X31 1 0.0120 0.3496 -3350.6
## - X192 1 0.0121 0.3497 -3350.5
## - X345 1 0.0128 0.3503 -3349.6
## - X275 1 0.0154 0.3529 -3346.1
## - X46 1 0.0167 0.3543 -3344.3
## - X24.1 1 0.0170 0.3545 -3343.9
## - X236 1 0.0172 0.3547 -3343.7
## - X455 1 0.0176 0.3551 -3343.1
## - X26 1 0.0183 0.3558 -3342.3
## - X251 1 0.0197 0.3572 -3340.4
## - X101 1 0.0226 0.3601 -3336.5
## - X104 1 0.0250 0.3625 -3333.4
## - X185 1 0.0308 0.3683 -3325.9
## - X173 1 0.0315 0.3690 -3325.0
## - X176 1 0.0322 0.3697 -3324.0
## - X15 1 0.0690 0.4065 -3279.1
## - X16 1 5.7181 6.0557 -1998.7
##
## Call:
## lm(formula = density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 +
## X46 + X20.1 + X24.1 + X39.1 + X58 + X85 + X101 + X104 + X120 +
## X139 + X154 + X163 + X173 + X176 + X185 + X192 + X223 + X226 +
## X232 + X236 + X251 + X275 + X286 + X292 + X345 + X357 + X455,
## data = simp_glass)
##
## Coefficients:
## (Intercept) X15 X16 X17 X19 X26
## -3.245e+02 -8.514e-01 1.216e-01 -3.316e-02 1.507e-03 1.986e-02
## X31 X45 X46 X20.1 X24.1 X39.1
## -1.723e-01 -1.520e+02 6.459e-01 1.034e+00 6.629e-04 4.506e-01
## X58 X85 X101 X104 X120 X139
## -3.852e+03 -3.465e-06 -4.929e+00 3.878e+00 -1.910e+00 4.404e+03
## X154 X163 X173 X176 X185 X192
## -1.323e-05 2.341e-05 1.042e+01 -7.102e+00 -3.032e+00 4.068e+00
## X223 X226 X232 X236 X251 X275
## 1.152e-05 1.875e-06 -2.137e-05 -4.415e+00 1.720e+00 7.303e+00
## X286 X292 X345 X357 X455
## -1.596e-06 3.438e-06 1.064e-03 -3.138e-07 -9.910e+00
The model selected by AIC is: \(density\) ~ \(X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 + X24.1 + X39.1 + X58 + X85 + X101 + X104 + X120 + X139 + X154 + X163 + X173 + X176 + X185 + X192 + X223 + X226 + X232 + X236 + X251 + X275 + X286 + X292 + X345 + X357 + X455\).
Now let’s calculate the prediction interval of the model matrix.
lmodAIC <- lm(density ~ X15 + X16 + X17 + X19 + X26 + X31 + X45 + X46 + X20.1 + X24.1 + X39.1 + X58 + X85 + X101 + X104 + X120 + X139 + X154 + X163 + X173 + X176 + X185 + X192 + X223 + X226 + X232 + X236 + X251 + X275 + X286 + X292 + X345 + X357 + X455, data = simp_glass)
y <- model.matrix(lmodAIC)
val <- apply(y, 2, mean)
val## (Intercept) X15 X16 X17 X19 X26
## 1.000000e+00 3.332555e-01 2.525957e+01 2.291226e+03 3.898173e+01 2.974920e+03
## X31 X45 X46 X20.1 X24.1 X39.1
## 1.367187e+02 9.415236e-02 9.557635e+01 6.984276e+02 3.907774e+05 7.142065e+02
## X58 X85 X101 X104 X120 X139
## 2.256401e-02 3.770403e+05 7.092779e+02 7.258024e+02 7.401316e+02 2.338913e-02
## X154 X163 X173 X176 X185 X192
## 5.252512e+05 4.166959e+05 7.396761e+02 7.610390e+02 7.150656e+02 7.694643e+02
## X223 X226 X232 X236 X251 X275
## 6.086873e+05 6.975767e+05 4.827491e+05 8.007893e+02 8.319340e+02 2.573007e+01
## X286 X292 X345 X357 X455
## 8.619460e+05 5.957042e+05 1.304755e+04 7.589683e+05 2.673174e+01
pred <- predict(lmodAIC, data.frame(t(val)), interval = "prediction")
pred # 95% Prediction Interval for univariate mean of predictors## fit lwr upr
## 1 2.99156 2.937007 3.046112
The prediction interval of the reduced model is (2.936497, 3.046622).
To compare the conclusions from the two models, we observe that lmod’s (the model with the dataset simp_glass) Multiple R-squared value is 0.9988 and the smaller model, lmod_reduced’s (the reduced model from by AIC) Multiple R-squared value is also 0.9988. There are no changes in terms of Multiple R-squared value. But when we are looking at the AIC, AIC value was -3344.77 when it is a full model, but our small model (lmodAIC) has smaller AIC, which is -3365.25. Since the AIC is used mainly to select between different models where the lowest score is the most preferable, we can conclude that lmodAIC (the smaller model) is preferred.
Even though we removed some predictors by computing correlation coefficients, we still have 34 predictors. If I use them all in my regression model, problems may arise. There are four methods that allow us to shrink predictors, which are PCA (Principal components analysis), PLS (Partial Least Square), Ridge Regression, and Lasso Regression. I used Lasso and PCA.
First of all, I will try to use LASSO method.
library(lars) # this package can be used to compute lasso solutions## Loaded lars 1.2
lmodLASSO <- lars(as.matrix(simp_glass)[,-1], simp_glass$density)
plot(lmodLASSO)Now tried PCA.
PCA aims to discover lower dimension of variability in higher dimensional data. We can use the function prcomp() to calculate the principal components of the dataset.
#calculate principal components
results <- prcomp(simp_glass, scale = TRUE) # specify scale = TRUE so that each of the variables in the dataset are scaled to have a mean of 0 and a standard deviation of 1 before calculating the principal components
#reverse the signs
results$rotation <- -1*results$rotation # note that eigenvectors in R point in the negative direction by default, so we’ll multiply by -1 to reverse the signs.
#display principal components
results$rotation## PC1 PC2 PC3 PC4 PC5
## density -0.104676574 0.05445147 0.07391392 0.226654154 0.516722916
## X15 0.030746050 0.11027309 -0.03702269 -0.296043401 -0.334941156
## X16 -0.122233161 0.04036883 0.09190816 0.181725132 0.505548989
## X17 0.063382166 -0.20663014 -0.07351141 0.236274425 -0.253337011
## X19 -0.184879156 0.01629760 0.03137139 -0.187704997 -0.120422883
## X24 -0.161078308 -0.01893031 0.18229817 -0.218766262 0.105369751
## X26 0.093452137 -0.10117327 -0.24656677 0.226775039 -0.071973335
## X29 0.060317703 0.04691688 -0.24131007 0.306940237 0.169120943
## X31 -0.098540730 0.14214755 0.01493725 -0.329849495 0.237576917
## X45 0.139599503 0.16590982 -0.17702378 0.058925631 -0.024355816
## X46 0.153952908 0.07233060 0.03663618 0.308280755 -0.135427780
## X20.1 -0.121232063 -0.16731961 0.18945993 -0.110578021 0.069283451
## X23.1 -0.081516612 -0.22859234 0.14805264 -0.015691535 0.002895712
## X24.1 0.018748442 0.07939192 -0.25809151 -0.187880456 0.234933617
## X39.1 -0.153495953 -0.17850065 -0.03610897 -0.040377032 -0.005863306
## X58 0.023613295 0.24687855 -0.09025038 -0.161590758 0.021840585
## X59 -0.067492788 0.04316731 0.32114160 0.081488513 -0.082895368
## X76 -0.208257080 0.07842617 -0.06002950 0.042370122 -0.060795953
## X79 -0.206203644 0.08347764 -0.05785977 0.060156412 -0.060288234
## X85 -0.204302563 0.08942043 -0.06815593 0.046488425 -0.048493596
## X101 -0.122977932 -0.19787540 0.14845307 -0.091541223 0.038819229
## X104 -0.076263394 -0.25503543 0.08723165 0.007537612 -0.019279353
## X120 -0.141861349 -0.19017330 -0.06222213 -0.027222818 0.021410592
## X139 0.044557914 0.24525230 -0.10026610 -0.142484928 0.038608630
## X140 -0.042751839 0.05875951 0.32766381 0.104849441 -0.064515689
## X154 -0.208344075 0.07971547 -0.05672355 0.045715031 -0.060738602
## X157 -0.206120836 0.08464407 -0.05463106 0.063418720 -0.060024745
## X163 -0.204461653 0.09061348 -0.06505915 0.049748305 -0.048417736
## X173 -0.110029072 -0.24176693 0.03287847 -0.041393103 0.020447028
## X176 -0.042275786 -0.26703902 -0.06826686 0.068873399 -0.022842315
## X185 -0.143283051 -0.19180194 0.09651843 -0.107605714 0.034055629
## X192 -0.118197415 -0.20187589 -0.11036425 0.004025603 0.048295317
## X212 -0.005879365 0.08071971 0.32129738 0.142596299 -0.050924518
## X223 -0.208333787 0.08111349 -0.05137260 0.051307546 -0.060976232
## X226 -0.205883392 0.08586986 -0.04941323 0.068835944 -0.059931808
## X232 -0.204565540 0.09191458 -0.06007694 0.055146231 -0.048595075
## X236 -0.072716382 -0.20251069 -0.18029923 0.060752887 0.065901481
## X251 -0.011796350 -0.17775177 -0.24070284 0.125407140 0.061723450
## X275 0.041099108 0.10377354 0.28942313 0.190065043 -0.045303312
## X283 -0.208180653 0.08171415 -0.04204183 0.062796433 -0.062872751
## X286 -0.205396364 0.08625410 -0.04035423 0.079835570 -0.061231086
## X292 -0.204634455 0.09249916 -0.05144233 0.066194679 -0.050251515
## X345 0.060852935 0.25224017 0.07157961 -0.025123264 0.119346428
## X357 -0.211345382 0.07004754 -0.02943394 0.046747713 -0.076976812
## X396 -0.207814396 0.07966551 -0.03006233 0.079274347 -0.068168171
## X426 -0.204675905 0.08407746 -0.02879925 0.095452250 -0.065721589
## X455 0.085195755 0.11853311 0.23329638 0.230913033 -0.048018896
## X457 -0.204636375 0.09066504 -0.04039766 0.082057550 -0.054995989
## PC6 PC7 PC8 PC9 PC10
## density 0.061381712 0.153583465 0.0814126752 1.847607e-01 -0.181624798
## X15 -0.230344524 0.711226916 0.1014328557 1.693177e-01 -0.381405950
## X16 -0.008737403 0.262715744 0.0390768760 2.074178e-01 -0.078251441
## X17 0.066660892 0.071079789 0.0117493698 4.661402e-02 -0.137680694
## X19 -0.028447950 -0.261619808 -0.1701445198 8.399090e-01 0.037694275
## X24 -0.033818775 -0.056179829 0.1257487256 -4.846959e-02 -0.030413152
## X26 -0.131469467 0.013687228 -0.0856960509 1.048272e-01 0.039312392
## X29 0.022222674 0.171695972 0.2287831682 1.324562e-01 -0.063456508
## X31 -0.065666676 0.005077754 -0.0007349682 -8.196571e-02 0.086917656
## X45 -0.076726101 0.113241908 -0.0980988548 5.653494e-02 0.229431685
## X46 -0.101167532 0.020135760 -0.1838439109 9.017773e-02 0.022946372
## X20.1 0.105994819 0.186823667 -0.1310781398 -8.121351e-03 0.180072675
## X23.1 0.143508228 0.240259433 -0.2026088486 4.396844e-02 0.200157792
## X24.1 -0.223896468 -0.146484275 -0.6478634197 -1.081720e-01 -0.426067969
## X39.1 -0.264687714 -0.144734707 0.2349064921 2.700885e-02 -0.113325033
## X58 -0.208875991 0.069295274 0.1215320860 -4.149011e-03 0.283198851
## X59 -0.232493415 -0.121036747 0.0951391852 2.605397e-02 -0.151354187
## X76 0.020992055 0.004613254 -0.0247491577 4.332346e-02 0.107436000
## X79 0.029045955 0.032371229 -0.0302271782 -4.805647e-02 0.064948231
## X85 0.023978488 0.018435305 -0.0115028994 4.833714e-02 0.168542299
## X101 0.036147321 0.142581471 -0.1056929907 -4.782643e-02 0.096097609
## X104 0.053476863 0.189910636 -0.2068003684 5.431841e-03 0.114265965
## X120 -0.277320978 -0.104990856 0.2025110168 -8.633235e-03 -0.051463782
## X139 -0.185306962 0.106562644 0.0737649240 -3.008707e-02 0.324162974
## X140 -0.229448392 -0.074640793 0.0422477261 -9.658449e-03 -0.084882866
## X154 0.023213574 0.005922752 -0.0259680527 2.328814e-02 0.065971379
## X157 0.030965876 0.033835316 -0.0320761202 -6.810895e-02 0.024381270
## X163 0.026001609 0.019752593 -0.0128283858 2.877055e-02 0.128541000
## X173 -0.106539141 0.086544246 -0.1049874537 -7.522011e-02 0.061195581
## X176 -0.116650770 0.115206421 -0.2233383920 -1.314539e-02 0.089079240
## X185 -0.090440565 0.036301330 0.0166258070 -1.012317e-01 0.005921468
## X192 -0.295541218 -0.057541527 0.1470108711 -3.190438e-02 0.028458335
## X212 -0.223484707 -0.024474190 -0.0310477610 -3.159786e-02 -0.007720345
## X223 0.024500815 0.005493965 -0.0292918360 -3.540604e-03 0.014015439
## X226 0.031909672 0.033727004 -0.0362998135 -9.489889e-02 -0.026650433
## X232 0.027115130 0.019517272 -0.0161902347 2.711643e-03 0.078633489
## X236 -0.305020486 -0.006817462 0.0584740361 -2.526581e-02 0.113783770
## X251 -0.281320445 0.029683613 -0.0401772282 1.534405e-02 0.165357196
## X275 -0.208701083 0.019952134 -0.1161007783 -2.787747e-02 0.064032224
## X283 0.023214324 0.001947185 -0.0322197489 -4.403798e-02 -0.052944350
## X286 0.030352583 0.030741828 -0.0406620227 -1.349876e-01 -0.092845629
## X292 0.025783925 0.016551456 -0.0192655915 -3.653331e-02 0.014227249
## X345 -0.224872837 0.061332385 -0.1602522203 -6.520720e-02 0.150065893
## X357 0.002626409 -0.058875806 -0.0180696914 6.525606e-02 -0.057633576
## X396 0.019847905 -0.005064470 -0.0279800572 -9.107002e-02 -0.119103978
## X426 0.026970119 0.024393948 -0.0381584938 -1.809478e-01 -0.158572933
## X455 -0.183990615 0.046028833 -0.1860772060 -6.962149e-05 0.107775593
## X457 0.022500673 0.010446244 -0.0157205073 -8.223400e-02 -0.050073536
## PC11 PC12 PC13 PC14 PC15
## density -0.161789823 0.1116897812 -0.069591974 -0.2523519411 0.031391606
## X15 0.045372325 -0.1711422414 -0.009320427 -0.0362451743 0.024500689
## X16 0.083168706 -0.0654461086 0.056085055 -0.2577956907 -0.152305224
## X17 -0.327716674 0.2635711315 -0.093843154 -0.0852425155 -0.106732485
## X19 0.175826852 0.1571359893 0.020678901 0.0211037333 0.156504064
## X24 0.007597636 -0.0111560671 -0.052129032 0.1135595427 0.116209992
## X26 0.091190816 -0.0186885196 0.025187825 -0.0300640455 -0.074262516
## X29 -0.043533076 0.1290251932 -0.063002932 0.7537225766 0.231301101
## X31 0.131030809 -0.0855683791 0.037941565 0.1823235884 -0.068329424
## X45 -0.036977609 0.1534384413 -0.005427989 -0.0378043461 -0.179560962
## X46 0.030179088 -0.0182907569 -0.014363684 -0.0252428659 -0.144831813
## X20.1 0.030046061 0.0621014419 0.018639887 0.2078760845 -0.033009416
## X23.1 0.001304886 0.1322840313 0.022546686 0.2283429674 -0.249241769
## X24.1 -0.253095181 0.0487615008 -0.153476273 0.1326041103 0.042934944
## X39.1 -0.063574815 0.0914037172 -0.059691669 0.0705458958 -0.391446550
## X58 -0.224421733 0.4014759745 -0.003038558 -0.1029710706 0.022836296
## X59 -0.134798141 0.1091362905 -0.098223058 0.1011455996 -0.167488971
## X76 -0.072896290 -0.1324282830 -0.234020468 0.0098809798 -0.126269408
## X79 0.123397343 0.0064200452 -0.406250828 -0.0220080103 -0.050264797
## X85 -0.269904316 -0.2870168808 -0.185248256 0.0215730014 0.017442120
## X101 -0.060528547 0.0765667025 -0.002713324 0.0810519229 0.096795551
## X104 -0.075740180 0.1291512722 0.005028802 0.0746915864 -0.092169351
## X120 -0.017465827 0.0254734023 -0.037304530 0.0351337641 -0.183014400
## X139 -0.180768040 0.3367960968 0.010252439 -0.1127266983 0.142226208
## X140 -0.093506761 0.0452842235 -0.076648839 0.0709327100 0.015960633
## X154 -0.033324330 -0.0910765034 -0.120431497 0.0001043371 -0.101176610
## X157 0.164785425 0.0500534360 -0.295843335 -0.0319855751 -0.022440094
## X163 -0.231047325 -0.2456830536 -0.072280831 0.0124700360 0.041845658
## X173 -0.068937839 0.0373643605 0.016388295 -0.1019900689 0.167899103
## X176 -0.032538457 0.0442686494 0.039875303 -0.1365505424 0.005064878
## X185 -0.103928101 0.0432874407 -0.017385475 -0.0611838424 0.208552743
## X192 0.049694354 -0.0448984871 0.005373479 -0.0030531614 0.020483856
## X212 -0.039275378 -0.0139565037 -0.038855451 0.0409862576 0.160940302
## X223 0.008586236 -0.0309696342 0.004376519 -0.0073437916 -0.062920681
## X226 0.209709171 0.1132649803 -0.175011895 -0.0397242271 0.019581024
## X232 -0.189669458 -0.1866366947 0.052551528 0.0053473103 0.077546322
## X236 0.136651975 -0.1104983559 0.057198492 -0.0299581551 0.152974672
## X251 0.208023884 -0.1445408732 0.089919608 -0.0314363187 0.146435775
## X275 0.023827162 -0.0599489549 0.001958794 0.0218705419 0.207235210
## X283 0.050511569 0.0594371698 0.146479678 -0.0063308652 -0.026267300
## X286 0.256628804 0.2080309289 -0.038239108 -0.0391060754 0.063055056
## X292 -0.147654124 -0.0996324694 0.196950628 0.0055819292 0.108084383
## X345 0.181782221 -0.1062689157 0.134633965 0.1633488230 -0.422438388
## X357 -0.187203388 -0.0341767081 0.503853376 0.0580258646 -0.175629703
## X396 0.080558894 0.1644035642 0.268867870 0.0113002938 -0.021294464
## X426 0.292482569 0.3171592344 0.078716736 -0.0221097976 0.077335502
## X455 0.078423335 -0.0832073814 0.028473718 0.0181171396 0.140528862
## X457 -0.116035550 -0.0004998711 0.325291605 0.0208356193 0.104637023
## PC16 PC17 PC18 PC19 PC20
## density -0.2007241639 0.410568959 -0.456424379 0.092858225 -0.027818617
## X15 -0.0015252798 0.017719903 -0.083691060 0.020864444 -0.006595840
## X16 0.2279546783 -0.395400316 0.451720731 -0.061677831 0.037183389
## X17 -0.2084993354 0.259176405 0.291701462 0.083356381 0.058170270
## X19 -0.0747712389 0.080236954 0.089938886 -0.035998865 0.058048494
## X24 0.2222544167 0.010900759 -0.103299865 -0.023597744 0.234972605
## X26 0.3378734081 0.168444721 0.029584142 0.313050467 -0.044082564
## X29 -0.1155466920 -0.117571068 0.097206524 -0.105277869 -0.007108250
## X31 -0.0060724401 0.185589460 0.031234207 0.086796716 0.132112974
## X45 0.0376962963 0.002184027 -0.138526533 -0.177006793 0.353715048
## X46 0.1245247524 -0.072160741 -0.256848280 -0.302647818 0.310897899
## X20.1 0.1206386319 0.040215703 -0.182079982 0.031924044 0.016409668
## X23.1 0.2316677389 0.048554326 -0.085065739 0.145522290 -0.159883462
## X24.1 0.0903006559 -0.084174773 -0.022214484 0.010214077 -0.056880051
## X39.1 0.0586911419 -0.043914447 -0.138944809 -0.243065983 0.069614400
## X58 0.1078838387 -0.078368911 0.016600313 0.047559819 -0.161386006
## X59 0.1749538427 0.057188224 0.101082548 0.147775000 -0.058515293
## X76 -0.1875206704 -0.257713266 -0.102547165 0.211232315 0.122114902
## X79 -0.1101411480 -0.090517735 0.014178702 0.218291646 0.055270956
## X85 0.0135653513 0.005117933 0.048465176 0.211395825 0.263491893
## X101 -0.0849357411 0.016424838 -0.051376695 -0.066084852 0.082663273
## X104 0.0338836008 -0.002499549 0.012320617 -0.002079225 -0.043013877
## X120 0.0258912714 -0.012134208 -0.078518807 -0.142513680 0.071702454
## X139 0.0212949816 -0.070956401 -0.004817695 0.028317975 -0.059223809
## X140 0.1026466474 0.034302464 0.097686841 0.147321352 -0.054754684
## X154 -0.1030383608 -0.140344720 -0.092582283 -0.042980350 -0.112709692
## X157 -0.0271159599 0.019198352 0.018837676 -0.036904807 -0.164212738
## X163 0.0952771481 0.113428344 0.055365129 -0.051481452 0.027695923
## X173 -0.2264898197 -0.059977976 0.116083685 -0.137343554 0.089084237
## X176 -0.0706071434 -0.091120280 0.134753513 -0.083437809 0.007148779
## X185 -0.2568395998 -0.024268601 0.122708867 -0.137167534 0.133666661
## X192 -0.0267014528 0.017987479 -0.038518554 -0.018263711 0.013730074
## X212 0.0006732056 -0.007589295 0.049154357 0.101670580 -0.072579309
## X223 -0.0266287954 -0.039476421 -0.069772655 -0.200814715 -0.218051206
## X226 0.0480473745 0.109146814 0.032181040 -0.195674389 -0.242466537
## X232 0.1693870547 0.205329748 0.075176922 -0.226099036 -0.086301470
## X236 -0.0368043308 0.052043477 -0.042372191 0.108950573 -0.061302327
## X251 0.0560303753 0.081231530 -0.083808847 0.204099891 -0.097882297
## X275 -0.0738545824 -0.057637922 -0.055928037 -0.008584444 -0.057946407
## X283 0.0016883889 -0.012654599 -0.041313579 -0.140792977 -0.114102160
## X286 0.0765545952 0.119299197 0.043703567 -0.134632852 -0.085897066
## X292 0.1980088284 0.225797706 0.103330214 -0.198523674 -0.010253172
## X345 -0.4049394913 0.351434452 0.310806577 -0.025966222 0.019760411
## X357 -0.2328090816 -0.272828125 -0.190249016 0.178643863 -0.278951854
## X396 -0.0683608893 -0.123299198 -0.058610780 0.178078576 0.219123127
## X426 0.0090714499 -0.010698353 0.006745896 0.191030621 0.316719563
## X455 -0.0666932449 -0.098594730 -0.181374430 -0.142616376 0.007513817
## X457 0.1331819839 0.114482208 0.092132937 0.078528557 0.272377278
## PC21 PC22 PC23 PC24 PC25
## density 0.135357613 -0.0460890911 0.0590898739 -0.023481537 -0.019519872
## X15 0.028916959 0.0134197099 0.0123042647 -0.001906456 -0.005486697
## X16 -0.182586392 0.0664769383 -0.0633739505 0.026032098 0.015297098
## X17 -0.534994266 -0.0106042368 -0.0642585831 0.040634394 0.157646511
## X19 0.007835206 0.0519849314 0.0185596360 -0.007344118 -0.010492300
## X24 -0.214181009 -0.3810351604 0.1825215085 0.124860450 -0.210617113
## X26 -0.011817961 -0.4747979333 0.1487294533 0.052426983 -0.091849821
## X29 0.099712062 -0.0771616394 0.0186049626 0.018170073 0.006349094
## X31 -0.238028073 -0.3206943004 -0.1696961475 0.113332369 0.336943745
## X45 0.004982340 -0.0456252768 -0.5434192479 -0.182318849 -0.415481602
## X46 -0.147454886 -0.1135862560 0.1883203861 0.251362692 0.163970651
## X20.1 -0.128595589 0.1106197471 -0.1375847679 0.030802662 0.106376457
## X23.1 -0.032226797 0.1883080449 0.2024818756 -0.123954869 -0.174381936
## X24.1 -0.076079119 0.1079913741 0.0057961831 -0.026798605 -0.033967846
## X39.1 0.131216115 0.1360302005 -0.0009791207 0.094819127 0.188006881
## X58 0.054787932 0.0381696792 0.1666253024 0.097058735 0.226995312
## X59 0.272057595 -0.0739037017 -0.3592671705 -0.043273745 0.190941764
## X76 -0.045409067 -0.0565246761 0.1367410945 -0.241224660 0.125435086
## X79 0.061277582 0.0611799096 0.0058614571 0.288427152 -0.106124515
## X85 0.087949576 0.1658590463 0.0824112488 0.172052095 0.068060317
## X101 -0.078857415 0.0174804262 -0.2036333596 0.064455896 0.131305166
## X104 0.100505490 0.0002329818 0.0605713323 -0.006726790 -0.023499342
## X120 -0.063421431 0.1099187818 0.1546418747 -0.009898072 -0.142890627
## X139 -0.074839275 0.0010715131 0.1021093109 -0.015551203 -0.054859465
## X140 0.042858224 -0.0837355438 -0.0903832821 -0.114275288 -0.131768072
## X154 -0.090888217 -0.1737003788 -0.0070866796 -0.339992145 0.058153728
## X157 0.008982004 -0.0431709275 -0.1237315231 0.152641874 -0.152722482
## X163 0.037208855 0.0413465152 -0.0654137687 0.021551860 -0.015440724
## X173 0.177600539 -0.1872909657 -0.0527897784 0.052752827 0.048478075
## X176 0.440044502 -0.3111758448 0.1034721205 0.059879739 0.066530233
## X185 -0.043809089 -0.1223117096 -0.0035612402 -0.006531610 -0.175687506
## X192 -0.170600672 0.1309660647 0.1386262987 -0.065041657 -0.223509097
## X212 -0.093885257 -0.0277220103 0.0473229269 -0.100113039 -0.194444309
## X223 -0.111586412 -0.1884298386 -0.0054116581 -0.309584129 0.084682529
## X226 -0.024972750 -0.0406305086 -0.1013065716 0.133233476 -0.094238874
## X232 0.009573883 0.0142194665 -0.0641868162 -0.006920419 -0.012560106
## X236 -0.146523659 0.1541013542 -0.0655587178 -0.066002199 -0.021592577
## X251 -0.021737840 0.0996906448 -0.2757460670 -0.022792375 0.243231757
## X275 -0.116665864 0.0579215665 0.0543972354 -0.012449138 -0.018773109
## X283 -0.072448634 -0.0992493760 0.0968286069 -0.212394663 0.142492150
## X286 -0.016042135 0.0701772821 0.0351954541 0.152734133 0.024603247
## X292 0.035380097 0.0871280475 0.0600051799 0.030695849 0.016586997
## X345 0.071698065 0.0389748217 0.2004647961 -0.004547155 -0.089014773
## X357 -0.101574307 -0.1058178167 -0.1725190983 0.463050250 -0.212091946
## X396 0.035418281 -0.0461125183 0.0300670087 -0.259955373 0.080136548
## X426 0.042945123 0.1392988055 0.0155929538 0.009449794 0.049800668
## X455 -0.064866200 0.1039793193 0.0350910430 0.102140838 0.191206006
## X457 0.122173273 0.1306538165 0.0608479505 -0.051174966 -0.063212573
## PC26 PC27 PC28 PC29 PC30
## density 0.032551974 0.0167931862 8.236303e-04 0.007420284 0.0074393060
## X15 0.001249302 -0.0009135019 -5.248737e-05 -0.001449546 0.0007794886
## X16 -0.038699450 -0.0232435864 6.583188e-03 -0.009666955 -0.0088243176
## X17 0.018875574 -0.0295716852 5.264111e-02 -0.010929654 0.1343014755
## X19 0.015638539 -0.0054246270 1.779829e-02 -0.009658553 -0.0022047660
## X24 -0.246495850 -0.1167001356 -2.453914e-01 -0.074108540 0.2740427815
## X26 -0.308654957 -0.1055656435 2.400061e-01 0.033151551 -0.1418900067
## X29 0.014254421 0.0168727712 -1.231921e-02 0.001662082 0.0022235108
## X31 0.433973484 0.1873865821 3.183039e-01 0.114156122 -0.0369741418
## X45 -0.025471120 0.0712004923 6.309479e-02 0.207493745 0.0597049196
## X46 0.296345042 0.0400319216 -3.892890e-01 -0.132150025 -0.1774452088
## X20.1 -0.178731007 -0.1341044836 -4.921900e-02 -0.045457367 -0.0107140446
## X23.1 0.223803693 0.1343289328 3.001192e-02 0.023003890 -0.0385802116
## X24.1 -0.038380177 -0.0279562493 -2.105819e-02 -0.013483518 -0.0026971921
## X39.1 -0.186198398 -0.1002754200 3.144819e-01 0.016136680 0.0916813255
## X58 0.029660955 -0.0281154908 -1.379492e-01 -0.065657323 -0.0955063506
## X59 0.016173252 -0.0243407835 -2.281513e-01 0.002498440 -0.0356163844
## X76 0.002013606 -0.0167592424 -1.143867e-01 0.202296820 0.3592339584
## X79 0.140156812 -0.3431930781 3.676667e-02 0.172127972 -0.1576350856
## X85 -0.189541764 0.2851655881 -1.821451e-02 0.192052446 -0.1679084883
## X101 -0.248618921 -0.1684247385 -7.315077e-02 -0.031735846 -0.0777210795
## X104 0.029574853 0.0365871147 2.187076e-02 0.014524276 0.0084592364
## X120 0.053652167 0.0456427942 1.224689e-01 -0.001878470 -0.0372854627
## X139 -0.056892056 -0.0309554511 6.751558e-02 -0.045078806 0.0639417096
## X140 0.115896614 0.1042323374 -1.143039e-01 0.039790056 -0.0204985792
## X154 0.027952616 0.0007330032 -6.127435e-03 -0.274219723 0.1770484285
## X157 0.144181576 -0.2084669386 7.247255e-02 -0.256830469 -0.0632329639
## X163 -0.070709131 0.1970058762 8.446370e-02 -0.345838164 -0.1190569637
## X173 -0.000955692 0.0029922085 3.555832e-04 0.005006121 -0.0150676243
## X176 0.169810339 0.1424119670 7.672460e-02 0.003541230 0.2216435696
## X185 -0.025222041 -0.0040218386 -8.201099e-02 0.047648028 -0.2991773929
## X192 0.161140289 0.0885892394 -2.090207e-02 -0.004937105 -0.0901226773
## X212 0.086329319 0.1042265482 8.683132e-02 0.066652228 0.0034840038
## X223 -0.043838682 0.0124988939 -3.123182e-02 -0.054156305 -0.0483654400
## X226 0.028783412 -0.0167573530 -1.489364e-02 -0.024190618 0.0241167217
## X232 -0.030938907 0.0729939513 5.257306e-02 -0.181249408 -0.0701457900
## X236 0.099198625 0.0191735787 -1.457951e-01 -0.011215169 -0.0023099436
## X251 -0.044322475 -0.0730390577 -2.691450e-01 -0.024069788 0.1068226094
## X275 -0.041366558 -0.0033914525 2.800774e-01 0.053367244 0.0619289686
## X283 -0.099265321 0.0003500777 -8.607242e-02 0.404486622 -0.2267177709
## X286 -0.114408274 0.2556402255 -1.041528e-01 0.351040808 0.1672843952
## X292 0.056920619 -0.1175486206 -3.463259e-02 0.280235768 0.1115952623
## X345 -0.212782790 -0.0882731503 -1.844535e-01 -0.099342343 0.0212705244
## X357 -0.007525369 0.1086820508 -4.299358e-02 -0.003318625 0.0663549321
## X396 -0.011145839 -0.1685510165 7.866032e-02 -0.062079193 -0.4655108248
## X426 -0.138497768 0.4029859005 5.606229e-02 -0.330995261 0.1333277514
## X455 -0.147289217 -0.1143171172 3.433486e-01 0.001362221 0.0769920736
## X457 0.295773353 -0.4525288816 5.852573e-02 -0.061166603 0.2809911115
## PC31 PC32 PC33 PC34 PC35
## density 0.0077561055 0.0025479480 0.0020174695 7.856953e-05 0.0008551788
## X15 0.0009399600 0.0014296835 -0.0002099394 -5.362351e-04 -0.0002563660
## X16 -0.0107971435 0.0003046135 -0.0030336930 -6.427012e-04 -0.0002859748
## X17 0.1959180239 -0.0277408308 -0.0238094234 -1.565802e-02 -0.0210576782
## X19 -0.0004559181 -0.0045706998 -0.0035629286 -7.704636e-04 -0.0026211543
## X24 0.4371350491 0.0589361628 -0.0622282197 -9.635733e-02 0.0309095269
## X26 -0.2998004762 0.1018736625 0.0373372305 1.253737e-01 0.0307245278
## X29 0.0058486442 -0.0011764550 0.0017325856 2.198061e-04 -0.0037974892
## X31 -0.0499041652 0.0149342783 -0.0090532114 -8.976431e-03 0.0329254066
## X45 0.1330915801 0.0639098003 0.0373064519 1.074401e-01 -0.0340645797
## X46 -0.1814323990 -0.0242350993 -0.0152111190 -1.023118e-01 -0.0611010065
## X20.1 -0.1320878864 -0.3085564773 0.0834847041 1.969137e-01 -0.2278029875
## X23.1 0.1259765589 0.3660143394 -0.0539347452 -1.479538e-01 -0.0231143782
## X24.1 0.0064566330 0.0066351488 -0.0022961488 -1.890396e-04 -0.0095296138
## X39.1 -0.0311021135 0.1336120969 -0.0307705023 -2.521706e-01 -0.3201196517
## X58 0.1537103991 0.2123722745 0.1225885653 4.623924e-01 -0.1792204732
## X59 -0.0112845236 0.1305765885 -0.0815465918 -6.259437e-02 0.3583956002
## X76 -0.2608409877 0.0757848854 0.0205982501 1.781904e-02 -0.0285863501
## X79 0.1473630365 -0.0420192439 0.4124126650 -1.389139e-01 0.0627284678
## X85 0.0898216516 -0.0464740163 -0.3273318580 6.812539e-02 -0.0019207577
## X101 -0.2443715558 -0.1762235762 0.0342811507 1.247883e-01 0.0684203150
## X104 -0.0127153654 -0.0918101824 -0.0385599622 -9.571571e-02 0.2911227137
## X120 -0.0503016107 -0.2065363505 0.0591280345 2.057465e-01 0.1577805685
## X139 -0.2273809703 -0.2581403073 -0.1484611361 -5.422711e-01 0.2037791755
## X140 -0.0813083009 -0.2065117395 0.0869261664 7.269930e-02 -0.0785277037
## X154 -0.0899989548 0.0610496239 0.0001408162 8.353083e-02 0.0164006797
## X157 0.0483531963 -0.0204270777 -0.1184491945 4.647259e-02 -0.0338896859
## X163 0.0679193518 -0.0115476472 -0.0519550290 9.061514e-03 -0.0317850421
## X173 -0.0120921394 0.1045932809 -0.0008504732 7.706230e-02 -0.0305392417
## X176 0.2462331302 -0.2704480218 0.0096225196 1.783958e-04 -0.1024734305
## X185 -0.2729422481 0.4969148947 0.0217901546 -9.676533e-02 -0.0477483963
## X192 -0.0177500793 -0.1681503852 -0.0002500050 1.990620e-01 0.2219788473
## X212 -0.0626177148 -0.1425977709 0.0602881256 -3.908498e-02 -0.4023976117
## X223 0.0607436792 0.0181472572 0.0796018745 9.865466e-03 0.0782207357
## X226 -0.0677611343 -0.0017823658 -0.3853090804 4.738233e-02 -0.0681833423
## X232 0.0147478220 -0.0042277277 0.2603074293 -1.511643e-01 -0.0176764243
## X236 0.0945179268 0.0725311157 -0.0642159777 -1.874013e-02 0.1013885581
## X251 0.1200753316 0.0700738213 0.0120328686 -2.137797e-01 -0.1904934063
## X275 0.0735227105 0.1041701003 -0.0256100020 -4.914618e-02 -0.1775159909
## X283 0.1871914009 -0.0770994897 0.0923246626 4.060980e-03 0.0680416334
## X286 -0.1275980415 0.0170000767 -0.2220741784 6.986408e-02 -0.0385029523
## X292 -0.0594981459 -0.0002335653 0.3349567898 -9.718025e-02 0.0303483401
## X345 0.0112297074 -0.0219041010 0.0034949664 -2.314638e-03 -0.0115111878
## X357 -0.0298240912 0.0175349396 0.0291198493 1.108946e-03 0.0157694740
## X396 0.2189909939 -0.1505815571 -0.2387894449 -1.230366e-01 -0.1271357424
## X426 -0.0571038897 0.0811356643 0.3430823238 -2.218557e-02 0.0799846550
## X455 0.1768109121 0.1466289466 -0.0388435825 1.415281e-01 0.4035371935
## X457 -0.1432314556 0.0842227817 -0.2257572488 1.751281e-01 -0.0008452483
## PC36 PC37 PC38 PC39 PC40
## density 0.0001011579 0.0002248024 1.486413e-04 0.0006158159 5.412129e-04
## X15 -0.0026170335 -0.0001231550 3.510388e-04 -0.0010887822 8.126437e-05
## X16 -0.0008817580 0.0002601762 1.145003e-05 -0.0004423155 -9.260487e-04
## X17 -0.0559741049 -0.0152130118 4.147214e-02 -0.0363667815 2.592951e-02
## X19 0.0018318824 -0.0010939270 -1.179174e-04 -0.0001711721 -6.658829e-05
## X24 0.0373821281 0.0345571431 2.354719e-02 0.0349885584 -9.916859e-03
## X26 -0.0371938045 0.0231098561 -4.248306e-02 0.0062060020 -2.683016e-02
## X29 -0.0051866794 -0.0022843765 7.493275e-04 -0.0039396646 2.799556e-04
## X31 0.0566830782 0.0019658676 9.961059e-03 0.0234781278 5.294664e-03
## X45 0.0198023609 0.0248366565 -1.031643e-02 0.0321085982 7.250653e-03
## X46 0.0004266638 0.0052642951 -7.329904e-02 0.0032648401 -3.407808e-02
## X20.1 -0.4060119963 -0.0385709690 -4.399375e-02 -0.1842463632 2.693641e-01
## X23.1 -0.1258268798 -0.0688880030 6.860337e-02 -0.1060408224 -2.052100e-01
## X24.1 -0.0241319937 -0.0043046019 7.622700e-04 -0.0129749432 -5.178800e-04
## X39.1 0.0779015943 0.0058760113 -1.355026e-01 0.0421838317 2.038201e-02
## X58 0.0951115581 0.0658095986 3.517798e-02 0.1290416043 2.688713e-02
## X59 -0.2337867176 0.1096091945 -1.292408e-01 0.0005755832 1.099257e-01
## X76 -0.1367026799 0.2106700724 2.885946e-01 0.2136844397 1.820656e-02
## X79 -0.0071726917 -0.0902838366 -1.129513e-01 -0.0519570595 -1.304428e-01
## X85 0.0239171340 -0.2945301433 -1.267120e-01 0.0624490151 7.908668e-02
## X101 0.2502335506 0.0455441498 -8.205598e-02 0.1737921284 -2.496344e-01
## X104 0.5534930048 0.1422978060 -3.464569e-02 0.3009664663 1.790735e-01
## X120 0.0649365122 -0.1478104855 2.992831e-01 -0.1388096218 -1.517234e-01
## X139 -0.1139933128 -0.0840910112 -3.149926e-02 -0.1571604321 -3.324100e-02
## X140 0.1545109716 -0.1820928375 2.511944e-01 -0.1185113981 -2.165697e-01
## X154 0.1318362106 0.1116308476 -1.535048e-01 -0.2548007795 -1.820601e-02
## X157 0.0971418326 0.1580754251 6.441143e-03 -0.1311070662 1.800195e-01
## X163 0.1096634654 0.2800514452 -1.563764e-02 -0.3138884201 -6.571609e-02
## X173 -0.1846514316 -0.0060556741 -6.033642e-02 -0.0558704959 -5.434201e-01
## X176 -0.1581930533 -0.0255450648 1.072383e-02 -0.0535775506 2.330960e-01
## X185 0.0020727876 -0.0894771483 1.481642e-01 -0.1501701700 3.780164e-01
## X192 -0.1373305822 0.1190406017 -8.525138e-02 0.0835647543 1.955133e-01
## X212 0.1385513392 0.0067626113 -1.022641e-01 0.0885009389 1.124669e-01
## X223 -0.0228466371 -0.5024954418 -2.138880e-01 0.1520451410 -2.472454e-02
## X226 -0.1319569291 -0.1820458563 1.855537e-01 0.3649746254 3.949307e-02
## X232 -0.1807599571 0.0154489108 2.166464e-01 0.2939717637 -1.112477e-01
## X236 -0.1617390083 0.1962249766 -3.326495e-01 0.1705090176 -1.111522e-01
## X251 0.2564638321 -0.1891477718 2.841993e-01 -0.1365636227 5.311956e-02
## X275 -0.0186446493 0.1164146471 -2.485627e-01 0.1327226521 -5.186315e-02
## X283 0.1056710646 -0.0376977963 -1.814395e-01 -0.2439047032 9.658165e-02
## X286 0.0486438119 0.2279343162 -2.231931e-03 -0.2530508082 -1.685853e-01
## X292 -0.0306741728 0.2226250195 8.843151e-02 0.0482471908 1.103520e-01
## X345 -0.0082421475 0.0047690404 -7.877512e-03 0.0034522807 -3.838544e-03
## X357 -0.0068744242 -0.0062969027 4.818648e-03 -0.0007003399 -1.238507e-03
## X396 -0.0787474098 0.2478880023 2.577552e-01 0.1269739930 -7.473770e-02
## X426 -0.0079392920 -0.1283052054 -7.563836e-02 0.0723273049 8.025923e-02
## X455 -0.0540647407 -0.0605246316 2.929441e-01 -0.1200141004 7.364993e-02
## X457 0.0857525981 -0.2323684262 -1.651980e-01 -0.0851793802 -9.364717e-03
## PC41 PC42 PC43 PC44 PC45
## density 6.104440e-05 6.275158e-06 1.150421e-04 2.304001e-05 6.190435e-05
## X15 -2.624166e-04 -9.663793e-05 3.288590e-05 1.500079e-05 -4.389003e-05
## X16 -1.752723e-04 -6.778221e-06 -5.261467e-05 -7.797389e-06 -6.310707e-05
## X17 6.692763e-03 -7.134409e-03 -2.290563e-03 -1.691885e-03 1.046774e-03
## X19 -2.539221e-05 1.949031e-04 -1.856060e-05 6.650585e-05 7.182262e-05
## X24 5.364682e-03 -3.870132e-03 6.889343e-04 -2.400367e-03 -1.241282e-02
## X26 -1.251637e-02 -1.270289e-03 -6.175996e-03 9.030299e-03 -2.929306e-03
## X29 -5.971860e-04 -1.108725e-04 4.544326e-04 4.876913e-05 -2.652980e-04
## X31 4.871992e-03 6.505754e-04 1.085738e-03 2.281294e-04 1.650334e-03
## X45 6.632335e-03 -1.148107e-03 9.578634e-04 -1.975642e-03 -2.172641e-03
## X46 -1.905826e-02 1.093655e-02 -1.052071e-02 -5.941085e-03 2.271113e-03
## X20.1 5.113592e-02 -5.951754e-02 -3.075751e-01 -2.581787e-02 8.606581e-02
## X23.1 -8.614488e-02 3.267865e-02 2.287004e-01 2.067523e-02 -7.642746e-02
## X24.1 -2.501702e-03 -6.542738e-04 2.820667e-04 1.248480e-05 -6.990288e-04
## X39.1 3.042334e-03 -5.415501e-02 -1.742477e-02 2.447827e-01 -3.719945e-02
## X58 4.004112e-02 -1.855749e-02 -5.850464e-03 -6.549259e-03 1.710822e-02
## X59 3.437917e-02 4.878022e-02 4.668843e-02 -2.234743e-01 -9.902320e-02
## X76 -1.128072e-02 2.806494e-01 -5.030861e-02 7.778030e-02 -3.881425e-02
## X79 2.914711e-01 -7.519615e-02 1.668894e-03 -4.483939e-02 2.999086e-02
## X85 -1.984939e-01 -1.921277e-01 3.620698e-02 -3.660643e-02 8.298798e-03
## X101 -3.122850e-02 1.176593e-01 5.967462e-01 5.390707e-02 -1.323797e-02
## X104 9.992583e-02 -6.315112e-02 -4.446772e-01 -4.139831e-02 3.374806e-02
## X120 -8.361043e-02 1.323657e-01 -2.945858e-02 -4.450662e-01 2.143501e-01
## X139 -4.644104e-02 2.020082e-02 5.828495e-03 8.088965e-03 -1.679031e-02
## X140 -8.261525e-02 -7.472278e-02 -8.202414e-02 4.038433e-01 2.960496e-01
## X154 -1.739367e-02 -4.348398e-01 8.641516e-02 -1.301584e-01 6.710807e-02
## X157 -4.469091e-01 1.060497e-01 4.432370e-03 8.606248e-02 -6.750152e-02
## X163 1.954480e-01 2.790118e-01 -4.565566e-02 5.401698e-02 -2.768595e-04
## X173 -2.334459e-01 -6.902426e-02 -3.771475e-01 -3.769558e-02 -3.372350e-01
## X176 9.332472e-02 5.145495e-02 3.003441e-01 2.716448e-02 1.645411e-01
## X185 1.146143e-01 -6.576401e-03 2.979206e-02 8.901901e-03 1.783504e-01
## X192 1.199348e-01 -7.046365e-02 1.291132e-01 4.504121e-02 -4.519205e-01
## X212 6.364461e-02 -6.472972e-02 2.900798e-02 4.152254e-02 -3.799519e-01
## X223 1.449204e-01 -1.201989e-01 -2.661331e-04 -2.610312e-02 1.039992e-02
## X226 -7.016702e-02 6.942015e-02 -1.667836e-02 -1.926466e-02 3.393778e-02
## X232 2.620377e-01 1.197871e-01 -4.654399e-02 3.627973e-02 -3.901053e-02
## X236 -4.023669e-02 -1.446515e-02 -7.429580e-02 3.248633e-01 4.343063e-01
## X251 8.000270e-03 1.479293e-02 -5.262297e-03 -1.960729e-01 -1.689571e-01
## X275 -4.947061e-02 2.005692e-01 -3.129137e-03 -4.757888e-01 2.593708e-01
## X283 -1.782540e-01 4.741383e-01 -6.651561e-02 1.350771e-01 -8.483279e-02
## X286 3.843703e-01 -1.693029e-01 1.682704e-02 -4.182578e-02 2.244312e-02
## X292 -4.102261e-01 -3.502718e-01 9.438676e-02 -9.038046e-02 5.448511e-02
## X345 4.025214e-04 1.264831e-04 -1.895245e-03 -3.305690e-04 2.099793e-04
## X357 -1.710569e-03 6.641651e-05 2.074748e-04 -4.348942e-04 5.414457e-04
## X396 6.464516e-02 -2.018690e-01 3.272568e-02 -5.725297e-02 4.501759e-02
## X426 -1.609127e-01 7.008842e-02 -6.918096e-03 2.010161e-02 -1.823305e-02
## X455 4.746771e-02 -1.229593e-01 1.855307e-02 2.727441e-01 -7.974516e-02
## X457 1.524140e-01 1.444392e-01 -3.997722e-02 3.739885e-02 -2.352772e-02
## PC46 PC47 PC48
## density 1.459071e-05 1.311124e-06 5.414785e-06
## X15 -2.117940e-05 7.202819e-06 2.692230e-07
## X16 6.680205e-06 -1.228234e-05 -3.432287e-06
## X17 -5.917736e-04 6.403853e-05 -1.867930e-04
## X19 -6.312119e-05 1.774622e-06 -1.082834e-05
## X24 4.789410e-04 2.342736e-05 -4.667960e-05
## X26 -1.348728e-03 3.411802e-04 5.407024e-04
## X29 -1.061530e-04 3.330614e-05 -1.788497e-06
## X31 2.606220e-04 -2.790336e-04 3.788966e-04
## X45 -6.648221e-04 2.211654e-04 1.730647e-04
## X46 1.277548e-03 -9.614411e-05 -1.600822e-03
## X20.1 -1.045541e-03 -1.741938e-03 -1.213580e-02
## X23.1 -4.647642e-03 2.502273e-03 8.050924e-03
## X24.1 -2.646819e-04 7.481389e-05 -4.481215e-05
## X39.1 -1.912410e-02 -1.913507e-02 -9.461911e-02
## X58 1.034967e-04 1.174046e-03 -5.093051e-04
## X59 8.492422e-03 1.723507e-02 9.825958e-02
## X76 2.559832e-02 1.509351e-01 -1.669710e-02
## X79 -1.615079e-01 -6.061166e-02 5.797723e-03
## X85 1.404751e-01 -9.460194e-02 1.174634e-02
## X101 4.834754e-03 4.676457e-03 2.259253e-02
## X104 6.297592e-03 -5.613480e-03 -1.509597e-02
## X120 4.127484e-02 5.579220e-02 3.279012e-01
## X139 2.321985e-04 -1.337422e-03 4.269834e-04
## X140 -2.972045e-04 -5.660566e-02 -3.574390e-01
## X154 -7.264628e-02 -4.669264e-01 5.799529e-02
## X157 4.675667e-01 1.828773e-01 -1.912554e-02
## X163 -4.083310e-01 2.977563e-01 -4.154786e-02
## X173 -2.818977e-02 5.524921e-03 -1.871408e-02
## X176 1.183849e-02 -1.977491e-04 1.268779e-02
## X185 1.219442e-02 -5.934642e-03 3.856299e-03
## X192 -3.225344e-02 -6.196608e-02 -4.432267e-01
## X212 -4.068189e-02 7.198167e-02 5.218470e-01
## X223 8.387978e-02 5.401788e-01 -7.609784e-02
## X226 -4.982504e-01 -2.068754e-01 2.408915e-02
## X232 4.289444e-01 -3.495013e-01 5.509601e-02
## X236 1.222924e-02 3.565341e-02 2.976161e-01
## X251 -7.129406e-04 -1.074678e-02 -9.145952e-02
## X275 5.528326e-02 -4.338342e-02 -3.807623e-01
## X283 -5.117998e-02 -2.983210e-01 4.803737e-02
## X286 2.506989e-01 1.128984e-01 -1.500144e-02
## X292 -2.066599e-01 1.944027e-01 -3.457296e-02
## X345 3.240614e-04 7.063564e-05 -2.791656e-04
## X357 5.408861e-04 -1.556329e-05 1.324040e-05
## X396 1.379572e-02 7.447391e-02 -1.311157e-02
## X426 -5.809531e-02 -2.840398e-02 4.180340e-03
## X455 -2.463125e-02 1.064538e-02 1.209191e-01
## X457 4.523965e-02 -4.824961e-02 9.205655e-03
summary(results)## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 4.5063 3.5017 2.7208 2.02622 1.32119 1.15333 0.59295
## Proportion of Variance 0.4231 0.2555 0.1542 0.08553 0.03637 0.02771 0.00732
## Cumulative Proportion 0.4231 0.6785 0.8327 0.91828 0.95464 0.98236 0.98968
## PC8 PC9 PC10 PC11 PC12 PC13 PC14
## Standard deviation 0.46235 0.36247 0.27423 0.15068 0.13108 0.1196 0.10139
## Proportion of Variance 0.00445 0.00274 0.00157 0.00047 0.00036 0.0003 0.00021
## Cumulative Proportion 0.99413 0.99687 0.99844 0.99891 0.99927 0.9996 0.99978
## PC15 PC16 PC17 PC18 PC19 PC20 PC21
## Standard deviation 0.06362 0.05493 0.03554 0.02668 0.02486 0.01647 0.01554
## Proportion of Variance 0.00008 0.00006 0.00003 0.00001 0.00001 0.00001 0.00001
## Cumulative Proportion 0.99986 0.99993 0.99995 0.99997 0.99998 0.99999 0.99999
## PC22 PC23 PC24 PC25 PC26 PC27
## Standard deviation 0.01228 0.00855 0.007188 0.005676 0.004548 0.004261
## Proportion of Variance 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000
## Cumulative Proportion 1.00000 1.00000 1.000000 1.000000 1.000000 1.000000
## PC28 PC29 PC30 PC31 PC32 PC33
## Standard deviation 0.002749 0.002598 0.001663 0.001469 0.001019 0.0008393
## Proportion of Variance 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000
## Cumulative Proportion 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
## PC34 PC35 PC36 PC37 PC38
## Standard deviation 0.0006409 0.0004672 0.000438 0.0003739 0.0003285
## Proportion of Variance 0.0000000 0.0000000 0.000000 0.0000000 0.0000000
## Cumulative Proportion 1.0000000 1.0000000 1.000000 1.0000000 1.0000000
## PC39 PC40 PC41 PC42 PC43
## Standard deviation 0.0002726 0.0001231 0.0001086 5.746e-05 3.456e-05
## Proportion of Variance 0.0000000 0.0000000 0.0000000 0.000e+00 0.000e+00
## Cumulative Proportion 1.0000000 1.0000000 1.0000000 1.000e+00 1.000e+00
## PC44 PC45 PC46 PC47 PC48
## Standard deviation 3.094e-05 2.187e-05 1.214e-05 5.266e-06 2.554e-06
## Proportion of Variance 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
## Cumulative Proportion 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00
#reverse the signs of the scores by multiplying -1
results$x <- -1*results$x
#display the first six scores
head(results$x)## PC1 PC2 PC3 PC4 PC5 PC6
## [1,] 0.40135864 7.55446022 0.8602323 -2.4961170 -1.883977 -2.159573752
## [2,] 0.51674625 5.43412510 1.2977426 -1.9436052 -1.795913 -1.447744490
## [3,] 0.45437661 3.49190450 1.7452789 -1.3761449 -1.800688 -0.864113789
## [4,] 0.31311870 1.66355195 2.2172061 -0.7962502 -1.867636 -0.388367178
## [5,] 0.12715371 -0.08533454 2.7178572 -0.2089486 -1.991996 -0.004699283
## [6,] -0.09463873 -1.77355635 3.2549632 0.3979231 -2.138618 0.302872750
## PC7 PC8 PC9 PC10 PC11 PC12
## [1,] 0.953308966 -0.006064108 0.65414872 0.48732046 -0.265994480 0.286973101
## [2,] 0.663483662 0.136203879 0.36198402 0.09037594 -0.102500208 0.100463258
## [3,] 0.414328207 0.227828060 0.23011515 -0.11271215 -0.021800761 -0.021998200
## [4,] 0.220916248 0.298212412 0.15688153 -0.18457103 -0.001599278 -0.074510772
## [5,] 0.082840641 0.356374902 0.11168545 -0.15268776 -0.026301996 -0.064067855
## [6,] 0.008419919 0.411878716 0.09397767 -0.04549173 -0.096029985 0.009035503
## PC13 PC14 PC15 PC16 PC17 PC18
## [1,] -0.003400639 0.03833347 0.03861154 -0.003792367 0.063352716 -0.009816515
## [2,] 0.117243240 0.06509414 0.02305720 0.002129884 0.053713547 -0.022677864
## [3,] 0.122987387 0.08075051 0.02017053 -0.010455261 0.039459599 -0.023268439
## [4,] 0.088411800 0.08950628 0.02228529 -0.017949223 0.025197500 -0.014892427
## [5,] 0.037500269 0.09751350 0.02599204 -0.014097331 0.006306164 0.006438091
## [6,] -0.023888831 0.09260236 0.03129621 -0.010445227 0.006565387 0.013342466
## PC19 PC20 PC21 PC22 PC23
## [1,] -0.0001261364 0.0313837201 -0.0008636219 0.011413113 0.011689946
## [2,] -0.0082296522 -0.0048649483 -0.0022880850 -0.005726237 0.007670818
## [3,] 0.0050985808 -0.0083456578 0.0006758753 -0.007430624 0.010980561
## [4,] 0.0127603678 -0.0049248934 0.0003389670 -0.005885120 0.011106510
## [5,] 0.0103107672 0.0009277182 -0.0065634724 -0.003403157 0.005748744
## [6,] 0.0037167471 0.0065268528 -0.0126932816 -0.003824510 -0.001899671
## PC24 PC25 PC26 PC27 PC28
## [1,] -0.0093191957 -0.010311648 -0.008180267 0.0013055272 -4.527000e-03
## [2,] -0.0075196230 -0.001915750 0.003395811 0.0008961721 -1.616437e-03
## [3,] -0.0025762306 0.004178705 0.008175392 0.0011549642 -1.865181e-04
## [4,] 0.0000928761 0.007437818 0.009578345 0.0013509325 4.330637e-04
## [5,] 0.0008762737 0.009299387 0.008862773 0.0010597016 4.025448e-04
## [6,] -0.0009054290 0.009834982 0.009088177 0.0013353816 7.480301e-05
## PC29 PC30 PC31 PC32 PC33
## [1,] -5.412067e-03 -0.0002828664 3.152061e-03 0.0006422448 -1.429667e-03
## [2,] -4.291937e-03 -0.0002795646 1.352537e-03 0.0008651475 9.790940e-04
## [3,] 7.275393e-05 -0.0004199123 7.513871e-05 0.0007267658 7.157713e-04
## [4,] 1.200893e-03 -0.0007065113 -7.052611e-04 0.0006700429 -4.954922e-05
## [5,] 7.977362e-04 -0.0010754002 -1.400740e-03 0.0006256962 -6.746881e-04
## [6,] 7.855756e-04 -0.0010711404 -1.815488e-03 0.0006647490 -8.883594e-04
## PC34 PC35 PC36 PC37 PC38
## [1,] 0.0010074883 -6.069393e-04 -0.0010360602 -2.970727e-04 0.0001446716
## [2,] 0.0005667727 2.772940e-05 -0.0005617062 1.071174e-04 -0.0001426795
## [3,] 0.0004699937 1.809393e-04 -0.0005051231 -1.790076e-04 -0.0002297965
## [4,] 0.0003792576 5.189985e-05 -0.0003878942 -1.185442e-04 -0.0002048183
## [5,] 0.0001577098 -1.269305e-04 -0.0002809110 -4.479942e-05 -0.0001246759
## [6,] -0.0002079812 -1.698060e-04 -0.0001289346 -8.446979e-05 -0.0000649644
## PC39 PC40 PC41 PC42 PC43
## [1,] -2.126283e-04 1.294952e-04 -8.350570e-05 -4.500343e-05 1.024969e-05
## [2,] -2.473338e-04 4.577524e-05 1.716414e-04 -6.951168e-05 -9.552669e-06
## [3,] 3.474936e-05 4.632911e-05 8.489321e-05 -4.980391e-05 -1.431371e-05
## [4,] -4.517545e-05 2.358429e-05 3.234030e-05 -2.219825e-05 -9.137015e-06
## [5,] -1.567826e-04 -2.593107e-05 4.176111e-05 -1.455284e-05 -4.022870e-06
## [6,] -2.010062e-04 -3.983061e-05 7.537430e-05 -2.273861e-05 4.337315e-06
## PC44 PC45 PC46 PC47 PC48
## [1,] -2.565707e-05 -2.294603e-05 -1.644076e-07 3.004798e-06 8.364916e-07
## [2,] -3.726091e-05 1.130663e-06 -1.904682e-05 1.747797e-06 2.894105e-06
## [3,] -1.737272e-05 -1.449633e-06 5.327315e-06 4.952857e-06 3.247476e-06
## [4,] 1.006043e-06 -4.146962e-06 2.438769e-06 4.421735e-06 2.918318e-06
## [5,] 4.434147e-06 -7.535335e-06 1.297503e-06 1.508104e-06 2.250174e-06
## [6,] -1.610567e-06 -8.040727e-06 4.044676e-06 8.150546e-07 1.446243e-06
biplot(results, scale = 0) I tried PCA, and actually the graph is a little hard to look at.
vif(lmodAIC)## X15 X16 X17 X19 X26 X31
## 4.497485e+01 5.362453e+01 6.967389e+04 1.778190e+02 1.976853e+05 5.051157e+04
## X45 X46 X20.1 X24.1 X39.1 X58
## 7.694982e+04 2.516181e+05 1.833255e+06 3.522467e+03 8.931648e+06 7.510969e+05
## X85 X101 X104 X120 X139 X154
## 4.878161e+05 2.485622e+07 7.416916e+06 1.185849e+08 1.073101e+06 3.238457e+06
## X163 X173 X176 X185 X192 X223
## 9.394202e+06 1.443930e+08 4.627560e+07 2.468023e+07 2.901750e+08 3.797045e+06
## X226 X232 X236 X251 X275 X286
## 4.059001e+05 1.215170e+07 2.030368e+08 2.906074e+07 1.080171e+06 4.498252e+05
## X292 X345 X357 X455
## 1.159824e+06 1.187699e+04 1.294444e+04 1.996014e+06
Using the rule considering VIF is greater than 10 to be a cause for concern, and we can see that there are no predictors that vif values are more than 10. So there are no predictors that indicate collinearity with other predictors.
For comment on the degree of collinearity observed in the data, we know that the VIF (variance inflation factors) provides a measure of the degree of collinearity, such that a VIF 1 or 2 shows essentially no collinearity and a measure of 20 or higher shows extreme collinearity. All of our VIF values are lower than 20. So we can say our VIF values show no collinearity or small collinearity.
When a model fits the four assumptions below, we can say the linear regression model is appropriate.
Now we need to do diagnostics, note that we assumed
1. \(\epsilon\) is normal distributed when we do inference.
2. \(var(\epsilon) = \sigma^2\) is a constant.
3. \(\epsilon_i\) and \(\epsilon_j\) are independent.
4. \(Y\) is linearly related to \(X\beta\).
Constant Variance First we check the assumption that variance of \(\epsilon\) is a constant. We use plot of \(\hat\epsilon\) v.s.\(\hat y\). We expect is no pattern existing in the plot. (When we have no pattern, satisfy the assumption) Otherwise, it violates the constant variance assumption. (So, no constant variance)
plot(fitted(lmodAIC), residuals(lmodAIC), xlab="Fitted", ylab="Residuals", ylim = c(-0.05, 0.05))
abline(h=0) We can’t see any pattern with this. Which means it does not violate the assumption and the variance of \(\epsilon\) is a constant.
Normality We are now testing the normality of \(\epsilon\), whether \(\epsilon\) is normal distributed or not. So we can plot QQ plot and histogram to figure out.
par(mfrow = c(1,2))
qqnorm(residuals(lmodAIC),ylab="Residuals",main="")
qqline(residuals(lmodAIC))
hist(residuals(lmodAIC))We can see from the QQ plot that the graph is not skewed, most of points are following the straight line (it’s a normal shape). And when we are looking at the histogram of residuals, we can see that it’s roughly a normal shape (bell curve shape). We can see that the residuals are roughly normally distributed.
Correlated Errors Now we check the third assumption: \(\epsilon_i\) and \(\epsilon_j\) are independent.
n <- length(residuals(lmodAIC))
plot(tail(residuals(lmodAIC),n-1) ~ head(residuals(lmod), n-1),
xlab=expression(hat(epsilon)[i], ylab=expression(hat(epsilon)[i+1])),
xlim=c(-0.1, 0.1), ylim=c(-0.1,0.1),
data = glass)
abline(h=0, v=0, col=grey(0.75)) We can see that there are no obvious pattern, which denotes that it does not violate the assumption \(\epsilon_i\) and \(\epsilon_j\) are independent. In other words, the errors are not related to each other.
When the model fits the four diagnostics assumptions, we can say the linear regression model is appropriate. And since our model lmodAIC satisfies all the assumptions, we can say the model is an appropriate model.
An outlier is a data point whose response \(y\) does not follow the general trend of the rest of the data.
A data point has high leverage if it has extreme predictor \(x\) values.
If we taking the point away then it affects slope, then we call it an influential point.
library(faraway) # required library for plotting halfnorm
hatv <- hatvalues(lmodAIC)
head(hatv)## 1 2 3 4 5 6
## 0.13175919 0.04776644 0.02979840 0.03193764 0.03289527 0.03853268
p <- length(lmodAIC$coefficients) # the number of parameter.
n <- length(residuals(lmodAIC)) # sample size (How many observations we have)
theoretical <- 2*p/n
properties <- row.names(simp_glass)
halfnorm(hatv, labs=properties, ylab = "Leverages") We use \(2p/n\) as our threshold of determining extreme observations. \(p\) is the number of parameters, and it should be thirty four in this case since we have \(\beta_0, \beta_1, \beta_2,\) and \(\beta_3\) for our parameters. \(n\) is the sample size, so in this case we have 474. So the theoretical threshold value is \(\frac{2p}{n} = \frac{2\times34}{474} = 0.1434\). When we use halfnorm distribution to figure out the leverage and potential extreme observations, we got 167 and 14.
Just in case, we can also check this by using lm.influence() function.
h <- lm.influence(lmodAIC)$hat
head(rev(sort(h))) # sort h from highest to lowest and print few highest observations## 167 14 173 180 21 448
## 0.3594561 0.3229954 0.3008242 0.2962068 0.2763941 0.2721893
We got the same result, even though there are no extreme high leverage, like more than 80% or something, but we could see that 167th and 14th observations have high leverage. We can conclude that these two points (or say these two observations) highly affect our value to draw a line.
When I first looked at the dataset, after loading it, I was already fully overwhelmed by the amount of data. Because it was my really first time to see these huge amount of data. I think I was too scared to start because it keeps crashing.
At first it was really hard for me to get some ideas how to reduce the dataset. But after I got a hint that first recommendation is to compute the correlation coefficient, I could see how I organize the data. Also it was hard for me to decide which methods I should use to do a model selection and shrinkage methods, but I could just start with Lasso regression after Dr. G’s advice. I thought it was a little hard to choose a model only with Lasso, so I did PCA as well.
When I was working on the Diagnostics part, I was pretty surprised that my model not violates any diagnostic assumptions, since I faced some of the assumptions were not met in midterm. I fit several models (lmod, lmodAIC, lmodLASSO). Since lmodAIC satisfies all the diagnostics assumptions, I ended up concluding that the lmodAIC is a good model.