a <- 12 + 6
a
## [1] 18
b<- a + 45
b
## [1] 63
c<- b/a
c
## [1] 3.5
d<- b*c
d
## [1] 220.5
em<- c(1,2,3,4)
em
## [1] 1 2 3 4
lt<- c("ahmet","mehmet","mustafa")
lt
## [1] "ahmet"   "mehmet"  "mustafa"
myvec<-c(birici<-em,ikinci<-lt)
myvec
## [1] "1"       "2"       "3"       "4"       "ahmet"   "mehmet"  "mustafa"
library(wooldridge)
data(intdef)

head(intdef)
##   year   i3  inf  rec  out        def i3_1 inf_1      def_1        ci3 cinf
## 1 1948 1.04  8.1 16.2 11.6 -4.6000004   NA    NA         NA         NA   NA
## 2 1949 1.10 -1.2 14.5 14.3 -0.1999998 1.04   8.1 -4.6000004 0.06000006 -9.3
## 3 1950 1.22  1.3 14.4 15.6  1.2000008 1.10  -1.2 -0.1999998 0.12000000  2.5
## 4 1951 1.55  7.9 16.1 14.2 -1.9000006 1.22   1.3  1.2000008 0.32999992  6.6
## 5 1952 1.77  1.9 19.0 19.4  0.3999996 1.55   7.9 -1.9000006 0.22000003 -6.0
## 6 1953 1.93  0.8 18.7 20.4  1.6999989 1.77   1.9  0.3999996 0.15999997 -1.1
##        cdef y77
## 1        NA   0
## 2  4.400001   0
## 3  1.400001   0
## 4 -3.100001   0
## 5  2.300000   0
## 6  1.299999   0
tail(intdef)
##    year   i3 inf  rec  out        def i3_1 inf_1      def_1        ci3
## 51 1998 4.81 1.6 20.0 19.2 -0.7999992 5.07   2.3  0.3000011 -0.2600002
## 52 1999 4.66 2.2 20.0 18.6 -1.3999996 4.81   1.6 -0.7999992 -0.1500001
## 53 2000 5.85 3.4 20.9 18.4 -2.5000000 4.66   2.2 -1.3999996  1.1900001
## 54 2001 3.45 2.8 19.8 18.6 -1.1999989 5.85   3.4 -2.5000000 -2.3999999
## 55 2002 1.62 1.6 17.9 19.4  1.5000000 3.45   2.8 -1.1999989 -1.8300000
## 56 2003 1.02 2.3 16.5 19.9  3.3999996 1.62   1.6  1.5000000 -0.6000000
##          cinf       cdef y77
## 51 -0.6999999 -1.1000004   1
## 52  0.6000000 -0.6000004   1
## 53  1.2000000 -1.1000004   1
## 54 -0.6000001  1.3000011   1
## 55 -1.1999999  2.6999989   1
## 56  0.6999999  1.8999996   1
?intdef
## starting httpd help server ... done
plot(inf~year, data = intdef)

plot( intdef$inf ~ intdef$year)

attach(intdef)
plot(inf ~ year)

detach(intdef)

ilkmodel<- lm(intdef$i3 ~ intdef$inf)
summary(ilkmodel)
## 
## Call:
## lm(formula = intdef$i3 ~ intdef$inf)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.5689 -1.0385  0.0678  0.8962  5.0119 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.42032    0.46328   5.224 2.88e-06 ***
## intdef$inf   0.64056    0.09425   6.797 8.81e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.125 on 54 degrees of freedom
## Multiple R-squared:  0.461,  Adjusted R-squared:  0.4511 
## F-statistic: 46.19 on 1 and 54 DF,  p-value: 8.812e-09
matris1 <- matrix(c(1,2,3,4,5,6), nrow=2 , ncol=3)
matris1[1,]
## [1] 1 3 5
matris1[,2]
## [1] 3 4
matris1[1,,  drop = FALSE]
##      [,1] [,2] [,3]
## [1,]    1    3    5
rownames(matris1) <- c("a","b")
matris1
##   [,1] [,2] [,3]
## a    1    3    5
## b    2    4    6
colnames(matris1) <- c("c","d","e")
matris1
##   c d e
## a 1 3 5
## b 2 4 6