library(patchwork)
library(enrichplot)
##
library("clusterProfiler")
## clusterProfiler v3.18.1 For help: https://guangchuangyu.github.io/software/clusterProfiler
##
## If you use clusterProfiler in published research, please cite:
## Guangchuang Yu, Li-Gen Wang, Yanyan Han, Qing-Yu He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology. 2012, 16(5):284-287.
##
## Attaching package: 'clusterProfiler'
## The following object is masked from 'package:stats':
##
## filter
library("org.Mm.eg.db")
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
## Loading required package: Biobase
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: IRanges
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:clusterProfiler':
##
## rename
## The following object is masked from 'package:base':
##
## expand.grid
##
## Attaching package: 'IRanges'
## The following object is masked from 'package:clusterProfiler':
##
## slice
##
## Attaching package: 'AnnotationDbi'
## The following object is masked from 'package:clusterProfiler':
##
## select
##
library("AnnotationHub")
## Loading required package: BiocFileCache
## Loading required package: dbplyr
##
## Attaching package: 'AnnotationHub'
## The following object is masked from 'package:Biobase':
##
## cache
library(Seurat)
## Registered S3 method overwritten by 'spatstat.geom':
## method from
## print.boxx cli
## Attaching SeuratObject
library(SeuratWrappers)
library(SeuratObject)
library(tidygraph)
##
## Attaching package: 'tidygraph'
## The following object is masked from 'package:AnnotationDbi':
##
## select
## The following objects are masked from 'package:IRanges':
##
## active, slice
## The following objects are masked from 'package:S4Vectors':
##
## active, rename
## The following object is masked from 'package:stats':
##
## filter
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:dbplyr':
##
## ident, sql
## The following object is masked from 'package:AnnotationDbi':
##
## select
## The following objects are masked from 'package:IRanges':
##
## collapse, desc, intersect, setdiff, slice, union
## The following objects are masked from 'package:S4Vectors':
##
## first, intersect, rename, setdiff, setequal, union
## The following object is masked from 'package:Biobase':
##
## combine
## The following objects are masked from 'package:BiocGenerics':
##
## combine, intersect, setdiff, union
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(devtools)
## Loading required package: usethis
pbmc <- readRDS("/mnt/nectar_volume/home/eraz0001/KELLY 2020/E11.5/Final_15_clusters.RDS")
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
## Calculating cluster DCh
## Calculating cluster Osteocytes
## Calculating cluster Osteoblast
## Calculating cluster HtCh
## Calculating cluster Osteoblasts
## Calculating cluster Endothelial Cells
## Calculating cluster Hoxd13+
## Calculating cluster Chondrocytes
## Calculating cluster Terminal HTCh
## Calculating cluster Fibroblasts
## Calculating cluster Immune cells
top100 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 100, wt = avg_log2FC)
top100pval <- subset(top100, rowSums(top100[5] < 0.05) > 0)
df <- top100pval[,7:6]
dfsample <- split(df$gene,df$cluster)
length(dfsample)
## [1] 11
The number of dfsample can form the following steps; e.g., if we have “11,” we need to define eleven samples in the following.
dfsample$`DCh` = bitr(dfsample$`DCh`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$DCh, fromType = "SYMBOL", toType = "ENTREZID", : 7% of
## input gene IDs are fail to map...
dfsample$`Osteocytes` = bitr(dfsample$`Osteocytes`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
dfsample$`Osteoblast` = bitr(dfsample$`Osteoblast`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$Osteoblast, fromType = "SYMBOL", toType = "ENTREZID", :
## 3.23% of input gene IDs are fail to map...
dfsample$`HtCh` = bitr(dfsample$`HtCh`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$HtCh, fromType = "SYMBOL", toType = "ENTREZID", : 6% of
## input gene IDs are fail to map...
dfsample$`Osteoblasts`= bitr(dfsample$`Osteoblasts`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$Osteoblasts, fromType = "SYMBOL", toType =
## "ENTREZID", : 3.03% of input gene IDs are fail to map...
dfsample$`Endothelial Cells` = bitr(dfsample$`Endothelial Cells`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$`Endothelial Cells`, fromType = "SYMBOL", toType =
## "ENTREZID", : 2% of input gene IDs are fail to map...
dfsample$`Hoxd13+` = bitr(dfsample$`Hoxd13+`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$`Hoxd13+`, fromType = "SYMBOL", toType = "ENTREZID", :
## 5% of input gene IDs are fail to map...
dfsample$`Chondrocytes` = bitr(dfsample$`Chondrocytes`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$Chondrocytes, fromType = "SYMBOL", toType =
## "ENTREZID", : 3.03% of input gene IDs are fail to map...
dfsample$`Terminal HTCh` = bitr(dfsample$`Terminal HTCh`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$`Terminal HTCh`, fromType = "SYMBOL", toType =
## "ENTREZID", : 2.04% of input gene IDs are fail to map...
dfsample$`Fibroblasts` = bitr(dfsample$`Fibroblasts`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(dfsample$Fibroblasts, fromType = "SYMBOL", toType =
## "ENTREZID", : 1% of input gene IDs are fail to map...
dfsample$`Immune cells` = bitr(dfsample$`Immune cells`, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
Then the following step must be done:
genelist <- list("DCh" = dfsample$'DCh'$ENTREZID,
"Osteocytes" = dfsample$'Osteocytes'$ENTREZID,
"Osteoblast" = dfsample$'Osteoblast'$ENTREZID,
"HtCh" = dfsample$'HtCh'$ENTREZID,
"Osteoblasts" = dfsample$'Osteoblasts'$ENTREZID,
"Endothelial Cells" = dfsample$'Endothelial Cells'$ENTREZID,
"Hoxd13+" = dfsample$'Hoxd13+'$ENTREZID,
"Chondrocytes" = dfsample$'Chondrocytes'$ENTREZID,
"Terminal HTCh" = dfsample$'Terminal HTCh'$ENTREZID,
"Fibroblasts" = dfsample$'Fibroblasts'$ENTREZID,
"Immune cells" = dfsample$'Immune cells'$ENTREZID)
GOclusterplot <- compareCluster(geneCluster = genelist, fun = "enrichGO", OrgDb = "org.Mm.eg.db")
dotplot(GOclusterplot)
GOclusterplot1 <- compareCluster(geneCluster = genelist, fun = "groupGO", OrgDb = "org.Mm.eg.db")
dotplot(GOclusterplot1)
#integrated plots
a1 <- pairwise_termsim(GOclusterplot)
emapplot(a1, showCategory = 20)
session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.0.2 (2020-06-22)
## os Ubuntu 20.04.3 LTS
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_AU.UTF-8
## ctype en_AU.UTF-8
## tz Australia/Melbourne
## date 2022-03-25
## pandoc 2.11.4 @ /usr/lib/rstudio-server/bin/pandoc/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## package * version date (UTC) lib source
## abind 1.4-5 2016-07-21 [1] CRAN (R 4.0.2)
## AnnotationDbi * 1.52.0 2020-10-27 [1] Bioconductor
## AnnotationHub * 2.22.1 2021-04-16 [1] Bioconductor
## assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
## Biobase * 2.50.0 2020-10-27 [1] Bioconductor
## BiocFileCache * 1.14.0 2020-10-27 [1] Bioconductor
## BiocGenerics * 0.36.1 2021-04-16 [1] Bioconductor
## BiocManager 1.30.16 2021-06-15 [1] CRAN (R 4.0.2)
## BiocParallel 1.24.1 2020-11-06 [1] Bioconductor
## BiocVersion 3.12.0 2020-04-27 [1] Bioconductor
## bit 4.0.4 2020-08-04 [1] CRAN (R 4.0.2)
## bit64 4.0.5 2020-08-30 [1] CRAN (R 4.0.2)
## blob 1.2.2 2021-07-23 [1] CRAN (R 4.0.2)
## brio 1.1.3 2021-11-30 [1] CRAN (R 4.0.2)
## bslib 0.3.1 2021-10-06 [1] CRAN (R 4.0.2)
## cachem 1.0.6 2021-08-19 [1] CRAN (R 4.0.2)
## callr 3.7.0 2021-04-20 [1] CRAN (R 4.0.2)
## cli 3.1.1 2022-01-20 [1] CRAN (R 4.0.2)
## cluster 2.1.0 2019-06-19 [2] CRAN (R 4.0.2)
## clusterProfiler * 3.18.1 2021-02-09 [1] Bioconductor
## codetools 0.2-16 2018-12-24 [2] CRAN (R 4.0.2)
## colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.0.2)
## cowplot 1.1.1 2020-12-30 [1] CRAN (R 4.0.2)
## crayon 1.4.2 2021-10-29 [1] CRAN (R 4.0.2)
## curl 4.3.2 2021-06-23 [1] CRAN (R 4.0.2)
## data.table 1.14.2 2021-09-27 [1] CRAN (R 4.0.2)
## DBI 1.1.2 2021-12-20 [1] CRAN (R 4.0.2)
## dbplyr * 2.1.1 2021-04-06 [1] CRAN (R 4.0.2)
## deldir 1.0-6 2021-10-23 [1] CRAN (R 4.0.2)
## desc 1.4.0 2021-09-28 [1] CRAN (R 4.0.2)
## devtools * 2.4.3 2021-11-30 [1] CRAN (R 4.0.2)
## digest 0.6.29 2021-12-01 [1] CRAN (R 4.0.2)
## DO.db 2.9 2022-02-02 [1] Bioconductor
## DOSE 3.16.0 2020-10-27 [1] Bioconductor
## downloader 0.4 2015-07-09 [1] CRAN (R 4.0.2)
## dplyr * 1.0.7 2021-06-18 [1] CRAN (R 4.0.2)
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.0.2)
## enrichplot * 1.10.2 2021-01-28 [1] Bioconductor
## evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.2)
## fansi 1.0.2 2022-01-14 [1] CRAN (R 4.0.2)
## farver 2.1.0 2021-02-28 [1] CRAN (R 4.0.2)
## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.2)
## fastmatch 1.1-3 2021-07-23 [1] CRAN (R 4.0.2)
## fgsea 1.16.0 2020-10-27 [1] Bioconductor
## fitdistrplus 1.1-6 2021-09-28 [1] CRAN (R 4.0.2)
## fs 1.5.2 2021-12-08 [1] CRAN (R 4.0.2)
## future 1.23.0 2021-10-31 [1] CRAN (R 4.0.2)
## future.apply 1.8.1 2021-08-10 [1] CRAN (R 4.0.2)
## generics 0.1.2 2022-01-31 [1] CRAN (R 4.0.2)
## ggforce 0.3.3 2021-03-05 [1] CRAN (R 4.0.2)
## ggfun 0.0.5 2022-01-20 [1] CRAN (R 4.0.2)
## ggplot2 3.3.5 2021-06-25 [1] CRAN (R 4.0.2)
## ggraph 2.0.5 2021-02-23 [1] CRAN (R 4.0.2)
## ggrepel 0.9.1 2021-01-15 [1] CRAN (R 4.0.2)
## ggridges 0.5.3 2021-01-08 [1] CRAN (R 4.0.2)
## globals 0.14.0 2020-11-22 [1] CRAN (R 4.0.2)
## glue 1.6.1 2022-01-22 [1] CRAN (R 4.0.2)
## GO.db 3.12.1 2022-02-02 [1] Bioconductor
## goftest 1.2-3 2021-10-07 [1] CRAN (R 4.0.2)
## GOSemSim 2.16.1 2020-10-29 [1] Bioconductor
## graphlayouts 0.8.0 2022-01-03 [1] CRAN (R 4.0.2)
## gridExtra 2.3 2017-09-09 [1] CRAN (R 4.0.2)
## gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.2)
## highr 0.9 2021-04-16 [1] CRAN (R 4.0.2)
## htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.0.2)
## htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.0.2)
## httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.0.2)
## httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
## ica 1.0-2 2018-05-24 [1] CRAN (R 4.0.2)
## igraph 1.2.11 2022-01-04 [1] CRAN (R 4.0.2)
## interactiveDisplayBase 1.28.0 2020-10-27 [1] Bioconductor
## IRanges * 2.24.1 2020-12-12 [1] Bioconductor
## irlba 2.3.5 2021-12-06 [1] CRAN (R 4.0.2)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.0.2)
## jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.0.2)
## KernSmooth 2.23-17 2020-04-26 [2] CRAN (R 4.0.2)
## knitr 1.37 2021-12-16 [1] CRAN (R 4.0.2)
## labeling 0.4.2 2020-10-20 [1] CRAN (R 4.0.2)
## later 1.3.0 2021-08-18 [1] CRAN (R 4.0.2)
## lattice 0.20-41 2020-04-02 [2] CRAN (R 4.0.2)
## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.0.2)
## leiden 0.3.9 2021-07-27 [1] CRAN (R 4.0.2)
## lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.0.2)
## limma 3.46.0 2020-10-27 [1] Bioconductor
## listenv 0.8.0 2019-12-05 [1] CRAN (R 4.0.2)
## lmtest 0.9-39 2021-11-07 [1] CRAN (R 4.0.2)
## magrittr 2.0.2 2022-01-26 [1] CRAN (R 4.0.2)
## MASS 7.3-51.6 2020-04-26 [2] CRAN (R 4.0.2)
## Matrix 1.4-0 2021-12-08 [1] CRAN (R 4.0.2)
## matrixStats 0.61.0 2021-09-17 [1] CRAN (R 4.0.2)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.0.2)
## mgcv 1.8-31 2019-11-09 [2] CRAN (R 4.0.2)
## mime 0.12 2021-09-28 [1] CRAN (R 4.0.2)
## miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.0.2)
## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.2)
## nlme 3.1-148 2020-05-24 [2] CRAN (R 4.0.2)
## org.Mm.eg.db * 3.12.0 2022-02-10 [1] Bioconductor
## parallelly 1.30.0 2021-12-17 [1] CRAN (R 4.0.2)
## patchwork * 1.1.1 2020-12-17 [1] CRAN (R 4.0.2)
## pbapply 1.5-0 2021-09-16 [1] CRAN (R 4.0.2)
## pillar 1.7.0 2022-02-01 [1] CRAN (R 4.0.2)
## pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.0.2)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.2)
## pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.0.2)
## plotly 4.10.0 2021-10-09 [1] CRAN (R 4.0.2)
## plyr 1.8.6 2020-03-03 [1] CRAN (R 4.0.2)
## png 0.1-7 2013-12-03 [1] CRAN (R 4.0.2)
## polyclip 1.10-0 2019-03-14 [1] CRAN (R 4.0.2)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
## processx 3.5.2 2021-04-30 [1] CRAN (R 4.0.2)
## promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.0.2)
## ps 1.6.0 2021-02-28 [1] CRAN (R 4.0.2)
## purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
## qvalue 2.22.0 2020-10-27 [1] Bioconductor
## R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.0.2)
## R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.0.2)
## R.utils 2.11.0 2021-09-26 [1] CRAN (R 4.0.2)
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.0.2)
## RANN 2.6.1 2019-01-08 [1] CRAN (R 4.0.2)
## rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.0.2)
## RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.0.2)
## Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.0.2)
## RcppAnnoy 0.0.19 2021-07-30 [1] CRAN (R 4.0.2)
## remotes 2.4.2 2021-11-30 [1] CRAN (R 4.0.2)
## reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.0.2)
## reticulate 1.24 2022-01-26 [1] CRAN (R 4.0.2)
## rlang 1.0.0 2022-01-26 [1] CRAN (R 4.0.2)
## rmarkdown 2.11 2021-09-14 [1] CRAN (R 4.0.2)
## ROCR 1.0-11 2020-05-02 [1] CRAN (R 4.0.2)
## rpart 4.1-15 2019-04-12 [2] CRAN (R 4.0.2)
## rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.2)
## RSQLite 2.2.9 2021-12-06 [1] CRAN (R 4.0.2)
## rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.2)
## rsvd 1.0.5 2021-04-16 [1] CRAN (R 4.0.2)
## Rtsne 0.15 2018-11-10 [1] CRAN (R 4.0.2)
## rvcheck 0.1.8 2020-03-01 [1] CRAN (R 4.0.2)
## S4Vectors * 0.28.1 2020-12-09 [1] Bioconductor
## sass 0.4.0 2021-05-12 [1] CRAN (R 4.0.2)
## scales 1.1.1 2020-05-11 [1] CRAN (R 4.0.2)
## scattermore 0.7 2020-11-24 [1] CRAN (R 4.0.2)
## scatterpie 0.1.7 2021-08-20 [1] CRAN (R 4.0.2)
## sctransform 0.3.3 2022-01-13 [1] CRAN (R 4.0.2)
## sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.0.2)
## Seurat * 4.1.0 2022-01-14 [1] CRAN (R 4.0.2)
## SeuratObject * 4.0.4 2021-11-23 [1] CRAN (R 4.0.2)
## SeuratWrappers * 0.3.0 2022-02-02 [1] Github (satijalab/seurat-wrappers@8510069)
## shadowtext 0.1.1 2022-01-10 [1] CRAN (R 4.0.2)
## shiny 1.7.1 2021-10-02 [1] CRAN (R 4.0.2)
## spatstat.core 2.3-2 2021-11-26 [1] CRAN (R 4.0.2)
## spatstat.data 2.1-2 2021-12-17 [1] CRAN (R 4.0.2)
## spatstat.geom 2.3-1 2021-12-10 [1] CRAN (R 4.0.2)
## spatstat.sparse 2.1-0 2021-12-17 [1] CRAN (R 4.0.2)
## spatstat.utils 2.3-0 2021-12-12 [1] CRAN (R 4.0.2)
## stringi 1.7.6 2021-11-29 [1] CRAN (R 4.0.2)
## stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
## survival 3.1-12 2020-04-10 [2] CRAN (R 4.0.2)
## tensor 1.5 2012-05-05 [1] CRAN (R 4.0.2)
## testthat 3.1.2 2022-01-20 [1] CRAN (R 4.0.2)
## tibble 3.1.6 2021-11-07 [1] CRAN (R 4.0.2)
## tidygraph * 1.2.0 2020-05-12 [1] CRAN (R 4.0.2)
## tidyr 1.2.0 2022-02-01 [1] CRAN (R 4.0.2)
## tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.0.2)
## tweenr 1.0.2 2021-03-23 [1] CRAN (R 4.0.2)
## usethis * 2.1.5 2021-12-09 [1] CRAN (R 4.0.2)
## utf8 1.2.2 2021-07-24 [1] CRAN (R 4.0.2)
## uwot 0.1.11 2021-12-02 [1] CRAN (R 4.0.2)
## vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.0.2)
## viridis 0.6.2 2021-10-13 [1] CRAN (R 4.0.2)
## viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.0.2)
## withr 2.4.3 2021-11-30 [1] CRAN (R 4.0.2)
## xfun 0.29 2021-12-14 [1] CRAN (R 4.0.2)
## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.0.2)
## yaml 2.2.2 2022-01-25 [1] CRAN (R 4.0.2)
## zoo 1.8-9 2021-03-09 [1] CRAN (R 4.0.2)
##
## [1] /mnt/nectar_volume/home/eraz0001/R/x86_64-pc-linux-gnu-library/4.0
## [2] /mnt/nectar_volume/software/apps/R/4.0.2/lib/R/library
##
## ──────────────────────────────────────────────────────────────────────────────