descriptives

d <- d[d$age > 17,]

vector <- data.frame(d$participant, d$age, d$pt_gender, d$ethnicity, d$study)

vw <- vector %>% 
  group_by(d.participant) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("d.age",
         "d.pt_gender",
         "d.ethnicity",
         "d.study",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

vw$d.age_1 <- as.numeric(vw$d.age_1)
vw$d.study_1 <- as.numeric(vw$d.study_1)

length(unique(d$participant[d$condition == "trust"])) #530
## [1] 529
length(unique(d$participant[d$condition == "notTrust"])) #296
## [1] 297
# merged - age
describeBy(vw$d.age_1, na.rm = T)
## Warning in describeBy(vw$d.age_1, na.rm = T): no grouping variable requested
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 823   19 1.74     19   18.68 1.48  18  45    27 6.08    67.74 0.06
# study 1
describeBy(vw$d.age_1[vw$d.study_1 == 1], na.rm = T)
## Warning in describeBy(vw$d.age_1[vw$d.study_1 == 1], na.rm = T): no grouping
## variable requested
##    vars   n  mean   sd median trimmed mad min max range skew kurtosis  se
## X1    1 202 18.89 1.41     18    18.6   0  18  28    10 3.08    13.79 0.1
# study 2
describeBy(vw$d.age_1[vw$d.study_1 == 2], na.rm = T)
## Warning in describeBy(vw$d.age_1[vw$d.study_1 == 2], na.rm = T): no grouping
## variable requested
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 221 19.31 1.63     19   19.03 1.48  18  31    13 3.59    18.58 0.11
# study 3
describeBy(vw$d.age_1[vw$d.study_1 == 3], na.rm = T)
## Warning in describeBy(vw$d.age_1[vw$d.study_1 == 3], na.rm = T): no grouping
## variable requested
##    vars   n  mean   sd median trimmed mad min max range skew kurtosis  se
## X1    1 400 18.89 1.93     18   18.53   0  18  45    27 7.46    86.81 0.1
# merged - gender
table(vw$d.pt_gender_1)
## 
## female   male 
##    568    255
prop.table(table(vw$d.pt_gender_1))
## 
##   female     male 
## 0.690158 0.309842
# study 1
table(vw$d.pt_gender_1[vw$d.study_1 == 1])
## 
## female   male 
##    141     61
prop.table(table(vw$d.pt_gender_1[vw$d.study_1 == 1]))
## 
##    female      male 
## 0.6980198 0.3019802
# study 2
table(vw$d.pt_gender_1[vw$d.study_1 == 2])
## 
## female   male 
##    139     82
prop.table(table(vw$d.pt_gender_1[vw$d.study_1 == 2]))
## 
##    female      male 
## 0.6289593 0.3710407
# study 3
table(vw$d.pt_gender_1[vw$d.study_1 == 3])
## 
## female   male 
##    288    112
prop.table(table(vw$d.pt_gender_1[vw$d.study_1 == 3]))
## 
## female   male 
##   0.72   0.28
# merged - ethnicity
table(vw$d.ethnicity_1)
## 
##     Asian / Asian-American       Asian/Asian-American 
##                         59                         14 
##   Black / African-American     Black/African-American 
##                         12                          7 
##  Hispanic / Latin-American    Hispanic/Latin-American 
##                         60                         19 
##             Middle Eastern                        Mix 
##                          3                          1 
##            Mix Asian/White            Mix Black/White 
##                          5                          1 
##           Mix Latina/White    Native-Pacific Islander 
##                          1                          1 
##  Native / Pacific-Islander              North African 
##                          2                          1 
##                      Other                    Persian 
##                         21                          1 
## White / Caucasian-American   White/Caucasian-American 
##                        459                        156
round(prop.table(table(vw$d.ethnicity_1)), 4)
## 
##     Asian / Asian-American       Asian/Asian-American 
##                     0.0717                     0.0170 
##   Black / African-American     Black/African-American 
##                     0.0146                     0.0085 
##  Hispanic / Latin-American    Hispanic/Latin-American 
##                     0.0729                     0.0231 
##             Middle Eastern                        Mix 
##                     0.0036                     0.0012 
##            Mix Asian/White            Mix Black/White 
##                     0.0061                     0.0012 
##           Mix Latina/White    Native-Pacific Islander 
##                     0.0012                     0.0012 
##  Native / Pacific-Islander              North African 
##                     0.0024                     0.0012 
##                      Other                    Persian 
##                     0.0255                     0.0012 
## White / Caucasian-American   White/Caucasian-American 
##                     0.5577                     0.1896
# study 1
table(vw$d.ethnicity_1[vw$d.study_1 == 1])
## 
##     Asian/Asian-American   Black/African-American  Hispanic/Latin-American 
##                       14                        7                       19 
##  Native-Pacific Islander                    Other White/Caucasian-American 
##                        1                        5                      156
prop.table(table(vw$d.ethnicity_1[vw$d.study_1 == 1]))
## 
##     Asian/Asian-American   Black/African-American  Hispanic/Latin-American 
##              0.069306931              0.034653465              0.094059406 
##  Native-Pacific Islander                    Other White/Caucasian-American 
##              0.004950495              0.024752475              0.772277228
# study 2
table(vw$d.ethnicity_1[vw$d.study_1 == 2])
## 
##     Asian / Asian-American   Black / African-American 
##                         24                          3 
##  Hispanic / Latin-American                      Other 
##                         24                         14 
## White / Caucasian-American 
##                        156
prop.table(table(vw$d.ethnicity_1[vw$d.study_1 == 2]))
## 
##     Asian / Asian-American   Black / African-American 
##                 0.10859729                 0.01357466 
##  Hispanic / Latin-American                      Other 
##                 0.10859729                 0.06334842 
## White / Caucasian-American 
##                 0.70588235
# study 3
table(vw$d.ethnicity_1[vw$d.study_1 == 3])
## 
##     Asian / Asian-American   Black / African-American 
##                         35                          9 
##  Hispanic / Latin-American             Middle Eastern 
##                         36                          3 
##                        Mix            Mix Asian/White 
##                          1                          5 
##            Mix Black/White           Mix Latina/White 
##                          1                          1 
##  Native / Pacific-Islander              North African 
##                          2                          1 
##                      Other                    Persian 
##                          2                          1 
## White / Caucasian-American 
##                        303
prop.table(table(vw$d.ethnicity_1[vw$d.study_1 == 3]))
## 
##     Asian / Asian-American   Black / African-American 
##                     0.0875                     0.0225 
##  Hispanic / Latin-American             Middle Eastern 
##                     0.0900                     0.0075 
##                        Mix            Mix Asian/White 
##                     0.0025                     0.0125 
##            Mix Black/White           Mix Latina/White 
##                     0.0025                     0.0025 
##  Native / Pacific-Islander              North African 
##                     0.0050                     0.0025 
##                      Other                    Persian 
##                     0.0050                     0.0025 
## White / Caucasian-American 
##                     0.7575
#broken up by condition
length(unique(d1$participant[d1$condition == "trust"])) #203
## [1] 203
length(unique(d2$participant[d2$condition == "trust"])) #118
## [1] 118
length(unique(d2$participant[d2$condition == "notTrust"])) #103
## [1] 103
length(unique(d3$participant[d3$condition == "trust"])) #209
## [1] 209
length(unique(d3$participant[d3$condition == "notTrust"])) #193
## [1] 193

things to rule out

1. 3-way int: frame x trustDiff x study?

m3way <- glmer(cuedFaceTrusted_1 ~ trust_.5 * trustDiff.CUC.c * (S3v12 + S1v2) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
summary(m3way)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * trustDiff.CUC.c * (S3v12 + S1v2) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27096.7  27215.2 -13533.3  27066.7    19968 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2111 -0.9717  0.5920  0.9515  2.0536 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07955  0.2820        
##              stim_female_.5 0.01149  0.1072   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     0.026791   0.023781   1.127  0.25993    
## trust_.5                        0.126151   0.048195   2.617  0.00886 ** 
## trustDiff.CUC.c                -0.812846   0.049253 -16.503  < 2e-16 ***
## S3v12                           0.011222   0.039353   0.285  0.77552    
## S1v2                            0.057468   0.058627   0.980  0.32697    
## stim_female_.5                 -0.024525   0.031693  -0.774  0.43903    
## pt_female_.5                   -0.004176   0.037419  -0.112  0.91114    
## trust_.5:trustDiff.CUC.c       -0.052836   0.102756  -0.514  0.60712    
## trust_.5:S3v12                  0.080751   0.083915   0.962  0.33590    
## trustDiff.CUC.c:S3v12           0.328032   0.128860   2.546  0.01091 *  
## trustDiff.CUC.c:S1v2           -0.097410   0.080972  -1.203  0.22897    
## trust_.5:trustDiff.CUC.c:S3v12  0.041864   0.261590   0.160  0.87285    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##              (Intr) trs_.5 trD.CUC. S3v12  S1v2   st__.5 pt__.5 tr_.5:D.CUC.
## trust_.5     -0.476                                                         
## trstDf.CUC.   0.007 -0.007                                                  
## S3v12         0.450 -0.423 -0.010                                           
## S1v2         -0.312  0.513  0.004   -0.272                                  
## stim_fml_.5  -0.279  0.001 -0.005   -0.068  0.001                           
## pt_femal_.5  -0.272 -0.011 -0.013    0.038  0.041 -0.003                    
## tr_.5:D.CUC. -0.010  0.001 -0.231    0.007 -0.005  0.006  0.005             
## trs_.5:S312  -0.402  0.561  0.007   -0.384  0.442  0.000  0.005 -0.010      
## tD.CUC.:S31  -0.009  0.005 -0.602    0.008  0.003  0.004  0.007 -0.081      
## tD.CUC.:S12   0.005 -0.009 -0.191    0.007 -0.020 -0.003  0.009  0.342      
## t_.5:D.CUC.:  0.006 -0.006 -0.084   -0.011 -0.003 -0.008  0.004 -0.519      
##              t_.5:S tD.CUC.:S3 tD.CUC.:S1
## trust_.5                                 
## trstDf.CUC.                              
## S3v12                                    
## S1v2                                     
## stim_fml_.5                              
## pt_femal_.5                              
## tr_.5:D.CUC.                             
## trs_.5:S312                              
## tD.CUC.:S31  -0.010                      
## tD.CUC.:S12  -0.008 -0.110               
## t_.5:D.CUC.:  0.007 -0.108      0.202    
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients

2. int: frame x study?

m2 <- glmer(cuedFaceTrusted_1 ~ trust_.5 * (S3v12 + S1v2) + trustDiff.CUC.c + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
summary(m2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * (S3v12 + S1v2) + trustDiff.CUC.c +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27096.7  27183.7 -13537.4  27074.7    19972 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2217 -0.9745  0.5859  0.9550  2.0011 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.079441 0.28185       
##              stim_female_.5 0.009891 0.09946  -0.37
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.027586   0.023787   1.160  0.24616    
## trust_.5         0.125303   0.048160   2.602  0.00927 ** 
## S3v12            0.011066   0.039356   0.281  0.77857    
## S1v2             0.055802   0.058619   0.952  0.34112    
## trustDiff.CUC.c -0.737071   0.032507 -22.674  < 2e-16 ***
## stim_female_.5  -0.024862   0.031642  -0.786  0.43202    
## pt_female_.5    -0.004643   0.037412  -0.124  0.90123    
## trust_.5:S3v12   0.082000   0.083831   0.978  0.32800    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 S3v12  S1v2   tD.CUC st__.5 pt__.5
## trust_.5    -0.476                                          
## S3v12        0.452 -0.424                                   
## S1v2        -0.314  0.511 -0.273                            
## trstDf.CUC. -0.004 -0.009 -0.009  0.003                     
## stim_fml_.5 -0.278  0.001 -0.069  0.002 -0.004              
## pt_femal_.5 -0.272 -0.011  0.038  0.041 -0.006 -0.003       
## trs_.5:S312 -0.403  0.561 -0.384  0.441 -0.004  0.000  0.005
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient

3. int: frame x trustDiff?

m3 <- glmer(cuedFaceTrusted_1 ~ trust_.5 * trustDiff.CUC.c + (S3v12 + S1v2) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * trustDiff.CUC.c + (S3v12 + S1v2) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27097.4  27184.3 -13537.7  27075.4    19972 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3138 -0.9749  0.5881  0.9547  2.0044 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.079814 0.28251       
##              stim_female_.5 0.009765 0.09882  -0.37
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                           Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               0.036787   0.021793   1.688   0.0914 .  
## trust_.5                  0.098974   0.039898   2.481   0.0131 *  
## trustDiff.CUC.c          -0.746502   0.036994 -20.179   <2e-16 ***
## S3v12                     0.025780   0.036368   0.709   0.4784    
## S1v2                      0.030753   0.052646   0.584   0.5591    
## stim_female_.5           -0.024799   0.031641  -0.784   0.4332    
## pt_female_.5             -0.004708   0.037440  -0.126   0.8999    
## trust_.5:trustDiff.CUC.c  0.039753   0.073850   0.538   0.5904    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 tD.CUC S3v12  S1v2   st__.5 pt__.5
## trust_.5    -0.331                                          
## trstDf.CUC.  0.002 -0.009                                   
## S3v12        0.352 -0.273 -0.008                            
## S1v2        -0.166  0.355  0.002 -0.125                     
## stim_fml_.5 -0.304  0.001 -0.005 -0.075  0.002              
## pt_femal_.5 -0.295 -0.016 -0.007  0.043  0.043 -0.003       
## t_.5:D.CUC. -0.015  0.005 -0.478 -0.004  0.007  0.004  0.005

4. int: stim gender x pt gender?

m4 <- glmer(cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (S3v12 + S1v2) + stim_female_.5 * pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m4)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (S3v12 + S1v2) +  
##     stim_female_.5 * pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27097.6  27184.5 -13537.8  27075.6    19972 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2395 -0.9745  0.5870  0.9553  2.0182 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07970  0.2823        
##              stim_female_.5 0.01003  0.1001   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  0.037758   0.021918   1.723   0.0849 .  
## trust_.5                     0.098880   0.039887   2.479   0.0132 *  
## trustDiff.CUC.c             -0.737014   0.032506 -22.673   <2e-16 ***
## S3v12                        0.025902   0.036362   0.712   0.4763    
## S1v2                         0.030616   0.052657   0.581   0.5610    
## stim_female_.5              -0.028887   0.033957  -0.851   0.3949    
## pt_female_.5                -0.009131   0.039695  -0.230   0.8181    
## stim_female_.5:pt_female_.5  0.022116   0.067705   0.327   0.7439    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 tD.CUC S3v12  S1v2   st__.5 pt__.5
## trust_.5    -0.328                                          
## trstDf.CUC. -0.006 -0.008                                   
## S3v12        0.350 -0.273 -0.011                            
## S1v2        -0.164  0.356  0.006 -0.126                     
## stim_fml_.5 -0.321  0.001 -0.004 -0.071  0.000              
## pt_femal_.5 -0.314 -0.016 -0.006  0.040  0.039  0.119       
## st__.5:__.5  0.111  0.001  0.002  0.003  0.004 -0.363 -0.333

0. merged studies

a. trust.5 + study + trustDiff + genders + (1|pt)

m0CC <- glmer(cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + stim_female_.5 + pt_female_.5 + S3v12 + S1v2 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m0CC)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + stim_female_.5 +  
##     pt_female_.5 + S3v12 + S1v2 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.036965   0.021784   1.697   0.0897 .  
## trust_.5         0.098870   0.039889   2.479   0.0132 *  
## trustDiff.CUC.c -0.737039   0.032506 -22.674   <2e-16 ***
## stim_female_.5  -0.024865   0.031646  -0.786   0.4320    
## pt_female_.5    -0.004815   0.037437  -0.129   0.8977    
## S3v12            0.025860   0.036363   0.711   0.4770    
## S1v2             0.030543   0.052659   0.580   0.5619    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 tD.CUC st__.5 pt__.5 S3v12 
## trust_.5    -0.331                                   
## trstDf.CUC. -0.006 -0.008                            
## stim_fml_.5 -0.303  0.001 -0.004                     
## pt_femal_.5 -0.295 -0.016 -0.006 -0.003              
## S3v12        0.352 -0.273 -0.011 -0.075  0.043       
## S1v2        -0.166  0.356  0.006  0.002  0.043 -0.126
tab_model(m0CC)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.04 0.99 – 1.08 0.090
trust_.5 1.10 1.02 – 1.19 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
S3v12 1.03 0.96 – 1.10 0.477
S1v2 1.03 0.93 – 1.14 0.562
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m0CC <- exp(confint(m0CC, method = "Wald")[2,1])
#OR_upCI_m0CC <- exp(confint(m0CC, method = "Wald")[2,2])
#OR_m0CC <- exp(summary(m0CC)$coefficients[1])
#prob_m0CC <- (OR_m0CC/ (1+OR_m0CC))
#p_m0CC <- summary(m0CC)$coefficients[1,4]
#se_m0CC <- summary(m0CC)$coefficients[1,2]

b. SE trust

m0T <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + stim_female_.5 + pt_female_.5 + (S1v23 + S2v3) + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m0T)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + stim_female_.5 +  
##     pt_female_.5 + (S1v23 + S2v3) + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.086400   0.024189   3.572 0.000354 ***
## trustYes_0      -0.098870   0.039889  -2.479 0.013188 *  
## trustDiff.CUC.c -0.737038   0.032506 -22.674  < 2e-16 ***
## stim_female_.5  -0.024866   0.031646  -0.786 0.432023    
## pt_female_.5    -0.004815   0.037437  -0.129 0.897670    
## S1v23            0.009978   0.045511   0.219 0.826453    
## S2v3            -0.041132   0.042122  -0.977 0.328814    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 tD.CUC st__.5 pt__.5 S1v23 
## trustYes_0  -0.527                                   
## trstDf.CUC. -0.012  0.008                            
## stim_fml_.5 -0.272 -0.001 -0.004                     
## pt_femal_.5 -0.280  0.016 -0.006 -0.003              
## S1v23        0.088 -0.417  0.010  0.032  0.020       
## S2v3        -0.169 -0.013  0.006  0.063 -0.064 -0.135
tab_model(m0T)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.09 1.04 – 1.14 <0.001
trustYes_0 0.91 0.84 – 0.98 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
S1v23 1.01 0.92 – 1.10 0.826
S2v3 0.96 0.88 – 1.04 0.329
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m0T <- exp(confint(m0T, method = "Wald")[2,1])
#OR_upCI_m0T <- exp(confint(m0T, method = "Wald")[2,2])
#OR_m0T <- exp(summary(m0T)$coefficients[1])
#prob_m0T <- (OR_m0T/ (1+OR_m0T))
#p_m0T <- summary(m0T)$coefficients[1,4]
#se_m0T <- summary(m0T)$coefficients[1,2] 

c. SE not trust

m0NT <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + trustDiff.CUC.c + stim_female_.5 + pt_female_.5 + (S1v23 + S2v3) + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m0NT)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + trustDiff.CUC.c + stim_female_.5 +  
##     pt_female_.5 + (S1v23 + S2v3) + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.012470   0.034052  -0.366   0.7142    
## trustNo_0        0.098870   0.039889   2.479   0.0132 *  
## trustDiff.CUC.c -0.737039   0.032506 -22.674   <2e-16 ***
## stim_female_.5  -0.024866   0.031647  -0.786   0.4320    
## pt_female_.5    -0.004814   0.037437  -0.129   0.8977    
## S1v23            0.009979   0.045512   0.219   0.8265    
## S2v3            -0.041133   0.042122  -0.977   0.3288    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 tD.CUC st__.5 pt__.5 S1v23 
## trustNo_0   -0.797                                   
## trstDf.CUC.  0.001 -0.008                            
## stim_fml_.5 -0.195  0.001 -0.004                     
## pt_femal_.5 -0.179 -0.016 -0.006 -0.003              
## S1v23       -0.427  0.417  0.010  0.032  0.020       
## S2v3        -0.136  0.013  0.006  0.063 -0.064 -0.135
tab_model(m0NT)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.99 0.92 – 1.06 0.714
trustNo_0 1.10 1.02 – 1.19 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
S1v23 1.01 0.92 – 1.10 0.826
S2v3 0.96 0.88 – 1.04 0.329
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m0NT <- exp(confint(m0NT, method = "Wald")[2,1])
#OR_upCI_m0NT <- exp(confint(m0NT, method = "Wald")[2,2])
#OR_m0NT <- exp(summary(m0NT)$coefficients[1])
#prob_m0NT <- (OR_m0NT/ (1+OR_m0NT))
#p_m0NT <- summary(m0NT)$coefficients[1,4]
#se_m0NT <- summary(m0NT)$coefficients[1,2] 

1. study 1

a. trust.5 + study 1 + respTime + trustDiff + (1|pt)

m1CC <- glmer(cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (s2_1 + s3_1) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m1CC)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (s2_1 + s3_1) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.030313   0.042089   0.720   0.4714    
## trust_.5         0.098870   0.039889   2.479   0.0132 *  
## trustDiff.CUC.c -0.737039   0.032506 -22.674   <2e-16 ***
## s2_1             0.030544   0.052658   0.580   0.5619    
## s3_1            -0.010589   0.047505  -0.223   0.8236    
## stim_female_.5  -0.024865   0.031646  -0.786   0.4320    
## pt_female_.5    -0.004814   0.037437  -0.129   0.8977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 tD.CUC s2_1   s3_1   st__.5
## trust_.5    -0.472                                   
## trstDf.CUC. -0.010 -0.008                            
## s2_1        -0.748  0.356  0.006                     
## s3_1        -0.835  0.406  0.012  0.651              
## stim_fml_.5 -0.180  0.001 -0.004  0.002  0.058       
## pt_femal_.5 -0.168 -0.016 -0.006  0.043 -0.009 -0.003
tab_model(m1CC)[1]
## $page.style
## [1] "<style>\nhtml, body { background-color: white; }\ntable { border-collapse:collapse; border:none; }\ncaption { font-weight: bold; text-align:left; }\ntd {  }\n.thead { border-top: double; text-align:center; font-style:normal; font-weight:bold; padding:0.2cm; }\n.tdata { padding:0.2cm; text-align:left; vertical-align:top; }\n.arc { background-color:#f2f2f2; }\n.summary { padding-top:0.1cm; padding-bottom:0.1cm; }\n.summarydata { text-align:left; }\n.fixedparts { font-weight:bold; text-align:left; }\n.randomparts { font-weight:bold; text-align:left; padding-top:.8em; }\n.zeroparts { font-weight:bold; text-align:left; padding-top:.8em; }\n.simplexparts { font-weight:bold; text-align:left; padding-top:.8em; }\n.lasttablerow { border-bottom: double; }\n.firsttablerow {  }\n.firstsumrow { border-top:1px solid; }\n.labelcellborder { border-bottom:1px solid; }\n.depvarhead { text-align:center; border-bottom:1px solid; font-style:italic; font-weight:normal; }\n.depvarheadnodv { border-top: double; text-align:center; border-bottom:1px solid; font-style:italic; font-weight:normal; }\n.leftalign { text-align:left; }\n.centeralign { text-align:center; }\n.firsttablecol { text-align:left; }\n.footnote { font-style:italic; border-top:double black; text-align:right; }\n.subtitle { font-weight: normal; }\n.modelcolumn1 {  }\n.modelcolumn2 {  }\n.modelcolumn3 {  }\n.modelcolumn4 {  }\n.modelcolumn5 {  }\n.modelcolumn6 {  }\n.modelcolumn7 {  }\n.col1 {  }\n.col2 {  }\n.col3 {  }\n.col4 {  }\n.col5 {  }\n.col6 {  }\n</style>"
#OR_lowCI_m1CC <- exp(confint(m1CC, method = "Wald")[2,1])
#OR_upCI_m1CC <- exp(confint(m1CC, method = "Wald")[2,2])
#OR_m1CC <- exp(summary(m1CC)$coefficients[1])
#prob_m1CC <- (OR_m1CC/ (1+OR_m1CC))
#p_m1CC <- summary(m1CC)$coefficients[1,4]
#se_m1CC <- summary(m1CC)$coefficients[1,2] 

b. SE trust

m1T <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + (s2_1 + s3_1) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m1T)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + (s2_1 + s3_1) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.079748   0.037106   2.149   0.0316 *  
## trustYes_0      -0.098869   0.039888  -2.479   0.0132 *  
## trustDiff.CUC.c -0.737039   0.032505 -22.674   <2e-16 ***
## s2_1             0.030543   0.052658   0.580   0.5619    
## s3_1            -0.010589   0.047504  -0.223   0.8236    
## stim_female_.5  -0.024866   0.031646  -0.786   0.4320    
## pt_female_.5    -0.004814   0.037437  -0.129   0.8977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 tD.CUC s2_1   s3_1   st__.5
## trustYes_0  -0.002                                   
## trstDf.CUC. -0.016  0.008                            
## s2_1        -0.657 -0.356  0.006                     
## s3_1        -0.729 -0.406  0.012  0.651              
## stim_fml_.5 -0.203 -0.001 -0.004  0.002  0.058       
## pt_femal_.5 -0.199  0.016 -0.006  0.043 -0.009 -0.003
tab_model(m1T)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.08 1.01 – 1.16 0.032
trustYes_0 0.91 0.84 – 0.98 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s2_1 1.03 0.93 – 1.14 0.562
s3_1 0.99 0.90 – 1.09 0.824
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m1T <- exp(confint(m1T, method = "Wald")[2,1])
#OR_upCI_m1T <- exp(confint(m1T, method = "Wald")[2,2])
#OR_m1T <- exp(summary(m1T)$coefficients[1])
#prob_m1T <- (OR_m1T/ (1+OR_m1T))
#p_m1T <- summary(m1T)$coefficients[1,4]
#se_m1T <- summary(m1T)$coefficients[1,2] 

2. study 2

a. trust.5 + study 2 + respTime + trustDiff + (1|pt)

m2CC <- glmer(cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (s1_1 + s3_1) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m2CC)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (s1_1 + s3_1) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.060857   0.035065   1.736   0.0826 .  
## trust_.5         0.098870   0.039889   2.479   0.0132 *  
## trustDiff.CUC.c -0.737039   0.032506 -22.674   <2e-16 ***
## s1_1            -0.030544   0.052659  -0.580   0.5619    
## s3_1            -0.041132   0.042123  -0.976   0.3288    
## stim_female_.5  -0.024865   0.031646  -0.786   0.4320    
## pt_female_.5    -0.004815   0.037437  -0.129   0.8977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 tD.CUC s1_1   s3_1   st__.5
## trust_.5    -0.033                                   
## trstDf.CUC. -0.003 -0.008                            
## s1_1        -0.604 -0.356 -0.006                     
## s3_1        -0.783  0.013  0.006  0.516              
## stim_fml_.5 -0.213  0.001 -0.004 -0.002  0.063       
## pt_femal_.5 -0.136 -0.016 -0.006 -0.043 -0.064 -0.003
tab_model(m2CC)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.06 0.99 – 1.14 0.083
trust_.5 1.10 1.02 – 1.19 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s1_1 0.97 0.87 – 1.08 0.562
s3_1 0.96 0.88 – 1.04 0.329
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m2CC <- exp(confint(m2CC, method = "Wald")[2,1])
#OR_upCI_m2CC <- exp(confint(m2CC, method = "Wald")[2,2])
#OR_m2CC <- exp(summary(m2CC)$coefficients[1])
#prob_m2CC <- (OR_m2CC/ (1+OR_m2CC))
#p_m2CC <- summary(m2CC)$coefficients[1,4]
#se_m2CC <- summary(m2CC)$coefficients[1,2] 

b. SE trust

m2T <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + (s1_1 + s3_1) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m2T)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + (s1_1 + s3_1) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.110294   0.039771   2.773  0.00555 ** 
## trustYes_0      -0.098871   0.039889  -2.479  0.01319 *  
## trustDiff.CUC.c -0.737039   0.032506 -22.674  < 2e-16 ***
## s1_1            -0.030547   0.052659  -0.580  0.56186    
## s3_1            -0.041134   0.042122  -0.977  0.32880    
## stim_female_.5  -0.024866   0.031646  -0.786  0.43202    
## pt_female_.5    -0.004815   0.037437  -0.129  0.89766    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 tD.CUC s1_1   s3_1   st__.5
## trustYes_0  -0.473                                   
## trstDf.CUC. -0.007  0.008                            
## s1_1        -0.711  0.356 -0.006                     
## s3_1        -0.684 -0.013  0.006  0.516              
## stim_fml_.5 -0.187 -0.001 -0.004 -0.002  0.063       
## pt_femal_.5 -0.128  0.016 -0.006 -0.043 -0.064 -0.003
tab_model(m2T)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.12 1.03 – 1.21 0.006
trustYes_0 0.91 0.84 – 0.98 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s1_1 0.97 0.87 – 1.08 0.562
s3_1 0.96 0.88 – 1.04 0.329
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m2T <- exp(confint(m2T, method = "Wald")[2,1])
#OR_upCI_m2T <- exp(confint(m2T, method = "Wald")[2,2])
#OR_m2T <- exp(summary(m2T)$coefficients[1])
#prob_m2T <- (OR_m2T/ (1+OR_m2T))
#p_m2T <- summary(m2T)$coefficients[1,4]
#se_m2T <- summary(m2T)$coefficients[1,2] 

c. SE not trust

m2NT <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + trustDiff.CUC.c + (s1_1 + s3_1) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m2NT)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + trustDiff.CUC.c + (s1_1 + s3_1) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.011421   0.040901   0.279   0.7801    
## trustNo_0        0.098870   0.039889   2.479   0.0132 *  
## trustDiff.CUC.c -0.737039   0.032506 -22.674   <2e-16 ***
## s1_1            -0.030544   0.052659  -0.580   0.5619    
## s3_1            -0.041131   0.042122  -0.976   0.3288    
## stim_female_.5  -0.024865   0.031647  -0.786   0.4320    
## pt_female_.5    -0.004815   0.037437  -0.129   0.8977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 tD.CUC s1_1   s3_1   st__.5
## trustNo_0   -0.516                                   
## trstDf.CUC.  0.001 -0.008                            
## s1_1        -0.345 -0.356 -0.006                     
## s3_1        -0.678  0.013  0.006  0.516              
## stim_fml_.5 -0.183  0.001 -0.004 -0.002  0.063       
## pt_femal_.5 -0.109 -0.016 -0.006 -0.043 -0.064 -0.003
tab_model(m2NT)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.01 0.93 – 1.10 0.780
trustNo_0 1.10 1.02 – 1.19 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s1_1 0.97 0.87 – 1.08 0.562
s3_1 0.96 0.88 – 1.04 0.329
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m2NT <- exp(confint(m2NT, method = "Wald")[2,1])
#OR_upCI_m2NT <- exp(confint(m2NT, method = "Wald")[2,2])
#OR_m2NT <- exp(summary(m2NT)$coefficients[1])
#prob_m2NT <- (OR_m2NT/ (1+OR_m2NT))
#p_m2NT <- summary(m2NT)$coefficients[1,4]
#se_m2NT <- summary(m2NT)$coefficients[1,2] 

3. study 3

a. trust.5 + study + respTime + trustDiff + (1|pt)

m3CC <- glmer(cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (s1_1 + s2_1) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m3CC)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 + trustDiff.CUC.c + (s1_1 + s2_1) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.019725   0.026280   0.751   0.4529    
## trust_.5         0.098870   0.039889   2.479   0.0132 *  
## trustDiff.CUC.c -0.737038   0.032506 -22.674   <2e-16 ***
## s1_1             0.010588   0.047506   0.223   0.8236    
## s2_1             0.041132   0.042122   0.977   0.3288    
## stim_female_.5  -0.024866   0.031647  -0.786   0.4320    
## pt_female_.5    -0.004815   0.037438  -0.129   0.8977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 tD.CUC s1_1   s2_1   st__.5
## trust_.5    -0.023                                   
## trstDf.CUC.  0.005 -0.008                            
## s1_1        -0.471 -0.406 -0.012                     
## s2_1        -0.558 -0.013 -0.006  0.314              
## stim_fml_.5 -0.183  0.001 -0.004 -0.058 -0.063       
## pt_femal_.5 -0.285 -0.016 -0.006  0.009  0.064 -0.003
tab_model(m3CC)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.02 0.97 – 1.07 0.453
trust_.5 1.10 1.02 – 1.19 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s1_1 1.01 0.92 – 1.11 0.824
s2_1 1.04 0.96 – 1.13 0.329
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#confint(m3CC, method = "Wald")[2,1]
#OR_lowCI_m3CC <- exp(confint(m3CC, method = "Wald")[2,1])
#OR_upCI_m3CC <- exp(confint(m3CC, method = "Wald")[2,2])
#OR_m3CC <- exp(summary(m3CC)$coefficients[1])
#prob_m3CC <- (OR_m3CC/ (1+OR_m3CC))
#p_m3CC <- summary(m3CC)$coefficients[1,4]
#se_m3CC <- summary(m3CC)$coefficients[1,2] 

b. SE trust

m3T <- glmer(cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + (s1_1 + s2_1) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m3T)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustYes_0 + trustDiff.CUC.c + (s1_1 + s2_1) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.069159   0.032631   2.119   0.0341 *  
## trustYes_0      -0.098868   0.039889  -2.479   0.0132 *  
## trustDiff.CUC.c -0.737040   0.032506 -22.674   <2e-16 ***
## s1_1             0.010590   0.047506   0.223   0.8236    
## s2_1             0.041133   0.042122   0.977   0.3288    
## stim_female_.5  -0.024866   0.031647  -0.786   0.4320    
## pt_female_.5    -0.004815   0.037437  -0.129   0.8977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsY_0 tD.CUC s1_1   s2_1   st__.5
## trustYes_0  -0.593                                   
## trstDf.CUC. -0.001  0.008                            
## s1_1        -0.627  0.406 -0.012                     
## s2_1        -0.457  0.013 -0.006  0.314              
## stim_fml_.5 -0.146 -0.001 -0.004 -0.058 -0.063       
## pt_femal_.5 -0.239  0.016 -0.006  0.009  0.064 -0.003
tab_model(m3T)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.07 1.01 – 1.14 0.034
trustYes_0 0.91 0.84 – 0.98 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s1_1 1.01 0.92 – 1.11 0.824
s2_1 1.04 0.96 – 1.13 0.329
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m3T <- exp(confint(m3T, method = "Wald")[2,1])
#OR_upCI_m3T <- exp(confint(m3T, method = "Wald")[2,2])
#OR_m3T <- exp(summary(m3T)$coefficients[1])
#prob_m3T <- (OR_m3T/ (1+OR_m3T))
#p_m3T <- summary(m3T)$coefficients[1,4]
#se_m3T <- summary(m3T)$coefficients[1,2] 

c. SE not trust

m3NT <- glmer(cuedFaceTrusted_1 ~ trustNo_0 + trustDiff.CUC.c + (s1_1 + s2_1) + stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant), family = binomial("logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d)

summary(m3NT)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustNo_0 + trustDiff.CUC.c + (s1_1 + s2_1) +  
##     stim_female_.5 + pt_female_.5 + (stim_female_.5 | participant)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##  27095.7  27174.7 -13537.8  27075.7    19973 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2447 -0.9748  0.5867  0.9552  2.0206 
## 
## Random effects:
##  Groups      Name           Variance Std.Dev. Corr 
##  participant (Intercept)    0.07973  0.2824        
##              stim_female_.5 0.01009  0.1005   -0.36
## Number of obs: 19983, groups:  participant, 823
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.029709   0.033348  -0.891   0.3730    
## trustNo_0        0.098870   0.039889   2.479   0.0132 *  
## trustDiff.CUC.c -0.737038   0.032506 -22.674   <2e-16 ***
## s1_1             0.010587   0.047506   0.223   0.8236    
## s2_1             0.041131   0.042122   0.976   0.3288    
## stim_female_.5  -0.024866   0.031647  -0.786   0.4320    
## pt_female_.5    -0.004815   0.037437  -0.129   0.8977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trsN_0 tD.CUC s1_1   s2_1   st__.5
## trustNo_0   -0.616                                   
## trstDf.CUC.  0.009 -0.008                            
## s1_1        -0.128 -0.406 -0.012                     
## s2_1        -0.432 -0.013 -0.006  0.314              
## stim_fml_.5 -0.145  0.001 -0.004 -0.058 -0.063       
## pt_femal_.5 -0.215 -0.016 -0.006  0.009  0.064 -0.003
tab_model(m3NT)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 0.97 0.91 – 1.04 0.373
trustNo_0 1.10 1.02 – 1.19 0.013
trustDiff.CUC.c 0.48 0.45 – 0.51 <0.001
s1_1 1.01 0.92 – 1.11 0.824
s2_1 1.04 0.96 – 1.13 0.329
stim_female_.5 0.98 0.92 – 1.04 0.432
pt_female_.5 1.00 0.92 – 1.07 0.898
Random Effects
σ2 3.29
τ00 participant 0.08
τ11 participant.stim_female_.5 0.01
ρ01 participant -0.36
ICC 0.02
N participant 823
Observations 19983
Marginal R2 / Conditional R2 0.036 / 0.058
#OR_lowCI_m3NT <- exp(confint(m3NT, method = "Wald")[2,1])
#OR_upCI_m3NT <- exp(confint(m3NT, method = "Wald")[2,2])
#OR_m3NT <- exp(summary(m3NT)$coefficients[1]) #[1] -0.02554763
#prob_m3NT <- (OR_m3NT/ (1+OR_m3NT))
#p_m3NT <- summary(m3NT)$coefficients[1,4]
#se_m3NT <- summary(m3NT)$coefficients[1,2] 

Forest Plots

trust condition forest plot

#```{r} setwd(“C:/Users/Dani Grant/Desktop”) data <- read.csv(“./forestplotdata.csv”, stringsAsFactors = T, header = T)

Combine the count and percent column

data\(string <- ifelse(!is.na(data\)Count), paste(data\(Count," (",round(data\)Percent,2),“)”,sep="“), NA) data\(Study <- ifelse(!is.na(data\)Study), paste(data$Study,sep=”"), NA)

The rest of the columns in the table.

tabletext <- cbind(c(“Study”,“”,data\(Study), c("Sample Size (%)","\n",data\)string), c(“Lower”,“”,data\(Low), c("Odds\nRatio","\n",data\)Odds.Ratio), c(“Upper”,“”,data\(High), c("Likelihood of\n Trusting\n Cued Face","\n",data\)cued), c(“Likelihood ofTrustingUncued Face”,“”,data\(not.cued), c("p","\n", round(data\)P.Value,3)))

(fp <- forestplot(labeltext = tabletext, graph.pos = 6, mean = c(NA, NA, data\(Odds.Ratio), lower = c(NA, NA, data\)Low), upper=c(NA, NA, data$High), title = "“, txt_gp = fpTxtGp(label = gpar(cex = 1.5), ticks = gpar(cex = 1.3), xlab = gpar(cex = 1.3)), col = fpColors(box =”darkblue“, lines =”darkblue“, zero =”gray50“), zero = 1, cex = 0.5, lineheight =”auto“, boxsize = 0.25, colgap = unit(3,”mm"), lwd.ci = 4, ci.vertices = TRUE, ci.vertices.height = 0.4))


## prob bar char
#```{r, echo = F}

test_data <- data.frame(study = c("study 1","study 2", "study 3", "merged"),
                        CC = c(OR_m1CC, OR_m2CC, OR_m3CC, OR_m0CC),
                        trust = c(OR_m1T, OR_m2T, OR_m3T, OR_m0T),
                        notTrust = c(NA, OR_m2NT, OR_m3NT, OR_m0NT),
                        lowCC =  c(OR_lowCI_m1CC, OR_lowCI_m2CC, OR_lowCI_m3CC, OR_lowCI_m0CC),
                        low1 =  c(OR_lowCI_m1T, OR_lowCI_m2T, OR_lowCI_m3T, OR_lowCI_m0T),
                        low2 =  c(NA, OR_lowCI_m2NT, OR_lowCI_m3NT, OR_lowCI_m0NT),
                        highCC = c(OR_upCI_m1CC, OR_upCI_m2CC, OR_upCI_m3CC, OR_upCI_m0CC),
                        high1 = c(OR_upCI_m1T, OR_upCI_m2T, OR_upCI_m3T, OR_upCI_m0T),
                        high2 = c(NA, OR_upCI_m2NT, OR_upCI_m3NT, OR_upCI_m0NT),
                        pCC = c(p_m1CC, p_m2CC, p_m3CC, p_m0CC),
                        p1 = c(p_m1T, p_m2T, p_m3T, p_m0T),
                        p2 = c(NA, p_m2NT, p_m3NT, p_m0NT),
                        probCC = c(prob_m1CC, prob_m2CC, prob_m3CC, prob_m0CC),
                        prob1 = c(prob_m1T, prob_m2T, prob_m3T, prob_m0T),
                        prob2 = c(NA, prob_m2NT, prob_m3NT, prob_m0NT),
                        seCC = c(se_m1CC, se_m2CC, se_m3CC, se_m0CC),
                        se1 = c(se_m1T, se_m2T, se_m3T, se_m0T),
                        se2 = c(NA, se_m2NT, se_m3NT, se_m0NT))

test_data[,c(1,17:19)]