rm(list = ls())
library(mlr)
## Įkeliamas reikalingas paketas: ParamHelpers
## Warning message: 'mlr' is in 'maintenance-only' mode since July 2019.
## Future development will only happen in 'mlr3'
## (<https://mlr3.mlr-org.com>). Due to the focus on 'mlr3' there might be
## uncaught bugs meanwhile in {mlr} - please consider switching.
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Duomenų rinkinių nuskaitymas iš failo
getwd()
## [1] "C:/Users/antanas.kaminskas/Desktop"
setwd("C:/Users/antanas.kaminskas/Desktop")
dt1 <- read.csv("C:/Users/antanas.kaminskas/Desktop/DG_FF1.csv",
header = TRUE,
sep = ";",
dec = ".")
dt2 <- read.csv("C:/Users/antanas.kaminskas/Desktop/DG_OE.csv",
header = TRUE,
sep = ";",
dec = ".")
Duomenų išvedimas : Pirmajam rinkiniui
head(dt1)
## Y day DC ISI RH wind rain area
## 1 5 fri 94.3 5.1 51 6.7 0.0 0
## 2 4 tue 669.1 6.7 33 0.9 0.0 0
## 3 4 sat 686.9 6.7 33 1.3 0.0 0
## 4 6 fri 77.5 9.0 97 4.0 0.2 0
## 5 6 sun 102.2 9.6 99 1.8 0.0 0
## 6 6 sun 488.0 14.7 29 5.4 0.0 0
Antrajam rinkiniui
head(dt2)
## Date Time S1_Temp S2_Temp S3_Temp S4_Temp S1_Light S2_Light
## 1 2017-12-22 10:49:41 24.94 24.75 24.56 25.38 121 34
## 2 2017-12-22 10:50:12 24.94 24.75 24.56 25.44 121 33
## 3 2017-12-22 10:50:42 25.00 24.75 24.50 25.44 121 34
## 4 2017-12-22 10:51:13 25.00 24.75 24.56 25.44 121 34
## 5 2017-12-22 10:51:44 25.00 24.75 24.56 25.44 121 34
## 6 2017-12-22 10:52:14 25.00 24.81 24.56 25.44 121 34
## S3_Light S4_Light S1_Sound S2_Sound S3_Sound S4_Sound S5_CO2 S5_CO2_Slope
## 1 53 40 0.08 0.19 0.06 0.06 390 0.7692308
## 2 53 40 0.93 0.05 0.06 0.06 390 0.6461538
## 3 53 40 0.43 0.11 0.08 0.06 390 0.5192308
## 4 53 40 0.41 0.10 0.10 0.09 390 0.3884615
## 5 54 40 0.18 0.06 0.06 0.06 390 0.2538462
## 6 54 40 0.13 0.06 0.06 0.07 390 0.1653846
## S6_PIR S7_PIR Room_Occupancy_Count
## 1 0 0 1
## 2 0 0 1
## 3 0 0 1
## 4 0 0 1
## 5 0 0 1
## 6 0 0 1
#Duomenų klasifikavimas
dt1Tib <- as_tibble(dt1)
dt1Tib
## # A tibble: 517 x 8
## Y day DC ISI RH wind rain area
## <int> <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 5 fri 94.3 5.1 51 6.7 0 0
## 2 4 tue 669. 6.7 33 0.9 0 0
## 3 4 sat 687. 6.7 33 1.3 0 0
## 4 6 fri 77.5 9 97 4 0.2 0
## 5 6 sun 102. 9.6 99 1.8 0 0
## 6 6 sun 488 14.7 29 5.4 0 0
## 7 6 mon 496. 8.5 27 3.1 0 0
## 8 6 mon 608. 10.7 86 2.2 0 0
## 9 6 tue 693. 7 63 5.4 0 0
## 10 5 sat 699. 7.1 40 4 0 0
## # ... with 507 more rows
dt1 <- mutate_at(dt1Tib, vars(day), as.factor)
dt1
## # A tibble: 517 x 8
## Y day DC ISI RH wind rain area
## <int> <fct> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 5 fri 94.3 5.1 51 6.7 0 0
## 2 4 tue 669. 6.7 33 0.9 0 0
## 3 4 sat 687. 6.7 33 1.3 0 0
## 4 6 fri 77.5 9 97 4 0.2 0
## 5 6 sun 102. 9.6 99 1.8 0 0
## 6 6 sun 488 14.7 29 5.4 0 0
## 7 6 mon 496. 8.5 27 3.1 0 0
## 8 6 mon 608. 10.7 86 2.2 0 0
## 9 6 tue 693. 7 63 5.4 0 0
## 10 5 sat 699. 7.1 40 4 0 0
## # ... with 507 more rows
names(dt1Tib) <- c( "Y","day",
"DC", "ISI", "RH", "wind", "rain",
"area")
dt1Untidy <- gather(dt1Tib, "Variable", "Value", -day)
ggplot(dt1Untidy, aes(day, Value)) +
facet_wrap(~ Variable, scales = "free_y") +
geom_boxplot() +
theme_bw()
# Sudarome LDA modelį
dt1Task <- makeClassifTask(data = dt1Tib, target = "day")
## Warning in makeTask(type = type, data = data, weights = weights, blocking =
## blocking, : Provided data is not a pure data.frame but from class tbl_df, hence
## it will be converted.
lda <- makeLearner("classif.lda")
ldaModel <- train(lda, dt1Task)
ldaModelData <- getLearnerModel(ldaModel)
ldaPreds <- predict(ldaModelData)$x
head(ldaPreds)
## LD1 LD2 LD3 LD4 LD5 LD6
## 1 -0.3321926 -1.0591736 0.04096479 -0.32194372 -0.4446304 1.3934040
## 2 1.4368780 0.2804332 0.32857382 -0.05326468 0.5562428 -0.2206089
## 3 1.3098352 0.2801697 0.35097700 -0.18466649 0.4402101 -0.3009957
## 4 -1.2639520 -2.1803125 -1.01123724 1.76403871 1.9955097 1.0120663
## 5 -0.5897332 -2.2699209 -1.76121095 2.27039479 2.3764933 0.9421201
## 6 -0.2657164 1.4719503 -0.95082560 -0.43295397 0.2159202 0.5768254
dt1Tib %>%
mutate(LD1 = ldaPreds[, 1],
LD2 = ldaPreds[, 2]) %>%
ggplot(aes(LD1, LD2, col = day)) +
geom_point() +
stat_ellipse() +
theme_bw()
qda <- makeLearner("classif.qda")
qda
## Learner classif.qda from package MASS
## Type: classif
## Name: Quadratic Discriminant Analysis; Short name: qda
## Class: classif.qda
## Properties: twoclass,multiclass,numerics,factors,prob
## Predict-Type: response
## Hyperparameters:
#qdaModel <- train(qda, task = dt1Task)
#qdaModel
kFold <- makeResampleDesc(method = "RepCV", folds = 10, reps = 50,
stratify = TRUE)
ldaCV <- resample(learner = lda, task = dt1Task, resampling = kFold,
measures = list(mmce, acc))
## Resampling: repeated cross-validation
## Measures: mmce acc
## [Resample] iter 1: 0.6730769 0.3269231
## [Resample] iter 2: 0.8653846 0.1346154
## [Resample] iter 3: 0.7692308 0.2307692
## [Resample] iter 4: 0.7058824 0.2941176
## [Resample] iter 5: 0.8627451 0.1372549
## [Resample] iter 6: 0.8269231 0.1730769
## [Resample] iter 7: 0.8846154 0.1153846
## [Resample] iter 8: 0.9245283 0.0754717
## [Resample] iter 9: 0.8076923 0.1923077
## [Resample] iter 10: 0.8000000 0.2000000
## [Resample] iter 11: 0.7000000 0.3000000
## [Resample] iter 12: 0.8627451 0.1372549
## [Resample] iter 13: 0.7962963 0.2037037
## [Resample] iter 14: 0.7884615 0.2115385
## [Resample] iter 15: 0.7800000 0.2200000
## [Resample] iter 16: 0.8076923 0.1923077
## [Resample] iter 17: 0.7692308 0.2307692
## [Resample] iter 18: 0.7735849 0.2264151
## [Resample] iter 19: 0.8301887 0.1698113
## [Resample] iter 20: 0.8600000 0.1400000
## [Resample] iter 21: 0.7647059 0.2352941
## [Resample] iter 22: 0.8800000 0.1200000
## [Resample] iter 23: 0.7600000 0.2400000
## [Resample] iter 24: 0.8400000 0.1600000
## [Resample] iter 25: 0.7358491 0.2641509
## [Resample] iter 26: 0.8181818 0.1818182
## [Resample] iter 27: 0.7547170 0.2452830
## [Resample] iter 28: 0.8076923 0.1923077
## [Resample] iter 29: 0.7735849 0.2264151
## [Resample] iter 30: 0.8000000 0.2000000
## [Resample] iter 31: 0.8163265 0.1836735
## [Resample] iter 32: 0.7647059 0.2352941
## [Resample] iter 33: 0.7735849 0.2264151
## [Resample] iter 34: 0.9056604 0.0943396
## [Resample] iter 35: 0.8301887 0.1698113
## [Resample] iter 36: 0.8888889 0.1111111
## [Resample] iter 37: 0.7647059 0.2352941
## [Resample] iter 38: 0.8627451 0.1372549
## [Resample] iter 39: 0.7307692 0.2692308
## [Resample] iter 40: 0.7200000 0.2800000
## [Resample] iter 41: 0.8800000 0.1200000
## [Resample] iter 42: 0.8301887 0.1698113
## [Resample] iter 43: 0.7884615 0.2115385
## [Resample] iter 44: 0.8518519 0.1481481
## [Resample] iter 45: 0.7500000 0.2500000
## [Resample] iter 46: 0.8490566 0.1509434
## [Resample] iter 47: 0.7692308 0.2307692
## [Resample] iter 48: 0.7346939 0.2653061
## [Resample] iter 49: 0.8039216 0.1960784
## [Resample] iter 50: 0.8039216 0.1960784
## [Resample] iter 51: 0.8039216 0.1960784
## [Resample] iter 52: 0.7884615 0.2115385
## [Resample] iter 53: 0.7169811 0.2830189
## [Resample] iter 54: 0.8461538 0.1538462
## [Resample] iter 55: 0.8200000 0.1800000
## [Resample] iter 56: 0.8653846 0.1346154
## [Resample] iter 57: 0.8113208 0.1886792
## [Resample] iter 58: 0.7551020 0.2448980
## [Resample] iter 59: 0.7924528 0.2075472
## [Resample] iter 60: 0.9038462 0.0961538
## [Resample] iter 61: 0.8679245 0.1320755
## [Resample] iter 62: 0.8571429 0.1428571
## [Resample] iter 63: 0.7777778 0.2222222
## [Resample] iter 64: 0.7000000 0.3000000
## [Resample] iter 65: 0.8076923 0.1923077
## [Resample] iter 66: 0.7058824 0.2941176
## [Resample] iter 67: 0.8461538 0.1538462
## [Resample] iter 68: 0.8431373 0.1568627
## [Resample] iter 69: 0.7500000 0.2500000
## [Resample] iter 70: 0.7735849 0.2264151
## [Resample] iter 71: 0.8076923 0.1923077
## [Resample] iter 72: 0.7000000 0.3000000
## [Resample] iter 73: 0.7090909 0.2909091
## [Resample] iter 74: 0.7800000 0.2200000
## [Resample] iter 75: 0.8000000 0.2000000
## [Resample] iter 76: 0.8846154 0.1153846
## [Resample] iter 77: 0.7843137 0.2156863
## [Resample] iter 78: 0.7924528 0.2075472
## [Resample] iter 79: 0.8269231 0.1730769
## [Resample] iter 80: 0.8461538 0.1538462
## [Resample] iter 81: 0.7450980 0.2549020
## [Resample] iter 82: 0.8113208 0.1886792
## [Resample] iter 83: 0.7735849 0.2264151
## [Resample] iter 84: 0.8039216 0.1960784
## [Resample] iter 85: 0.7884615 0.2115385
## [Resample] iter 86: 0.7647059 0.2352941
## [Resample] iter 87: 0.7800000 0.2200000
## [Resample] iter 88: 0.8076923 0.1923077
## [Resample] iter 89: 0.8823529 0.1176471
## [Resample] iter 90: 0.7735849 0.2264151
## [Resample] iter 91: 0.7924528 0.2075472
## [Resample] iter 92: 0.8823529 0.1176471
## [Resample] iter 93: 0.8269231 0.1730769
## [Resample] iter 94: 0.7884615 0.2115385
## [Resample] iter 95: 0.7272727 0.2727273
## [Resample] iter 96: 0.7647059 0.2352941
## [Resample] iter 97: 0.8235294 0.1764706
## [Resample] iter 98: 0.7450980 0.2549020
## [Resample] iter 99: 0.7600000 0.2400000
## [Resample] iter 100: 0.8039216 0.1960784
## [Resample] iter 101: 0.8076923 0.1923077
## [Resample] iter 102: 0.8000000 0.2000000
## [Resample] iter 103: 0.8235294 0.1764706
## [Resample] iter 104: 0.8627451 0.1372549
## [Resample] iter 105: 0.7500000 0.2500000
## [Resample] iter 106: 0.7843137 0.2156863
## [Resample] iter 107: 0.8461538 0.1538462
## [Resample] iter 108: 0.7818182 0.2181818
## [Resample] iter 109: 0.8076923 0.1923077
## [Resample] iter 110: 0.8627451 0.1372549
## [Resample] iter 111: 0.8653846 0.1346154
## [Resample] iter 112: 0.8653846 0.1346154
## [Resample] iter 113: 0.7307692 0.2692308
## [Resample] iter 114: 0.7592593 0.2407407
## [Resample] iter 115: 0.8461538 0.1538462
## [Resample] iter 116: 0.8200000 0.1800000
## [Resample] iter 117: 0.8200000 0.1800000
## [Resample] iter 118: 0.7547170 0.2452830
## [Resample] iter 119: 0.8431373 0.1568627
## [Resample] iter 120: 0.7843137 0.2156863
## [Resample] iter 121: 0.8269231 0.1730769
## [Resample] iter 122: 0.7692308 0.2307692
## [Resample] iter 123: 0.7500000 0.2500000
## [Resample] iter 124: 0.7450980 0.2549020
## [Resample] iter 125: 0.7692308 0.2307692
## [Resample] iter 126: 0.8679245 0.1320755
## [Resample] iter 127: 0.8571429 0.1428571
## [Resample] iter 128: 0.8076923 0.1923077
## [Resample] iter 129: 0.8823529 0.1176471
## [Resample] iter 130: 0.8301887 0.1698113
## [Resample] iter 131: 0.7547170 0.2452830
## [Resample] iter 132: 0.7636364 0.2363636
## [Resample] iter 133: 0.7692308 0.2307692
## [Resample] iter 134: 0.8400000 0.1600000
## [Resample] iter 135: 0.8431373 0.1568627
## [Resample] iter 136: 0.9245283 0.0754717
## [Resample] iter 137: 0.8000000 0.2000000
## [Resample] iter 138: 0.8000000 0.2000000
## [Resample] iter 139: 0.7307692 0.2692308
## [Resample] iter 140: 0.8431373 0.1568627
## [Resample] iter 141: 0.8461538 0.1538462
## [Resample] iter 142: 0.7307692 0.2692308
## [Resample] iter 143: 0.9038462 0.0961538
## [Resample] iter 144: 0.8400000 0.1600000
## [Resample] iter 145: 0.6274510 0.3725490
## [Resample] iter 146: 0.8846154 0.1153846
## [Resample] iter 147: 0.8301887 0.1698113
## [Resample] iter 148: 0.8600000 0.1400000
## [Resample] iter 149: 0.7500000 0.2500000
## [Resample] iter 150: 0.6981132 0.3018868
## [Resample] iter 151: 0.7959184 0.2040816
## [Resample] iter 152: 0.7647059 0.2352941
## [Resample] iter 153: 0.8363636 0.1636364
## [Resample] iter 154: 0.7777778 0.2222222
## [Resample] iter 155: 0.8039216 0.1960784
## [Resample] iter 156: 0.7647059 0.2352941
## [Resample] iter 157: 0.7169811 0.2830189
## [Resample] iter 158: 0.7800000 0.2200000
## [Resample] iter 159: 0.7924528 0.2075472
## [Resample] iter 160: 0.9200000 0.0800000
## [Resample] iter 161: 0.7884615 0.2115385
## [Resample] iter 162: 0.8461538 0.1538462
## [Resample] iter 163: 0.7800000 0.2200000
## [Resample] iter 164: 0.8163265 0.1836735
## [Resample] iter 165: 0.8076923 0.1923077
## [Resample] iter 166: 0.6909091 0.3090909
## [Resample] iter 167: 0.9000000 0.1000000
## [Resample] iter 168: 0.7962963 0.2037037
## [Resample] iter 169: 0.8076923 0.1923077
## [Resample] iter 170: 0.8235294 0.1764706
## [Resample] iter 171: 0.7547170 0.2452830
## [Resample] iter 172: 0.8301887 0.1698113
## [Resample] iter 173: 0.7058824 0.2941176
## [Resample] iter 174: 0.8653846 0.1346154
## [Resample] iter 175: 0.8000000 0.2000000
## [Resample] iter 176: 0.8039216 0.1960784
## [Resample] iter 177: 0.8235294 0.1764706
## [Resample] iter 178: 0.8113208 0.1886792
## [Resample] iter 179: 0.7924528 0.2075472
## [Resample] iter 180: 0.8200000 0.1800000
## [Resample] iter 181: 0.8235294 0.1764706
## [Resample] iter 182: 0.8235294 0.1764706
## [Resample] iter 183: 0.8269231 0.1730769
## [Resample] iter 184: 0.8823529 0.1176471
## [Resample] iter 185: 0.7884615 0.2115385
## [Resample] iter 186: 0.7884615 0.2115385
## [Resample] iter 187: 0.8039216 0.1960784
## [Resample] iter 188: 0.8148148 0.1851852
## [Resample] iter 189: 0.7400000 0.2600000
## [Resample] iter 190: 0.6981132 0.3018868
## [Resample] iter 191: 0.7818182 0.2181818
## [Resample] iter 192: 0.7647059 0.2352941
## [Resample] iter 193: 0.7400000 0.2600000
## [Resample] iter 194: 0.8200000 0.1800000
## [Resample] iter 195: 0.7547170 0.2452830
## [Resample] iter 196: 0.8679245 0.1320755
## [Resample] iter 197: 0.7924528 0.2075472
## [Resample] iter 198: 0.7450980 0.2549020
## [Resample] iter 199: 0.8000000 0.2000000
## [Resample] iter 200: 0.8431373 0.1568627
## [Resample] iter 201: 0.8867925 0.1132075
## [Resample] iter 202: 0.8039216 0.1960784
## [Resample] iter 203: 0.7500000 0.2500000
## [Resample] iter 204: 0.7843137 0.2156863
## [Resample] iter 205: 0.7000000 0.3000000
## [Resample] iter 206: 0.8235294 0.1764706
## [Resample] iter 207: 0.7647059 0.2352941
## [Resample] iter 208: 0.8518519 0.1481481
## [Resample] iter 209: 0.7884615 0.2115385
## [Resample] iter 210: 0.8076923 0.1923077
## [Resample] iter 211: 0.8000000 0.2000000
## [Resample] iter 212: 0.7500000 0.2500000
## [Resample] iter 213: 0.7254902 0.2745098
## [Resample] iter 214: 0.7647059 0.2352941
## [Resample] iter 215: 0.8823529 0.1176471
## [Resample] iter 216: 0.8333333 0.1666667
## [Resample] iter 217: 0.8000000 0.2000000
## [Resample] iter 218: 0.8000000 0.2000000
## [Resample] iter 219: 0.8600000 0.1400000
## [Resample] iter 220: 0.8490566 0.1509434
## [Resample] iter 221: 0.7500000 0.2500000
## [Resample] iter 222: 0.7924528 0.2075472
## [Resample] iter 223: 0.8269231 0.1730769
## [Resample] iter 224: 0.7547170 0.2452830
## [Resample] iter 225: 0.8800000 0.1200000
## [Resample] iter 226: 0.7959184 0.2040816
## [Resample] iter 227: 0.6666667 0.3333333
## [Resample] iter 228: 0.8113208 0.1886792
## [Resample] iter 229: 0.8113208 0.1886792
## [Resample] iter 230: 0.7647059 0.2352941
## [Resample] iter 231: 0.7450980 0.2549020
## [Resample] iter 232: 0.8200000 0.1800000
## [Resample] iter 233: 0.6730769 0.3269231
## [Resample] iter 234: 0.8627451 0.1372549
## [Resample] iter 235: 0.7358491 0.2641509
## [Resample] iter 236: 0.8679245 0.1320755
## [Resample] iter 237: 0.7884615 0.2115385
## [Resample] iter 238: 0.7307692 0.2692308
## [Resample] iter 239: 0.8269231 0.1730769
## [Resample] iter 240: 0.8431373 0.1568627
## [Resample] iter 241: 0.7058824 0.2941176
## [Resample] iter 242: 0.7692308 0.2307692
## [Resample] iter 243: 0.8627451 0.1372549
## [Resample] iter 244: 0.8076923 0.1923077
## [Resample] iter 245: 0.7884615 0.2115385
## [Resample] iter 246: 0.8431373 0.1568627
## [Resample] iter 247: 0.7884615 0.2115385
## [Resample] iter 248: 0.7692308 0.2307692
## [Resample] iter 249: 0.8113208 0.1886792
## [Resample] iter 250: 0.8431373 0.1568627
## [Resample] iter 251: 0.8431373 0.1568627
## [Resample] iter 252: 0.7450980 0.2549020
## [Resample] iter 253: 0.8400000 0.1600000
## [Resample] iter 254: 0.8235294 0.1764706
## [Resample] iter 255: 0.8200000 0.1800000
## [Resample] iter 256: 0.7547170 0.2452830
## [Resample] iter 257: 0.7592593 0.2407407
## [Resample] iter 258: 0.7647059 0.2352941
## [Resample] iter 259: 0.7735849 0.2264151
## [Resample] iter 260: 0.8679245 0.1320755
## [Resample] iter 261: 0.8653846 0.1346154
## [Resample] iter 262: 0.7692308 0.2307692
## [Resample] iter 263: 0.7358491 0.2641509
## [Resample] iter 264: 0.7500000 0.2500000
## [Resample] iter 265: 0.8846154 0.1153846
## [Resample] iter 266: 0.7254902 0.2745098
## [Resample] iter 267: 0.7115385 0.2884615
## [Resample] iter 268: 0.8076923 0.1923077
## [Resample] iter 269: 0.7800000 0.2200000
## [Resample] iter 270: 0.8431373 0.1568627
## [Resample] iter 271: 0.8363636 0.1636364
## [Resample] iter 272: 0.8039216 0.1960784
## [Resample] iter 273: 0.9230769 0.0769231
## [Resample] iter 274: 0.7800000 0.2200000
## [Resample] iter 275: 0.8235294 0.1764706
## [Resample] iter 276: 0.8113208 0.1886792
## [Resample] iter 277: 0.7450980 0.2549020
## [Resample] iter 278: 0.7647059 0.2352941
## [Resample] iter 279: 0.8490566 0.1509434
## [Resample] iter 280: 0.7200000 0.2800000
## [Resample] iter 281: 0.7058824 0.2941176
## [Resample] iter 282: 0.8000000 0.2000000
## [Resample] iter 283: 0.8113208 0.1886792
## [Resample] iter 284: 0.7924528 0.2075472
## [Resample] iter 285: 0.7843137 0.2156863
## [Resample] iter 286: 0.8627451 0.1372549
## [Resample] iter 287: 0.6923077 0.3076923
## [Resample] iter 288: 0.8076923 0.1923077
## [Resample] iter 289: 0.7843137 0.2156863
## [Resample] iter 290: 0.9056604 0.0943396
## [Resample] iter 291: 0.8076923 0.1923077
## [Resample] iter 292: 0.7222222 0.2777778
## [Resample] iter 293: 0.8200000 0.1800000
## [Resample] iter 294: 0.8163265 0.1836735
## [Resample] iter 295: 0.7800000 0.2200000
## [Resample] iter 296: 0.8653846 0.1346154
## [Resample] iter 297: 0.9019608 0.0980392
## [Resample] iter 298: 0.8545455 0.1454545
## [Resample] iter 299: 0.8076923 0.1923077
## [Resample] iter 300: 0.8076923 0.1923077
## [Resample] iter 301: 0.8431373 0.1568627
## [Resample] iter 302: 0.7924528 0.2075472
## [Resample] iter 303: 0.7884615 0.2115385
## [Resample] iter 304: 0.8627451 0.1372549
## [Resample] iter 305: 0.8545455 0.1454545
## [Resample] iter 306: 0.6800000 0.3200000
## [Resample] iter 307: 0.7843137 0.2156863
## [Resample] iter 308: 0.7884615 0.2115385
## [Resample] iter 309: 0.7600000 0.2400000
## [Resample] iter 310: 0.7500000 0.2500000
## [Resample] iter 311: 0.8867925 0.1132075
## [Resample] iter 312: 0.7254902 0.2745098
## [Resample] iter 313: 0.7843137 0.2156863
## [Resample] iter 314: 0.7755102 0.2244898
## [Resample] iter 315: 0.8823529 0.1176471
## [Resample] iter 316: 0.8333333 0.1666667
## [Resample] iter 317: 0.7115385 0.2884615
## [Resample] iter 318: 0.8627451 0.1372549
## [Resample] iter 319: 0.7500000 0.2500000
## [Resample] iter 320: 0.8301887 0.1698113
## [Resample] iter 321: 0.7692308 0.2307692
## [Resample] iter 322: 0.7600000 0.2400000
## [Resample] iter 323: 0.7500000 0.2500000
## [Resample] iter 324: 0.8039216 0.1960784
## [Resample] iter 325: 0.8653846 0.1346154
## [Resample] iter 326: 0.7692308 0.2307692
## [Resample] iter 327: 0.9038462 0.0961538
## [Resample] iter 328: 0.8653846 0.1346154
## [Resample] iter 329: 0.7692308 0.2307692
## [Resample] iter 330: 0.8076923 0.1923077
## [Resample] iter 331: 0.8461538 0.1538462
## [Resample] iter 332: 0.8823529 0.1176471
## [Resample] iter 333: 0.8301887 0.1698113
## [Resample] iter 334: 0.8600000 0.1400000
## [Resample] iter 335: 0.7800000 0.2200000
## [Resample] iter 336: 0.7500000 0.2500000
## [Resample] iter 337: 0.8113208 0.1886792
## [Resample] iter 338: 0.8301887 0.1698113
## [Resample] iter 339: 0.7647059 0.2352941
## [Resample] iter 340: 0.8846154 0.1153846
## [Resample] iter 341: 0.7843137 0.2156863
## [Resample] iter 342: 0.8679245 0.1320755
## [Resample] iter 343: 0.8000000 0.2000000
## [Resample] iter 344: 0.8518519 0.1481481
## [Resample] iter 345: 0.7450980 0.2549020
## [Resample] iter 346: 0.7692308 0.2307692
## [Resample] iter 347: 0.7169811 0.2830189
## [Resample] iter 348: 0.8200000 0.1800000
## [Resample] iter 349: 0.8235294 0.1764706
## [Resample] iter 350: 0.7884615 0.2115385
## [Resample] iter 351: 0.7692308 0.2307692
## [Resample] iter 352: 0.8461538 0.1538462
## [Resample] iter 353: 0.7547170 0.2452830
## [Resample] iter 354: 0.8269231 0.1730769
## [Resample] iter 355: 0.7843137 0.2156863
## [Resample] iter 356: 0.9183673 0.0816327
## [Resample] iter 357: 0.8461538 0.1538462
## [Resample] iter 358: 0.7547170 0.2452830
## [Resample] iter 359: 0.9200000 0.0800000
## [Resample] iter 360: 0.7169811 0.2830189
## [Resample] iter 361: 0.7843137 0.2156863
## [Resample] iter 362: 0.7592593 0.2407407
## [Resample] iter 363: 0.8461538 0.1538462
## [Resample] iter 364: 0.7647059 0.2352941
## [Resample] iter 365: 0.8200000 0.1800000
## [Resample] iter 366: 0.7735849 0.2264151
## [Resample] iter 367: 0.8431373 0.1568627
## [Resample] iter 368: 0.7843137 0.2156863
## [Resample] iter 369: 0.8269231 0.1730769
## [Resample] iter 370: 0.8269231 0.1730769
## [Resample] iter 371: 0.9038462 0.0961538
## [Resample] iter 372: 0.7500000 0.2500000
## [Resample] iter 373: 0.8000000 0.2000000
## [Resample] iter 374: 0.8076923 0.1923077
## [Resample] iter 375: 0.7600000 0.2400000
## [Resample] iter 376: 0.8148148 0.1851852
## [Resample] iter 377: 0.8431373 0.1568627
## [Resample] iter 378: 0.8269231 0.1730769
## [Resample] iter 379: 0.8627451 0.1372549
## [Resample] iter 380: 0.7735849 0.2264151
## [Resample] iter 381: 0.8039216 0.1960784
## [Resample] iter 382: 0.8039216 0.1960784
## [Resample] iter 383: 0.8113208 0.1886792
## [Resample] iter 384: 0.8490566 0.1509434
## [Resample] iter 385: 0.8400000 0.1600000
## [Resample] iter 386: 0.8113208 0.1886792
## [Resample] iter 387: 0.8269231 0.1730769
## [Resample] iter 388: 0.7058824 0.2941176
## [Resample] iter 389: 0.8269231 0.1730769
## [Resample] iter 390: 0.7254902 0.2745098
## [Resample] iter 391: 0.7735849 0.2264151
## [Resample] iter 392: 0.7450980 0.2549020
## [Resample] iter 393: 0.8200000 0.1800000
## [Resample] iter 394: 0.8235294 0.1764706
## [Resample] iter 395: 0.8461538 0.1538462
## [Resample] iter 396: 0.7884615 0.2115385
## [Resample] iter 397: 0.7037037 0.2962963
## [Resample] iter 398: 0.7924528 0.2075472
## [Resample] iter 399: 0.8235294 0.1764706
## [Resample] iter 400: 0.8200000 0.1800000
## [Resample] iter 401: 0.7735849 0.2264151
## [Resample] iter 402: 0.7884615 0.2115385
## [Resample] iter 403: 0.7647059 0.2352941
## [Resample] iter 404: 0.7647059 0.2352941
## [Resample] iter 405: 0.7058824 0.2941176
## [Resample] iter 406: 0.8235294 0.1764706
## [Resample] iter 407: 0.8461538 0.1538462
## [Resample] iter 408: 0.8269231 0.1730769
## [Resample] iter 409: 0.8000000 0.2000000
## [Resample] iter 410: 0.7962963 0.2037037
## [Resample] iter 411: 0.8148148 0.1851852
## [Resample] iter 412: 0.8039216 0.1960784
## [Resample] iter 413: 0.8039216 0.1960784
## [Resample] iter 414: 0.7547170 0.2452830
## [Resample] iter 415: 0.7600000 0.2400000
## [Resample] iter 416: 0.7692308 0.2307692
## [Resample] iter 417: 0.8653846 0.1346154
## [Resample] iter 418: 0.8200000 0.1800000
## [Resample] iter 419: 0.8490566 0.1509434
## [Resample] iter 420: 0.8039216 0.1960784
## [Resample] iter 421: 0.7500000 0.2500000
## [Resample] iter 422: 0.8627451 0.1372549
## [Resample] iter 423: 0.8113208 0.1886792
## [Resample] iter 424: 0.7884615 0.2115385
## [Resample] iter 425: 0.8235294 0.1764706
## [Resample] iter 426: 0.8627451 0.1372549
## [Resample] iter 427: 0.8461538 0.1538462
## [Resample] iter 428: 0.7115385 0.2884615
## [Resample] iter 429: 0.7884615 0.2115385
## [Resample] iter 430: 0.7254902 0.2745098
## [Resample] iter 431: 0.8000000 0.2000000
## [Resample] iter 432: 0.8490566 0.1509434
## [Resample] iter 433: 0.7924528 0.2075472
## [Resample] iter 434: 0.8076923 0.1923077
## [Resample] iter 435: 0.8000000 0.2000000
## [Resample] iter 436: 0.7959184 0.2040816
## [Resample] iter 437: 0.8518519 0.1481481
## [Resample] iter 438: 0.8301887 0.1698113
## [Resample] iter 439: 0.7924528 0.2075472
## [Resample] iter 440: 0.8200000 0.1800000
## [Resample] iter 441: 0.8461538 0.1538462
## [Resample] iter 442: 0.8235294 0.1764706
## [Resample] iter 443: 0.7884615 0.2115385
## [Resample] iter 444: 0.7735849 0.2264151
## [Resample] iter 445: 0.8301887 0.1698113
## [Resample] iter 446: 0.8113208 0.1886792
## [Resample] iter 447: 0.7843137 0.2156863
## [Resample] iter 448: 0.8039216 0.1960784
## [Resample] iter 449: 0.8400000 0.1600000
## [Resample] iter 450: 0.8627451 0.1372549
## [Resample] iter 451: 0.8301887 0.1698113
## [Resample] iter 452: 0.7115385 0.2884615
## [Resample] iter 453: 0.8846154 0.1153846
## [Resample] iter 454: 0.7450980 0.2549020
## [Resample] iter 455: 0.8113208 0.1886792
## [Resample] iter 456: 0.8039216 0.1960784
## [Resample] iter 457: 0.8461538 0.1538462
## [Resample] iter 458: 0.7500000 0.2500000
## [Resample] iter 459: 0.7600000 0.2400000
## [Resample] iter 460: 0.8431373 0.1568627
## [Resample] iter 461: 0.8200000 0.1800000
## [Resample] iter 462: 0.8846154 0.1153846
## [Resample] iter 463: 0.7692308 0.2307692
## [Resample] iter 464: 0.8113208 0.1886792
## [Resample] iter 465: 0.7735849 0.2264151
## [Resample] iter 466: 0.8823529 0.1176471
## [Resample] iter 467: 0.6938776 0.3061224
## [Resample] iter 468: 0.8076923 0.1923077
## [Resample] iter 469: 0.7547170 0.2452830
## [Resample] iter 470: 0.7500000 0.2500000
## [Resample] iter 471: 0.8039216 0.1960784
## [Resample] iter 472: 0.7735849 0.2264151
## [Resample] iter 473: 0.9019608 0.0980392
## [Resample] iter 474: 0.7924528 0.2075472
## [Resample] iter 475: 0.7500000 0.2500000
## [Resample] iter 476: 0.8301887 0.1698113
## [Resample] iter 477: 0.8163265 0.1836735
## [Resample] iter 478: 0.8461538 0.1538462
## [Resample] iter 479: 0.7307692 0.2692308
## [Resample] iter 480: 0.8039216 0.1960784
## [Resample] iter 481: 0.8039216 0.1960784
## [Resample] iter 482: 0.7400000 0.2600000
## [Resample] iter 483: 0.8867925 0.1132075
## [Resample] iter 484: 0.8400000 0.1600000
## [Resample] iter 485: 0.7959184 0.2040816
## [Resample] iter 486: 0.9056604 0.0943396
## [Resample] iter 487: 0.7884615 0.2115385
## [Resample] iter 488: 0.8301887 0.1698113
## [Resample] iter 489: 0.7777778 0.2222222
## [Resample] iter 490: 0.8269231 0.1730769
## [Resample] iter 491: 0.8431373 0.1568627
## [Resample] iter 492: 0.8301887 0.1698113
## [Resample] iter 493: 0.8235294 0.1764706
## [Resample] iter 494: 0.8400000 0.1600000
## [Resample] iter 495: 0.8461538 0.1538462
## [Resample] iter 496: 0.8200000 0.1800000
## [Resample] iter 497: 0.8653846 0.1346154
## [Resample] iter 498: 0.8148148 0.1851852
## [Resample] iter 499: 0.7884615 0.2115385
## [Resample] iter 500: 0.7884615 0.2115385
##
## Aggregated Result: mmce.test.mean=0.8023247,acc.test.mean=0.1976753
##
#qdaCV <- resample(learner = qda, task = td1Task, resampling = kFold,
# measures = list(mmce, acc))
ldaCV$aggr
## mmce.test.mean acc.test.mean
## 0.8023247 0.1976753
#qdaCV$aggr
calculateConfusionMatrix(ldaCV$pred, relative = TRUE)
## Relative confusion matrix (normalized by row/column):
## predicted
## true fri mon sat sun thu tue
## fri 0.250/0.20 0.096/0.13 0.162/0.15 0.407/0.22 0.008/0.01 0.018/0.20
## mon 0.155/0.11 0.149/0.18 0.248/0.20 0.300/0.14 0.090/0.13 0.001/0.01
## sat 0.149/0.12 0.116/0.16 0.202/0.18 0.312/0.16 0.176/0.30 0.005/0.05
## sun 0.272/0.24 0.137/0.21 0.132/0.13 0.306/0.18 0.083/0.16 0.011/0.14
## thu 0.157/0.09 0.082/0.08 0.228/0.15 0.297/0.11 0.157/0.19 0.009/0.07
## tue 0.239/0.14 0.157/0.16 0.138/0.09 0.268/0.11 0.062/0.08 0.052/0.43
## wed 0.181/0.09 0.096/0.08 0.167/0.10 0.226/0.08 0.116/0.13 0.011/0.08
## -err.- 0.80 0.82 0.82 0.82 0.81 0.57
## predicted
## true wed -err.-
## fri 0.059/0.13 0.75
## mon 0.057/0.11 0.85
## sat 0.040/0.09 0.80
## sun 0.059/0.14 0.69
## thu 0.069/0.11 0.84
## tue 0.085/0.14 0.95
## wed 0.203/0.28 0.80
## -err.- 0.72 0.80
##
##
## Absolute confusion matrix:
## predicted
## true fri mon sat sun thu tue wed -err.-
## fri 1063 410 690 1728 32 78 249 3187
## mon 574 552 917 1109 333 5 210 3148
## sat 624 488 849 1311 738 21 169 3351
## sun 1292 651 627 1453 395 54 278 3297
## thu 480 250 695 906 480 28 211 2570
## tue 765 502 440 859 198 165 271 3035
## wed 488 259 451 611 312 31 548 2152
## -err.- 4223 2560 3820 6524 2008 217 1388 20740
#calculateConfusionMatrix(qdaCV$pred, relative = TRUE)
reiksmes <- tibble(X = 13, Y = 2, day = 2.2, FFMC = 19, DMC = 100,
DC = 2.3, ISI = 2.5, temp = 0.35, RH = 1.7,
wind = 4, rain = 1.1, area = 3)
#predict(qdaModel, newdata = reiksmes)