Calculando a alfa usando o “entropart”
library(metacom)
## Carregando pacotes exigidos: vegan
## Carregando pacotes exigidos: permute
## Carregando pacotes exigidos: lattice
## This is vegan 2.5-7
library(vegan)
library(rdiversity)
library(entropart)
mc<-MetaCommunity(dados)
AlphaDiversity(mc, q=0, Correction = "None")
## $MetaCommunity
## [1] "mc"
##
## $Method
## [1] "Neutral"
##
## $Type
## [1] "alpha"
##
## $Order
## [1] 0
##
## $Correction
## [1] "None"
##
## $Normalized
## [1] TRUE
##
## $Weights
## LDL1 LDL3 LDL4 LDL5 LDL8 LDL9 LDL10
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## LDL11 LDL12 LDL13 LDL14 LDL15 IDL1 IDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL5 IDL6 IDL7 IDL8 IDL9 IDL10 IDL11
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL12 IDL13 IDL14 IDL15 HDL2 HDL3 HDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL5 HDL6 HDL10 HDL11 HDL12 HDL13 HDL14
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL15
## 0.02777778
##
## $Communities
## LDL1 LDL3 LDL4 LDL5 LDL8 LDL9 LDL10 LDL11 LDL12 LDL13 LDL14 LDL15 IDL1
## 35 30 30 29 38 40 26 32 36 27 36 23 38
## IDL4 IDL5 IDL6 IDL7 IDL8 IDL9 IDL10 IDL11 IDL12 IDL13 IDL14 IDL15 HDL2
## 31 31 32 38 29 41 32 27 40 40 35 46 38
## HDL3 HDL4 HDL5 HDL6 HDL10 HDL11 HDL12 HDL13 HDL14 HDL15
## 40 25 26 25 27 15 18 21 39 29
##
## $Total
## [1] 31.80556
##
## attr(,"class")
## [1] "MCdiversity"
AlphaDiversity(mc, q=1, Correction = "None")
## $MetaCommunity
## [1] "mc"
##
## $Method
## [1] "Neutral"
##
## $Type
## [1] "alpha"
##
## $Order
## [1] 1
##
## $Correction
## [1] "None"
##
## $Normalized
## [1] TRUE
##
## $Weights
## LDL1 LDL3 LDL4 LDL5 LDL8 LDL9 LDL10
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## LDL11 LDL12 LDL13 LDL14 LDL15 IDL1 IDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL5 IDL6 IDL7 IDL8 IDL9 IDL10 IDL11
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL12 IDL13 IDL14 IDL15 HDL2 HDL3 HDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL5 HDL6 HDL10 HDL11 HDL12 HDL13 HDL14
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL15
## 0.02777778
##
## $Communities
## LDL1 LDL3 LDL4 LDL5 LDL8 LDL9 LDL10 LDL11
## 27.222539 25.629042 22.941212 24.387995 25.468065 29.897721 7.311644 21.888908
## LDL12 LDL13 LDL14 LDL15 IDL1 IDL4 IDL5 IDL6
## 29.349849 24.342215 25.964012 13.197723 30.755277 24.461617 19.699180 25.450513
## IDL7 IDL8 IDL9 IDL10 IDL11 IDL12 IDL13 IDL14
## 25.265590 23.159886 25.854673 27.138127 18.074630 30.816146 33.977934 21.894257
## IDL15 HDL2 HDL3 HDL4 HDL5 HDL6 HDL10 HDL11
## 35.997088 31.969923 30.800462 20.816537 17.365476 20.844865 20.562416 6.173823
## HDL12 HDL13 HDL14 HDL15
## 11.350338 17.717858 31.130084 21.344945
##
## $Total
## [1] 22.28671
##
## attr(,"class")
## [1] "MCdiversity"
Calculando a Beta
BetaDiversity(mc, q=0, Correction = "None")
## $MetaCommunity
## [1] "mc"
##
## $Method
## [1] "Neutral"
##
## $Type
## [1] "beta"
##
## $Order
## [1] 0
##
## $Correction
## [1] "None"
##
## $Normalized
## [1] TRUE
##
## $Weights
## LDL1 LDL3 LDL4 LDL5 LDL8 LDL9 LDL10
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## LDL11 LDL12 LDL13 LDL14 LDL15 IDL1 IDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL5 IDL6 IDL7 IDL8 IDL9 IDL10 IDL11
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL12 IDL13 IDL14 IDL15 HDL2 HDL3 HDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL5 HDL6 HDL10 HDL11 HDL12 HDL13 HDL14
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL15
## 0.02777778
##
## $Total
## [1] 5.627948
##
## attr(,"class")
## [1] "MCdiversity"
BetaDiversity(mc, q=1, Correction = "None")
## $MetaCommunity
## [1] "mc"
##
## $Method
## [1] "Neutral"
##
## $Type
## [1] "beta"
##
## $Order
## [1] 1
##
## $Correction
## [1] "None"
##
## $Normalized
## [1] TRUE
##
## $Weights
## LDL1 LDL3 LDL4 LDL5 LDL8 LDL9 LDL10
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## LDL11 LDL12 LDL13 LDL14 LDL15 IDL1 IDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL5 IDL6 IDL7 IDL8 IDL9 IDL10 IDL11
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL12 IDL13 IDL14 IDL15 HDL2 HDL3 HDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL5 HDL6 HDL10 HDL11 HDL12 HDL13 HDL14
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL15
## 0.02777778
##
## $Total
## [1] 4.25749
##
## attr(,"class")
## [1] "MCdiversity"
BetaDiversity(mc, q=2, Correction = "None")
## $MetaCommunity
## [1] "mc"
##
## $Method
## [1] "Neutral"
##
## $Type
## [1] "beta"
##
## $Order
## [1] 2
##
## $Correction
## [1] "None"
##
## $Normalized
## [1] TRUE
##
## $Weights
## LDL1 LDL3 LDL4 LDL5 LDL8 LDL9 LDL10
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## LDL11 LDL12 LDL13 LDL14 LDL15 IDL1 IDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL5 IDL6 IDL7 IDL8 IDL9 IDL10 IDL11
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## IDL12 IDL13 IDL14 IDL15 HDL2 HDL3 HDL4
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL5 HDL6 HDL10 HDL11 HDL12 HDL13 HDL14
## 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778 0.02777778
## HDL15
## 0.02777778
##
## $Total
## [1] 4.419122
##
## attr(,"class")
## [1] "MCdiversity"
Calculando a Gama
GammaDiversity(mc, q=0, Correction = "None")
## None
## 179
GammaDiversity(mc, q=1, Correction = "None")
## None
## 94.88546
GammaDiversity(mc, q=2, Correction = "None")
## None
## 62.38163
Perfil de diversidade
Profile <- DivProfile(q.seq = seq(0, 2, 0.1), mc, Biased = FALSE, Correction = "None")
plot(Profile)

summary(Profile)
## Diversity profile of MetaCommunity mc
## with correction: None
## Diversity against its order:
## Order Alpha Diversity Beta Diversity Gamma Diversity
## None 0.0 31.80556 5.627948 179.00000
## None 0.1 30.85554 5.417085 167.14707
## None 0.2 29.89974 5.221463 156.12037
## None 0.3 28.93997 5.041821 145.91015
## None 0.4 27.97820 4.878732 136.49813
## None 0.5 27.01649 4.732591 127.85800
## None 0.6 26.05700 4.603608 119.95622
## None 0.7 25.10198 4.491810 112.75332
## None 0.8 24.15370 4.397063 106.20534
## None 0.9 23.21450 4.319087 100.26545
## None 1.0 22.28671 4.257490 94.88546
## None 1.1 21.37266 4.211794 90.01725
## None 1.2 20.47465 4.181460 85.61391
## None 1.3 19.59491 4.165909 81.63063
## None 1.4 18.73564 4.164541 78.02535
## None 1.5 17.89891 4.176742 74.75913
## None 1.6 17.08668 4.201890 71.79636
## None 1.7 16.30077 4.239354 69.10475
## None 1.8 15.54282 4.288491 66.65526
## None 1.9 14.81427 4.348641 64.42193
## None 2.0 14.11629 4.419122 62.38163
library(betapart)
dadosLDL<-dados[, 1:12]
dadosLDL<-ifelse(dadosLDL=="0",0,1)
beta.core<-betapart.core(dadosLDL)
beta.multi<-beta.multi(dadosLDL)
beta.multi
## $beta.SIM
## [1] 0.9543153
##
## $beta.SNE
## [1] 0.03262383
##
## $beta.SOR
## [1] 0.9869392
Na paisagem com nível alto de devastação florestal (HDL) para beta SNE, que indica substituição, o valor é menor que 1, que indica que pode haver a substituição de espécies que variam no ambiente. O aninhamento tem valor beta próximo de 1, que indica que esse cenário não teve perda gradual de espécies.