Antanas Kaminskas

Duomenų Gavyba 5-tieji namų darbai

rm(list = ls())
library(mlr)
## Įkeliamas reikalingas paketas: ParamHelpers
## Warning message: 'mlr' is in 'maintenance-only' mode since July 2019.
## Future development will only happen in 'mlr3'
## (<https://mlr3.mlr-org.com>). Due to the focus on 'mlr3' there might be
## uncaught bugs meanwhile in {mlr} - please consider switching.
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Duomenų rinkinių nuskaitymas iš failo

getwd()
## [1] "C:/Users/antanas.kaminskas/Desktop"
setwd("C:/Users/antanas.kaminskas/Desktop")
dt1 <- read.csv("C:/Users/antanas.kaminskas/Desktop/DG_FF1.csv",
                header = TRUE,
                sep = ";",
                dec = ".") 
dt2 <- read.csv("C:/Users/antanas.kaminskas/Desktop/DG_OE.csv",
                       header = TRUE,
                       sep = ";",
                       dec = ".") 

Duomenų išvedimas : Pirmajam rinkiniui

head(dt1)
##   Y day    DC  ISI RH wind rain area
## 1 5 fri  94.3  5.1 51  6.7  0.0    0
## 2 4 tue 669.1  6.7 33  0.9  0.0    0
## 3 4 sat 686.9  6.7 33  1.3  0.0    0
## 4 6 fri  77.5  9.0 97  4.0  0.2    0
## 5 6 sun 102.2  9.6 99  1.8  0.0    0
## 6 6 sun 488.0 14.7 29  5.4  0.0    0

Antrajam rinkiniui

head(dt2)
##         Date     Time S1_Temp S2_Temp S3_Temp S4_Temp S1_Light S2_Light
## 1 2017-12-22 10:49:41   24.94   24.75   24.56   25.38      121       34
## 2 2017-12-22 10:50:12   24.94   24.75   24.56   25.44      121       33
## 3 2017-12-22 10:50:42   25.00   24.75   24.50   25.44      121       34
## 4 2017-12-22 10:51:13   25.00   24.75   24.56   25.44      121       34
## 5 2017-12-22 10:51:44   25.00   24.75   24.56   25.44      121       34
## 6 2017-12-22 10:52:14   25.00   24.81   24.56   25.44      121       34
##   S3_Light S4_Light S1_Sound S2_Sound S3_Sound S4_Sound S5_CO2 S5_CO2_Slope
## 1       53       40     0.08     0.19     0.06     0.06    390    0.7692308
## 2       53       40     0.93     0.05     0.06     0.06    390    0.6461538
## 3       53       40     0.43     0.11     0.08     0.06    390    0.5192308
## 4       53       40     0.41     0.10     0.10     0.09    390    0.3884615
## 5       54       40     0.18     0.06     0.06     0.06    390    0.2538462
## 6       54       40     0.13     0.06     0.06     0.07    390    0.1653846
##   S6_PIR S7_PIR Room_Occupancy_Count
## 1      0      0                    1
## 2      0      0                    1
## 3      0      0                    1
## 4      0      0                    1
## 5      0      0                    1
## 6      0      0                    1

#Duomenų klasifikavimas

dt1Tib <- as_tibble(dt1)
dt1Tib
## # A tibble: 517 x 8
##        Y day      DC   ISI    RH  wind  rain  area
##    <int> <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
##  1     5 fri    94.3   5.1    51   6.7   0       0
##  2     4 tue   669.    6.7    33   0.9   0       0
##  3     4 sat   687.    6.7    33   1.3   0       0
##  4     6 fri    77.5   9      97   4     0.2     0
##  5     6 sun   102.    9.6    99   1.8   0       0
##  6     6 sun   488    14.7    29   5.4   0       0
##  7     6 mon   496.    8.5    27   3.1   0       0
##  8     6 mon   608.   10.7    86   2.2   0       0
##  9     6 tue   693.    7      63   5.4   0       0
## 10     5 sat   699.    7.1    40   4     0       0
## # ... with 507 more rows

Pasirenkame teksitinių kintamųjų stulpelius, kurie bus faktoriai

dt1 <- mutate_at(dt1Tib, vars(day), as.factor)
dt1
## # A tibble: 517 x 8
##        Y day      DC   ISI    RH  wind  rain  area
##    <int> <fct> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
##  1     5 fri    94.3   5.1    51   6.7   0       0
##  2     4 tue   669.    6.7    33   0.9   0       0
##  3     4 sat   687.    6.7    33   1.3   0       0
##  4     6 fri    77.5   9      97   4     0.2     0
##  5     6 sun   102.    9.6    99   1.8   0       0
##  6     6 sun   488    14.7    29   5.4   0       0
##  7     6 mon   496.    8.5    27   3.1   0       0
##  8     6 mon   608.   10.7    86   2.2   0       0
##  9     6 tue   693.    7      63   5.4   0       0
## 10     5 sat   699.    7.1    40   4     0       0
## # ... with 507 more rows

Sudarome naujus kintamųjų vardus

names(dt1Tib) <- c( "Y","day",
                    "DC", "ISI", "RH", "wind", "rain",
                    "area")

Braižome grafikus

dt1Untidy <- gather(dt1Tib, "Variable", "Value", -day)
ggplot(dt1Untidy, aes(day, Value)) +
  facet_wrap(~ Variable, scales = "free_y") +
  geom_boxplot() +
  theme_bw()

# Sudarome LDA modelį

dt1Task <- makeClassifTask(data = dt1Tib, target = "day")
## Warning in makeTask(type = type, data = data, weights = weights, blocking =
## blocking, : Provided data is not a pure data.frame but from class tbl_df, hence
## it will be converted.
lda <- makeLearner("classif.lda")
ldaModel <- train(lda, dt1Task)

Sudarome mokymosi modelį

ldaModelData <- getLearnerModel(ldaModel)
ldaPreds <- predict(ldaModelData)$x
head(ldaPreds)
##          LD1        LD2         LD3         LD4        LD5        LD6
## 1 -0.3321926 -1.0591736  0.04096479 -0.32194372 -0.4446304  1.3934040
## 2  1.4368780  0.2804332  0.32857382 -0.05326468  0.5562428 -0.2206089
## 3  1.3098352  0.2801697  0.35097700 -0.18466649  0.4402101 -0.3009957
## 4 -1.2639520 -2.1803125 -1.01123724  1.76403871  1.9955097  1.0120663
## 5 -0.5897332 -2.2699209 -1.76121095  2.27039479  2.3764933  0.9421201
## 6 -0.2657164  1.4719503 -0.95082560 -0.43295397  0.2159202  0.5768254

Braižome klasių grafikus

dt1Tib %>%
  mutate(LD1 = ldaPreds[, 1],
         LD2 = ldaPreds[, 2]) %>%
  ggplot(aes(LD1, LD2, col = day)) +
  geom_point() +
  stat_ellipse() +
  theme_bw()

Sudarome QDA modelį

qda <- makeLearner("classif.qda")
qda
## Learner classif.qda from package MASS
## Type: classif
## Name: Quadratic Discriminant Analysis; Short name: qda
## Class: classif.qda
## Properties: twoclass,multiclass,numerics,factors,prob
## Predict-Type: response
## Hyperparameters:

Apmokome QDA modelį, PASTABA: NEVEIKIA

NEVEIKIA

#qdaModel <- train(qda, task = dt1Task)
#qdaModel
kFold <- makeResampleDesc(method = "RepCV", folds = 10, reps = 50,
                          stratify = TRUE)
ldaCV <- resample(learner = lda, task = dt1Task, resampling = kFold,
                  measures = list(mmce, acc))
## Resampling: repeated cross-validation
## Measures:             mmce      acc
## [Resample] iter 1:    0.6730769 0.3269231
## [Resample] iter 2:    0.8653846 0.1346154
## [Resample] iter 3:    0.7692308 0.2307692
## [Resample] iter 4:    0.7058824 0.2941176
## [Resample] iter 5:    0.8627451 0.1372549
## [Resample] iter 6:    0.8269231 0.1730769
## [Resample] iter 7:    0.8846154 0.1153846
## [Resample] iter 8:    0.9245283 0.0754717
## [Resample] iter 9:    0.8076923 0.1923077
## [Resample] iter 10:   0.8000000 0.2000000
## [Resample] iter 11:   0.7000000 0.3000000
## [Resample] iter 12:   0.8627451 0.1372549
## [Resample] iter 13:   0.7962963 0.2037037
## [Resample] iter 14:   0.7884615 0.2115385
## [Resample] iter 15:   0.7800000 0.2200000
## [Resample] iter 16:   0.8076923 0.1923077
## [Resample] iter 17:   0.7692308 0.2307692
## [Resample] iter 18:   0.7735849 0.2264151
## [Resample] iter 19:   0.8301887 0.1698113
## [Resample] iter 20:   0.8600000 0.1400000
## [Resample] iter 21:   0.7647059 0.2352941
## [Resample] iter 22:   0.8800000 0.1200000
## [Resample] iter 23:   0.7600000 0.2400000
## [Resample] iter 24:   0.8400000 0.1600000
## [Resample] iter 25:   0.7358491 0.2641509
## [Resample] iter 26:   0.8181818 0.1818182
## [Resample] iter 27:   0.7547170 0.2452830
## [Resample] iter 28:   0.8076923 0.1923077
## [Resample] iter 29:   0.7735849 0.2264151
## [Resample] iter 30:   0.8000000 0.2000000
## [Resample] iter 31:   0.8163265 0.1836735
## [Resample] iter 32:   0.7647059 0.2352941
## [Resample] iter 33:   0.7735849 0.2264151
## [Resample] iter 34:   0.9056604 0.0943396
## [Resample] iter 35:   0.8301887 0.1698113
## [Resample] iter 36:   0.8888889 0.1111111
## [Resample] iter 37:   0.7647059 0.2352941
## [Resample] iter 38:   0.8627451 0.1372549
## [Resample] iter 39:   0.7307692 0.2692308
## [Resample] iter 40:   0.7200000 0.2800000
## [Resample] iter 41:   0.8800000 0.1200000
## [Resample] iter 42:   0.8301887 0.1698113
## [Resample] iter 43:   0.7884615 0.2115385
## [Resample] iter 44:   0.8518519 0.1481481
## [Resample] iter 45:   0.7500000 0.2500000
## [Resample] iter 46:   0.8490566 0.1509434
## [Resample] iter 47:   0.7692308 0.2307692
## [Resample] iter 48:   0.7346939 0.2653061
## [Resample] iter 49:   0.8039216 0.1960784
## [Resample] iter 50:   0.8039216 0.1960784
## [Resample] iter 51:   0.8039216 0.1960784
## [Resample] iter 52:   0.7884615 0.2115385
## [Resample] iter 53:   0.7169811 0.2830189
## [Resample] iter 54:   0.8461538 0.1538462
## [Resample] iter 55:   0.8200000 0.1800000
## [Resample] iter 56:   0.8653846 0.1346154
## [Resample] iter 57:   0.8113208 0.1886792
## [Resample] iter 58:   0.7551020 0.2448980
## [Resample] iter 59:   0.7924528 0.2075472
## [Resample] iter 60:   0.9038462 0.0961538
## [Resample] iter 61:   0.8679245 0.1320755
## [Resample] iter 62:   0.8571429 0.1428571
## [Resample] iter 63:   0.7777778 0.2222222
## [Resample] iter 64:   0.7000000 0.3000000
## [Resample] iter 65:   0.8076923 0.1923077
## [Resample] iter 66:   0.7058824 0.2941176
## [Resample] iter 67:   0.8461538 0.1538462
## [Resample] iter 68:   0.8431373 0.1568627
## [Resample] iter 69:   0.7500000 0.2500000
## [Resample] iter 70:   0.7735849 0.2264151
## [Resample] iter 71:   0.8076923 0.1923077
## [Resample] iter 72:   0.7000000 0.3000000
## [Resample] iter 73:   0.7090909 0.2909091
## [Resample] iter 74:   0.7800000 0.2200000
## [Resample] iter 75:   0.8000000 0.2000000
## [Resample] iter 76:   0.8846154 0.1153846
## [Resample] iter 77:   0.7843137 0.2156863
## [Resample] iter 78:   0.7924528 0.2075472
## [Resample] iter 79:   0.8269231 0.1730769
## [Resample] iter 80:   0.8461538 0.1538462
## [Resample] iter 81:   0.7450980 0.2549020
## [Resample] iter 82:   0.8113208 0.1886792
## [Resample] iter 83:   0.7735849 0.2264151
## [Resample] iter 84:   0.8039216 0.1960784
## [Resample] iter 85:   0.7884615 0.2115385
## [Resample] iter 86:   0.7647059 0.2352941
## [Resample] iter 87:   0.7800000 0.2200000
## [Resample] iter 88:   0.8076923 0.1923077
## [Resample] iter 89:   0.8823529 0.1176471
## [Resample] iter 90:   0.7735849 0.2264151
## [Resample] iter 91:   0.7924528 0.2075472
## [Resample] iter 92:   0.8823529 0.1176471
## [Resample] iter 93:   0.8269231 0.1730769
## [Resample] iter 94:   0.7884615 0.2115385
## [Resample] iter 95:   0.7272727 0.2727273
## [Resample] iter 96:   0.7647059 0.2352941
## [Resample] iter 97:   0.8235294 0.1764706
## [Resample] iter 98:   0.7450980 0.2549020
## [Resample] iter 99:   0.7600000 0.2400000
## [Resample] iter 100:  0.8039216 0.1960784
## [Resample] iter 101:  0.8076923 0.1923077
## [Resample] iter 102:  0.8000000 0.2000000
## [Resample] iter 103:  0.8235294 0.1764706
## [Resample] iter 104:  0.8627451 0.1372549
## [Resample] iter 105:  0.7500000 0.2500000
## [Resample] iter 106:  0.7843137 0.2156863
## [Resample] iter 107:  0.8461538 0.1538462
## [Resample] iter 108:  0.7818182 0.2181818
## [Resample] iter 109:  0.8076923 0.1923077
## [Resample] iter 110:  0.8627451 0.1372549
## [Resample] iter 111:  0.8653846 0.1346154
## [Resample] iter 112:  0.8653846 0.1346154
## [Resample] iter 113:  0.7307692 0.2692308
## [Resample] iter 114:  0.7592593 0.2407407
## [Resample] iter 115:  0.8461538 0.1538462
## [Resample] iter 116:  0.8200000 0.1800000
## [Resample] iter 117:  0.8200000 0.1800000
## [Resample] iter 118:  0.7547170 0.2452830
## [Resample] iter 119:  0.8431373 0.1568627
## [Resample] iter 120:  0.7843137 0.2156863
## [Resample] iter 121:  0.8269231 0.1730769
## [Resample] iter 122:  0.7692308 0.2307692
## [Resample] iter 123:  0.7500000 0.2500000
## [Resample] iter 124:  0.7450980 0.2549020
## [Resample] iter 125:  0.7692308 0.2307692
## [Resample] iter 126:  0.8679245 0.1320755
## [Resample] iter 127:  0.8571429 0.1428571
## [Resample] iter 128:  0.8076923 0.1923077
## [Resample] iter 129:  0.8823529 0.1176471
## [Resample] iter 130:  0.8301887 0.1698113
## [Resample] iter 131:  0.7547170 0.2452830
## [Resample] iter 132:  0.7636364 0.2363636
## [Resample] iter 133:  0.7692308 0.2307692
## [Resample] iter 134:  0.8400000 0.1600000
## [Resample] iter 135:  0.8431373 0.1568627
## [Resample] iter 136:  0.9245283 0.0754717
## [Resample] iter 137:  0.8000000 0.2000000
## [Resample] iter 138:  0.8000000 0.2000000
## [Resample] iter 139:  0.7307692 0.2692308
## [Resample] iter 140:  0.8431373 0.1568627
## [Resample] iter 141:  0.8461538 0.1538462
## [Resample] iter 142:  0.7307692 0.2692308
## [Resample] iter 143:  0.9038462 0.0961538
## [Resample] iter 144:  0.8400000 0.1600000
## [Resample] iter 145:  0.6274510 0.3725490
## [Resample] iter 146:  0.8846154 0.1153846
## [Resample] iter 147:  0.8301887 0.1698113
## [Resample] iter 148:  0.8600000 0.1400000
## [Resample] iter 149:  0.7500000 0.2500000
## [Resample] iter 150:  0.6981132 0.3018868
## [Resample] iter 151:  0.7959184 0.2040816
## [Resample] iter 152:  0.7647059 0.2352941
## [Resample] iter 153:  0.8363636 0.1636364
## [Resample] iter 154:  0.7777778 0.2222222
## [Resample] iter 155:  0.8039216 0.1960784
## [Resample] iter 156:  0.7647059 0.2352941
## [Resample] iter 157:  0.7169811 0.2830189
## [Resample] iter 158:  0.7800000 0.2200000
## [Resample] iter 159:  0.7924528 0.2075472
## [Resample] iter 160:  0.9200000 0.0800000
## [Resample] iter 161:  0.7884615 0.2115385
## [Resample] iter 162:  0.8461538 0.1538462
## [Resample] iter 163:  0.7800000 0.2200000
## [Resample] iter 164:  0.8163265 0.1836735
## [Resample] iter 165:  0.8076923 0.1923077
## [Resample] iter 166:  0.6909091 0.3090909
## [Resample] iter 167:  0.9000000 0.1000000
## [Resample] iter 168:  0.7962963 0.2037037
## [Resample] iter 169:  0.8076923 0.1923077
## [Resample] iter 170:  0.8235294 0.1764706
## [Resample] iter 171:  0.7547170 0.2452830
## [Resample] iter 172:  0.8301887 0.1698113
## [Resample] iter 173:  0.7058824 0.2941176
## [Resample] iter 174:  0.8653846 0.1346154
## [Resample] iter 175:  0.8000000 0.2000000
## [Resample] iter 176:  0.8039216 0.1960784
## [Resample] iter 177:  0.8235294 0.1764706
## [Resample] iter 178:  0.8113208 0.1886792
## [Resample] iter 179:  0.7924528 0.2075472
## [Resample] iter 180:  0.8200000 0.1800000
## [Resample] iter 181:  0.8235294 0.1764706
## [Resample] iter 182:  0.8235294 0.1764706
## [Resample] iter 183:  0.8269231 0.1730769
## [Resample] iter 184:  0.8823529 0.1176471
## [Resample] iter 185:  0.7884615 0.2115385
## [Resample] iter 186:  0.7884615 0.2115385
## [Resample] iter 187:  0.8039216 0.1960784
## [Resample] iter 188:  0.8148148 0.1851852
## [Resample] iter 189:  0.7400000 0.2600000
## [Resample] iter 190:  0.6981132 0.3018868
## [Resample] iter 191:  0.7818182 0.2181818
## [Resample] iter 192:  0.7647059 0.2352941
## [Resample] iter 193:  0.7400000 0.2600000
## [Resample] iter 194:  0.8200000 0.1800000
## [Resample] iter 195:  0.7547170 0.2452830
## [Resample] iter 196:  0.8679245 0.1320755
## [Resample] iter 197:  0.7924528 0.2075472
## [Resample] iter 198:  0.7450980 0.2549020
## [Resample] iter 199:  0.8000000 0.2000000
## [Resample] iter 200:  0.8431373 0.1568627
## [Resample] iter 201:  0.8867925 0.1132075
## [Resample] iter 202:  0.8039216 0.1960784
## [Resample] iter 203:  0.7500000 0.2500000
## [Resample] iter 204:  0.7843137 0.2156863
## [Resample] iter 205:  0.7000000 0.3000000
## [Resample] iter 206:  0.8235294 0.1764706
## [Resample] iter 207:  0.7647059 0.2352941
## [Resample] iter 208:  0.8518519 0.1481481
## [Resample] iter 209:  0.7884615 0.2115385
## [Resample] iter 210:  0.8076923 0.1923077
## [Resample] iter 211:  0.8000000 0.2000000
## [Resample] iter 212:  0.7500000 0.2500000
## [Resample] iter 213:  0.7254902 0.2745098
## [Resample] iter 214:  0.7647059 0.2352941
## [Resample] iter 215:  0.8823529 0.1176471
## [Resample] iter 216:  0.8333333 0.1666667
## [Resample] iter 217:  0.8000000 0.2000000
## [Resample] iter 218:  0.8000000 0.2000000
## [Resample] iter 219:  0.8600000 0.1400000
## [Resample] iter 220:  0.8490566 0.1509434
## [Resample] iter 221:  0.7500000 0.2500000
## [Resample] iter 222:  0.7924528 0.2075472
## [Resample] iter 223:  0.8269231 0.1730769
## [Resample] iter 224:  0.7547170 0.2452830
## [Resample] iter 225:  0.8800000 0.1200000
## [Resample] iter 226:  0.7959184 0.2040816
## [Resample] iter 227:  0.6666667 0.3333333
## [Resample] iter 228:  0.8113208 0.1886792
## [Resample] iter 229:  0.8113208 0.1886792
## [Resample] iter 230:  0.7647059 0.2352941
## [Resample] iter 231:  0.7450980 0.2549020
## [Resample] iter 232:  0.8200000 0.1800000
## [Resample] iter 233:  0.6730769 0.3269231
## [Resample] iter 234:  0.8627451 0.1372549
## [Resample] iter 235:  0.7358491 0.2641509
## [Resample] iter 236:  0.8679245 0.1320755
## [Resample] iter 237:  0.7884615 0.2115385
## [Resample] iter 238:  0.7307692 0.2692308
## [Resample] iter 239:  0.8269231 0.1730769
## [Resample] iter 240:  0.8431373 0.1568627
## [Resample] iter 241:  0.7058824 0.2941176
## [Resample] iter 242:  0.7692308 0.2307692
## [Resample] iter 243:  0.8627451 0.1372549
## [Resample] iter 244:  0.8076923 0.1923077
## [Resample] iter 245:  0.7884615 0.2115385
## [Resample] iter 246:  0.8431373 0.1568627
## [Resample] iter 247:  0.7884615 0.2115385
## [Resample] iter 248:  0.7692308 0.2307692
## [Resample] iter 249:  0.8113208 0.1886792
## [Resample] iter 250:  0.8431373 0.1568627
## [Resample] iter 251:  0.8431373 0.1568627
## [Resample] iter 252:  0.7450980 0.2549020
## [Resample] iter 253:  0.8400000 0.1600000
## [Resample] iter 254:  0.8235294 0.1764706
## [Resample] iter 255:  0.8200000 0.1800000
## [Resample] iter 256:  0.7547170 0.2452830
## [Resample] iter 257:  0.7592593 0.2407407
## [Resample] iter 258:  0.7647059 0.2352941
## [Resample] iter 259:  0.7735849 0.2264151
## [Resample] iter 260:  0.8679245 0.1320755
## [Resample] iter 261:  0.8653846 0.1346154
## [Resample] iter 262:  0.7692308 0.2307692
## [Resample] iter 263:  0.7358491 0.2641509
## [Resample] iter 264:  0.7500000 0.2500000
## [Resample] iter 265:  0.8846154 0.1153846
## [Resample] iter 266:  0.7254902 0.2745098
## [Resample] iter 267:  0.7115385 0.2884615
## [Resample] iter 268:  0.8076923 0.1923077
## [Resample] iter 269:  0.7800000 0.2200000
## [Resample] iter 270:  0.8431373 0.1568627
## [Resample] iter 271:  0.8363636 0.1636364
## [Resample] iter 272:  0.8039216 0.1960784
## [Resample] iter 273:  0.9230769 0.0769231
## [Resample] iter 274:  0.7800000 0.2200000
## [Resample] iter 275:  0.8235294 0.1764706
## [Resample] iter 276:  0.8113208 0.1886792
## [Resample] iter 277:  0.7450980 0.2549020
## [Resample] iter 278:  0.7647059 0.2352941
## [Resample] iter 279:  0.8490566 0.1509434
## [Resample] iter 280:  0.7200000 0.2800000
## [Resample] iter 281:  0.7058824 0.2941176
## [Resample] iter 282:  0.8000000 0.2000000
## [Resample] iter 283:  0.8113208 0.1886792
## [Resample] iter 284:  0.7924528 0.2075472
## [Resample] iter 285:  0.7843137 0.2156863
## [Resample] iter 286:  0.8627451 0.1372549
## [Resample] iter 287:  0.6923077 0.3076923
## [Resample] iter 288:  0.8076923 0.1923077
## [Resample] iter 289:  0.7843137 0.2156863
## [Resample] iter 290:  0.9056604 0.0943396
## [Resample] iter 291:  0.8076923 0.1923077
## [Resample] iter 292:  0.7222222 0.2777778
## [Resample] iter 293:  0.8200000 0.1800000
## [Resample] iter 294:  0.8163265 0.1836735
## [Resample] iter 295:  0.7800000 0.2200000
## [Resample] iter 296:  0.8653846 0.1346154
## [Resample] iter 297:  0.9019608 0.0980392
## [Resample] iter 298:  0.8545455 0.1454545
## [Resample] iter 299:  0.8076923 0.1923077
## [Resample] iter 300:  0.8076923 0.1923077
## [Resample] iter 301:  0.8431373 0.1568627
## [Resample] iter 302:  0.7924528 0.2075472
## [Resample] iter 303:  0.7884615 0.2115385
## [Resample] iter 304:  0.8627451 0.1372549
## [Resample] iter 305:  0.8545455 0.1454545
## [Resample] iter 306:  0.6800000 0.3200000
## [Resample] iter 307:  0.7843137 0.2156863
## [Resample] iter 308:  0.7884615 0.2115385
## [Resample] iter 309:  0.7600000 0.2400000
## [Resample] iter 310:  0.7500000 0.2500000
## [Resample] iter 311:  0.8867925 0.1132075
## [Resample] iter 312:  0.7254902 0.2745098
## [Resample] iter 313:  0.7843137 0.2156863
## [Resample] iter 314:  0.7755102 0.2244898
## [Resample] iter 315:  0.8823529 0.1176471
## [Resample] iter 316:  0.8333333 0.1666667
## [Resample] iter 317:  0.7115385 0.2884615
## [Resample] iter 318:  0.8627451 0.1372549
## [Resample] iter 319:  0.7500000 0.2500000
## [Resample] iter 320:  0.8301887 0.1698113
## [Resample] iter 321:  0.7692308 0.2307692
## [Resample] iter 322:  0.7600000 0.2400000
## [Resample] iter 323:  0.7500000 0.2500000
## [Resample] iter 324:  0.8039216 0.1960784
## [Resample] iter 325:  0.8653846 0.1346154
## [Resample] iter 326:  0.7692308 0.2307692
## [Resample] iter 327:  0.9038462 0.0961538
## [Resample] iter 328:  0.8653846 0.1346154
## [Resample] iter 329:  0.7692308 0.2307692
## [Resample] iter 330:  0.8076923 0.1923077
## [Resample] iter 331:  0.8461538 0.1538462
## [Resample] iter 332:  0.8823529 0.1176471
## [Resample] iter 333:  0.8301887 0.1698113
## [Resample] iter 334:  0.8600000 0.1400000
## [Resample] iter 335:  0.7800000 0.2200000
## [Resample] iter 336:  0.7500000 0.2500000
## [Resample] iter 337:  0.8113208 0.1886792
## [Resample] iter 338:  0.8301887 0.1698113
## [Resample] iter 339:  0.7647059 0.2352941
## [Resample] iter 340:  0.8846154 0.1153846
## [Resample] iter 341:  0.7843137 0.2156863
## [Resample] iter 342:  0.8679245 0.1320755
## [Resample] iter 343:  0.8000000 0.2000000
## [Resample] iter 344:  0.8518519 0.1481481
## [Resample] iter 345:  0.7450980 0.2549020
## [Resample] iter 346:  0.7692308 0.2307692
## [Resample] iter 347:  0.7169811 0.2830189
## [Resample] iter 348:  0.8200000 0.1800000
## [Resample] iter 349:  0.8235294 0.1764706
## [Resample] iter 350:  0.7884615 0.2115385
## [Resample] iter 351:  0.7692308 0.2307692
## [Resample] iter 352:  0.8461538 0.1538462
## [Resample] iter 353:  0.7547170 0.2452830
## [Resample] iter 354:  0.8269231 0.1730769
## [Resample] iter 355:  0.7843137 0.2156863
## [Resample] iter 356:  0.9183673 0.0816327
## [Resample] iter 357:  0.8461538 0.1538462
## [Resample] iter 358:  0.7547170 0.2452830
## [Resample] iter 359:  0.9200000 0.0800000
## [Resample] iter 360:  0.7169811 0.2830189
## [Resample] iter 361:  0.7843137 0.2156863
## [Resample] iter 362:  0.7592593 0.2407407
## [Resample] iter 363:  0.8461538 0.1538462
## [Resample] iter 364:  0.7647059 0.2352941
## [Resample] iter 365:  0.8200000 0.1800000
## [Resample] iter 366:  0.7735849 0.2264151
## [Resample] iter 367:  0.8431373 0.1568627
## [Resample] iter 368:  0.7843137 0.2156863
## [Resample] iter 369:  0.8269231 0.1730769
## [Resample] iter 370:  0.8269231 0.1730769
## [Resample] iter 371:  0.9038462 0.0961538
## [Resample] iter 372:  0.7500000 0.2500000
## [Resample] iter 373:  0.8000000 0.2000000
## [Resample] iter 374:  0.8076923 0.1923077
## [Resample] iter 375:  0.7600000 0.2400000
## [Resample] iter 376:  0.8148148 0.1851852
## [Resample] iter 377:  0.8431373 0.1568627
## [Resample] iter 378:  0.8269231 0.1730769
## [Resample] iter 379:  0.8627451 0.1372549
## [Resample] iter 380:  0.7735849 0.2264151
## [Resample] iter 381:  0.8039216 0.1960784
## [Resample] iter 382:  0.8039216 0.1960784
## [Resample] iter 383:  0.8113208 0.1886792
## [Resample] iter 384:  0.8490566 0.1509434
## [Resample] iter 385:  0.8400000 0.1600000
## [Resample] iter 386:  0.8113208 0.1886792
## [Resample] iter 387:  0.8269231 0.1730769
## [Resample] iter 388:  0.7058824 0.2941176
## [Resample] iter 389:  0.8269231 0.1730769
## [Resample] iter 390:  0.7254902 0.2745098
## [Resample] iter 391:  0.7735849 0.2264151
## [Resample] iter 392:  0.7450980 0.2549020
## [Resample] iter 393:  0.8200000 0.1800000
## [Resample] iter 394:  0.8235294 0.1764706
## [Resample] iter 395:  0.8461538 0.1538462
## [Resample] iter 396:  0.7884615 0.2115385
## [Resample] iter 397:  0.7037037 0.2962963
## [Resample] iter 398:  0.7924528 0.2075472
## [Resample] iter 399:  0.8235294 0.1764706
## [Resample] iter 400:  0.8200000 0.1800000
## [Resample] iter 401:  0.7735849 0.2264151
## [Resample] iter 402:  0.7884615 0.2115385
## [Resample] iter 403:  0.7647059 0.2352941
## [Resample] iter 404:  0.7647059 0.2352941
## [Resample] iter 405:  0.7058824 0.2941176
## [Resample] iter 406:  0.8235294 0.1764706
## [Resample] iter 407:  0.8461538 0.1538462
## [Resample] iter 408:  0.8269231 0.1730769
## [Resample] iter 409:  0.8000000 0.2000000
## [Resample] iter 410:  0.7962963 0.2037037
## [Resample] iter 411:  0.8148148 0.1851852
## [Resample] iter 412:  0.8039216 0.1960784
## [Resample] iter 413:  0.8039216 0.1960784
## [Resample] iter 414:  0.7547170 0.2452830
## [Resample] iter 415:  0.7600000 0.2400000
## [Resample] iter 416:  0.7692308 0.2307692
## [Resample] iter 417:  0.8653846 0.1346154
## [Resample] iter 418:  0.8200000 0.1800000
## [Resample] iter 419:  0.8490566 0.1509434
## [Resample] iter 420:  0.8039216 0.1960784
## [Resample] iter 421:  0.7500000 0.2500000
## [Resample] iter 422:  0.8627451 0.1372549
## [Resample] iter 423:  0.8113208 0.1886792
## [Resample] iter 424:  0.7884615 0.2115385
## [Resample] iter 425:  0.8235294 0.1764706
## [Resample] iter 426:  0.8627451 0.1372549
## [Resample] iter 427:  0.8461538 0.1538462
## [Resample] iter 428:  0.7115385 0.2884615
## [Resample] iter 429:  0.7884615 0.2115385
## [Resample] iter 430:  0.7254902 0.2745098
## [Resample] iter 431:  0.8000000 0.2000000
## [Resample] iter 432:  0.8490566 0.1509434
## [Resample] iter 433:  0.7924528 0.2075472
## [Resample] iter 434:  0.8076923 0.1923077
## [Resample] iter 435:  0.8000000 0.2000000
## [Resample] iter 436:  0.7959184 0.2040816
## [Resample] iter 437:  0.8518519 0.1481481
## [Resample] iter 438:  0.8301887 0.1698113
## [Resample] iter 439:  0.7924528 0.2075472
## [Resample] iter 440:  0.8200000 0.1800000
## [Resample] iter 441:  0.8461538 0.1538462
## [Resample] iter 442:  0.8235294 0.1764706
## [Resample] iter 443:  0.7884615 0.2115385
## [Resample] iter 444:  0.7735849 0.2264151
## [Resample] iter 445:  0.8301887 0.1698113
## [Resample] iter 446:  0.8113208 0.1886792
## [Resample] iter 447:  0.7843137 0.2156863
## [Resample] iter 448:  0.8039216 0.1960784
## [Resample] iter 449:  0.8400000 0.1600000
## [Resample] iter 450:  0.8627451 0.1372549
## [Resample] iter 451:  0.8301887 0.1698113
## [Resample] iter 452:  0.7115385 0.2884615
## [Resample] iter 453:  0.8846154 0.1153846
## [Resample] iter 454:  0.7450980 0.2549020
## [Resample] iter 455:  0.8113208 0.1886792
## [Resample] iter 456:  0.8039216 0.1960784
## [Resample] iter 457:  0.8461538 0.1538462
## [Resample] iter 458:  0.7500000 0.2500000
## [Resample] iter 459:  0.7600000 0.2400000
## [Resample] iter 460:  0.8431373 0.1568627
## [Resample] iter 461:  0.8200000 0.1800000
## [Resample] iter 462:  0.8846154 0.1153846
## [Resample] iter 463:  0.7692308 0.2307692
## [Resample] iter 464:  0.8113208 0.1886792
## [Resample] iter 465:  0.7735849 0.2264151
## [Resample] iter 466:  0.8823529 0.1176471
## [Resample] iter 467:  0.6938776 0.3061224
## [Resample] iter 468:  0.8076923 0.1923077
## [Resample] iter 469:  0.7547170 0.2452830
## [Resample] iter 470:  0.7500000 0.2500000
## [Resample] iter 471:  0.8039216 0.1960784
## [Resample] iter 472:  0.7735849 0.2264151
## [Resample] iter 473:  0.9019608 0.0980392
## [Resample] iter 474:  0.7924528 0.2075472
## [Resample] iter 475:  0.7500000 0.2500000
## [Resample] iter 476:  0.8301887 0.1698113
## [Resample] iter 477:  0.8163265 0.1836735
## [Resample] iter 478:  0.8461538 0.1538462
## [Resample] iter 479:  0.7307692 0.2692308
## [Resample] iter 480:  0.8039216 0.1960784
## [Resample] iter 481:  0.8039216 0.1960784
## [Resample] iter 482:  0.7400000 0.2600000
## [Resample] iter 483:  0.8867925 0.1132075
## [Resample] iter 484:  0.8400000 0.1600000
## [Resample] iter 485:  0.7959184 0.2040816
## [Resample] iter 486:  0.9056604 0.0943396
## [Resample] iter 487:  0.7884615 0.2115385
## [Resample] iter 488:  0.8301887 0.1698113
## [Resample] iter 489:  0.7777778 0.2222222
## [Resample] iter 490:  0.8269231 0.1730769
## [Resample] iter 491:  0.8431373 0.1568627
## [Resample] iter 492:  0.8301887 0.1698113
## [Resample] iter 493:  0.8235294 0.1764706
## [Resample] iter 494:  0.8400000 0.1600000
## [Resample] iter 495:  0.8461538 0.1538462
## [Resample] iter 496:  0.8200000 0.1800000
## [Resample] iter 497:  0.8653846 0.1346154
## [Resample] iter 498:  0.8148148 0.1851852
## [Resample] iter 499:  0.7884615 0.2115385
## [Resample] iter 500:  0.7884615 0.2115385
## 
## Aggregated Result: mmce.test.mean=0.8023247,acc.test.mean=0.1976753
## 

NEVEIKIA

#qdaCV <- resample(learner = qda, task = td1Task, resampling = kFold,
#                  measures = list(mmce, acc))
ldaCV$aggr
## mmce.test.mean  acc.test.mean 
##      0.8023247      0.1976753

NEVEIKIA

#qdaCV$aggr
calculateConfusionMatrix(ldaCV$pred, relative = TRUE)
## Relative confusion matrix (normalized by row/column):
##         predicted
## true     fri        mon        sat        sun        thu        tue       
##   fri    0.250/0.20 0.096/0.13 0.162/0.15 0.407/0.22 0.008/0.01 0.018/0.20
##   mon    0.155/0.11 0.149/0.18 0.248/0.20 0.300/0.14 0.090/0.13 0.001/0.01
##   sat    0.149/0.12 0.116/0.16 0.202/0.18 0.312/0.16 0.176/0.30 0.005/0.05
##   sun    0.272/0.24 0.137/0.21 0.132/0.13 0.306/0.18 0.083/0.16 0.011/0.14
##   thu    0.157/0.09 0.082/0.08 0.228/0.15 0.297/0.11 0.157/0.19 0.009/0.07
##   tue    0.239/0.14 0.157/0.16 0.138/0.09 0.268/0.11 0.062/0.08 0.052/0.43
##   wed    0.181/0.09 0.096/0.08 0.167/0.10 0.226/0.08 0.116/0.13 0.011/0.08
##   -err.-       0.80       0.82       0.82       0.82       0.81       0.57
##         predicted
## true     wed        -err.-    
##   fri    0.059/0.13 0.75      
##   mon    0.057/0.11 0.85      
##   sat    0.040/0.09 0.80      
##   sun    0.059/0.14 0.69      
##   thu    0.069/0.11 0.84      
##   tue    0.085/0.14 0.95      
##   wed    0.203/0.28 0.80      
##   -err.-       0.72 0.80      
## 
## 
## Absolute confusion matrix:
##         predicted
## true      fri  mon  sat  sun  thu tue  wed -err.-
##   fri    1063  410  690 1728   32  78  249   3187
##   mon     574  552  917 1109  333   5  210   3148
##   sat     624  488  849 1311  738  21  169   3351
##   sun    1292  651  627 1453  395  54  278   3297
##   thu     480  250  695  906  480  28  211   2570
##   tue     765  502  440  859  198 165  271   3035
##   wed     488  259  451  611  312  31  548   2152
##   -err.- 4223 2560 3820 6524 2008 217 1388  20740

NEVEIKIA

#calculateConfusionMatrix(qdaCV$pred, relative = TRUE)
reiksmes <- tibble(X = 13, Y = 2, day = 2.2, FFMC = 19, DMC = 100,
                   DC = 2.3, ISI = 2.5, temp = 0.35, RH = 1.7,
                   wind = 4, rain = 1.1, area = 3)

NEVEIKIA

#predict(qdaModel, newdata = reiksmes)