The R Programming Language

Every programming language has similar elements. We need to input data, identify variables, perform calculations, create functions, control program flow, and output data and graphics. The R language is attractive in that it has it has a full online development environment -RStudio Cloud- and built in functions for regression analysis, solving equations, and producing graphics. R is increasingly used for those involved in data analysis and statistics, particularly social sciences, bio-statistics, and medicine. It is currently available in a free version. References on R tend to emphasize different features of R more suitable for social sciences, data mining, ecology, and medicine. A good reference for scientists using numerical methods is available1, as well as an Analytical Chemistry textbook2. This manual will present the elements of R gradually, as needed, mostly through chemical data examples. This document itself is created with RMarkdown, which integrates a document creation with R code.

R in RStudio Cloud

We will write our programs on a online platform (an IDE) called Rstudio Cloud, which makes it platform independent - we access the program the same way on a PC, Mac, or Chromebook. The Rstudio Cloud environment is divided into 4 main sections, with the most important elements listed below.

  • Top left: Script - where you write R code
  • Bottom left: Console - show output
  • Top right: Environment - we will mostly ignore this
  • Bottom right: show Plots, help, packages

A package is set of programs that R can call, such as a statistical package. There are base packages that come with R, and there are many that have to be added.

To start writing a program in Rstudio Cloud:

from a Workspace (like a file folder that can contain related programs) , select New project, and fromthe menu:
File ——> Newfile —–> Rscript

& start typing!

To run a program, highlight the code and select “run”,

When you run a script program, results and error messages will appear on the console, and plots appear on the plot area.

The great escape. Sometimes a program doesn’t run & only commands show up on the console. Put the cursor on the console and press the esc key to get out of this.

In this document, the shaded area is R code, and the white background appears as output from a previous R command.

#  A comment line

x <- 5.0    #  Set x equal to 5.0

y <- x^2    # y is equal to x squared. 

x <- c(1.0, 2.0, 3.0)   #   x is equal to a numbered list of values - a “vector” 

x <- seq(1,2,0.2)       # create an incremented sequence

xx <-matrix(c(2,4,6,8),2,2)   # a matrix row 1 = 2 6 row 2 = 4 8
# length(x) returns the length of the vector x.

# print(x)   # print(x) or  simply x returns all the values of x

length(x)
## [1] 6
print(x)
## [1] 1.0 1.2 1.4 1.6 1.8 2.0
x
## [1] 1.0 1.2 1.4 1.6 1.8 2.0
xx
##      [,1] [,2]
## [1,]    2    6
## [2,]    4    8

Here is an example of a simple R program that plots \(y = x^2\)

x   <-  seq(0,10,0.5)     # a sequence from 1 to 10, increments 0f 0.5

y  <-   x^2     #  Note that y is calculated for every x. This is called vectorized.

plot(x,y)     # Create a plot. We can add a lot of formatting!

We will want to custom format our plots: Here is an example!

plot(x,y,type = "b",main = "A Formatted Graph",col = "darkblue", xlab = "X Label", ylab = "Y Label")

grid (NULL,NULL, lty = 1, col = "lightgreen") # to add a grid

Later, you may want to learn to use ggplot, which is very popular but which uses something called dataframes. For beginners, I suggest using the simpler “plot” command.

mydat <- data.frame(x,y)     #  creating a data frame 

library(ggplot2)

ggplot(mydat, aes(x,y)) + geom_point() + xlab("New Label")

Here is a quick guide to ggplot

Data and Statistics

Every measurement has random error: Error that is inherent in the nature of the measurement.

Significant Figures: The number of significant figures is all the certain figures plus one uncertain figure. The degree of uncertainty in the last digit is ultimately determined by a statistical analysis.

The Mean (or average) of a set of n measurements x is defined:

\[\large\overline{x} = \frac{\sum_{i=1}^{n}x_i}{n}\] and the Standard Deviation is:

\[\large s = \large\sqrt\frac{\sum(x_i - \overline{x})^2}{n-1} \]

The mean and standard deviation can be related to the Guassian distribution - that gives the probability of observing a particular value of x. For a finite number of measurements, the Gaussian distribution can be approximated as:

\[\large y =\frac{1}{s\sqrt(2\pi)}e^\frac{-(x-\overline{x})^2}{2s^2}\]

According to one reference, the average (mean) male weight is 199.8 pounds with a standard deviation of 29 pounds. Substituting this into the Gaussian distribution formula

s <- 29

xmean <-  199.8

xval <- seq(72,282,5)

xval
##  [1]  72  77  82  87  92  97 102 107 112 117 122 127 132 137 142 147 152 157 162
## [20] 167 172 177 182 187 192 197 202 207 212 217 222 227 232 237 242 247 252 257
## [39] 262 267 272 277 282
#  here we calculate a gaussian distribution

yp <- (1/(s*sqrt(2*pi)))*exp(1)^((-(xval-xmean)^2)/(2*s^2))

yp
##  [1] 8.343582e-07 1.757433e-06 3.593311e-06 7.131828e-06 1.374032e-05
##  [6] 2.569702e-05 4.665074e-05 8.220994e-05 1.406307e-04 2.335209e-04
## [11] 3.764101e-04 5.889614e-04 8.945452e-04 1.318887e-03 1.887570e-03
## [16] 2.622336e-03 3.536418e-03 4.629443e-03 5.882796e-03 7.256528e-03
## [21] 8.688880e-03 1.009924e-02 1.139472e-02 1.247982e-02 1.326793e-02
## [26] 1.369266e-02 1.371710e-02 1.333911e-02 1.259161e-02 1.153787e-02
## [31] 1.026267e-02 8.861035e-03 7.426748e-03 6.042308e-03 4.771962e-03
## [36] 3.658314e-03 2.722419e-03 1.966613e-03 1.379027e-03 9.386779e-04
## [41] 6.202265e-04 3.978084e-04 2.476781e-04
plot(xval,yp) 

#  R has a command for Gaussian distribution, dnorm.

dp  <- dnorm(xval,199.8,29)   #  we can also get probability distribution using the command dnorm distribution

plot(xval,dp,type="l",col="red",xlab="Weight: women/blue men/red", ylab="Probability")

fdp <-   dnorm(xval,170.8,29)   #  Average Weight, women

lines(xval,fdp,col="blue")

Beer’s Law & Linear Regression

Beer’s law for UV-Vis Spectroscopy is: \[\large Abs = \epsilon_\lambda b c \]

where A = absorbance \(\epsilon_\lambda\) = absorption coefficient at a particular wavelength b = pathlength (typically cm) c = concentration (usually in molarity or \(\mu\)grams)

There is a linear relationship between the abosorbance and the concentration, given a fixed pathlength and wavelength. In any experimental situation, the inherent noise in the data will mean that we need to include a constant (I = intercept).

\[\large Abs = \epsilon_\lambda b c + I\] In order to use Beer’s Law to analyze for a particular component in solution (an ~analyte), we construct a calibration curve (in this case, a line!) using experimentally determined data. The object is to determine the absorption coeficcient, \(\epsilon\). We prepare solutions of varying concentrations of the analyte, and measure the absorbance. According to Beer’s Law, a plot of Absorbance versus concentration should result in a straight line with a slope equal to \(\epsilon\).

Lets take an example. The data comes from the widely use Bradford assay for protein3. In the Bradford assay, a dye (Coomassie brilliant blue G-250) changes from red to blue when attched to proteins, and this color absorbtion at 595 nm) is used to measure protein concentration. Here is sample data for a calibration4 for the BSA (Bovine Serum Albumin) standard.

Conc <- c(2.0, 5.0, 10.0, 15.0, 18.0)   # [BSA], in micrograms / ml
Abs <- c(0.115,0.266,0.413,0.701,0.811) # Absorbance

Xdata <- data.frame(Conc,Abs)    

library(flextable)
ft <- flextable(Xdata)
ft <- theme_vanilla(ft)
set_flextable_defaults(fonts_ignore=TRUE)
ft

Linear Regression

We use the “lm” command to do linear regression - to find the best fit to the data according to the least squares criterion: the slope (\(\epsilon\)) and intercept are adjusted to minimize the sum of the squares of the deviations of the experimental data from the fitted line .

BL <- lm(Abs ~ Conc)   # linear regression, lm(y(x)~x)
  
summary(BL)            # summarize results of linear regression
## 
## Call:
## lm(formula = Abs ~ Conc)
## 
## Residuals:
##       1       2       3       4       5 
##  0.0018  0.0223 -0.0482  0.0223  0.0018 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.026200   0.029054   0.902 0.433649    
## Conc        0.043500   0.002495  17.435 0.000411 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03329 on 3 degrees of freedom
## Multiple R-squared:  0.9902, Adjusted R-squared:  0.987 
## F-statistic:   304 on 1 and 3 DF,  p-value: 0.0004113
coef(BL) 
## (Intercept)        Conc 
##      0.0262      0.0435
plot(Conc, Abs, main = "Beer's Law ", xlab = "", ylab = "Absorbance", xlim = c(0.0,20.0), ylim =  c(0.0, 1.0), sub = "Figure 1. Beer's Law Plot for BSA")

title(xlab="Concentration, ug/ml", line=2, cex.lab=1.0)    

abline(a = 0.0262, b = 0.0435, col = "blue")  # add a line with intercept = 0.262 and slope = 0.0435, taken from regression.

fitted <- coef(BL)

int <- fitted[1]

slope <- fitted[2]



slope
##   Conc 
## 0.0435

Coomassie Blue. Associates with Proteins through non-covalent interactions

From summary(BL) we learn the best fit values for the slope( \(\epsilon\)) and the intercept, the standard deviations of these fitted values, the p values, and the r value - which should be close to 1.

The final step in an analysis is to calculate the concentration of an unknown based on the absorbance measured. Rearranging Beer’s Law, we have, for example, for an absorbance = 0.350

\[\large c = \frac{Abs-I}{\epsilon}\]

The unknown concentration is 7.45 micrgrams/ml.

Residual Plots

In a regression analysis, it can be helpful to plot the residuals (the deviations) of the experimental data from the theoretical best fit line (or curve). The residuals should appear randomly distributed above and below the best fit line.

We can simulate an example, based on the Bradfoed assay. The simulated data exaggerates the magnitude of typical deviations to help visualize.

Scon <- seq(0.5,20,0.5)
length(Scon)
## [1] 40
rnoise <- rnorm(40,0,0.1)
length(rnoise)
## [1] 40
Sabs <- 0.0435 * Scon + 0.026 + rnoise

plot(Scon,Sabs)

SBL <- lm(Sabs ~ Scon)

summary(SBL)
## 
## Call:
## lm(formula = Sabs ~ Scon)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.32399 -0.07004 -0.00103  0.07351  0.31633 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.063239   0.037217   1.699   0.0975 .  
## Scon        0.040869   0.003164  12.918 1.77e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1155 on 38 degrees of freedom
## Multiple R-squared:  0.8145, Adjusted R-squared:  0.8096 
## F-statistic: 166.9 on 1 and 38 DF,  p-value: 1.775e-15
abline(a = 0.052, b = 0.042, col = "blue") 

plot(Scon,residuals(SBL))

abline(a = 0.0, b = 0.0, col = "blue") 

plot(BL$residuals, pch = 16, col = “red”)

Linear Regression Project

  1. Find real world data that you expect to follow a linear relationship. Data points should be > 10.

  2. Enter the x y data as vector in R. xval <- c(1,3,5)

  3. Use lm command to perform linear regression.

  4. Summarize the results.

  5. Plot the data and the best fit line.

  6. Analysis & Interpretation. p value for intercept and slope.

  7. Make a residual plot. Is it consistent with linear relationship?

Solving Equilibrium

In solving chemical equilibrium, we often make approximation to simplify the mathematical solution. For instance, the approximation of negligible dissociation of weak acids. Here, we will explore the use of R to solve equilibrium without approximations. We find the equation to solve through aplication of a systematic analysis of equilibrium, which takes into account the equilibrium, charge balance, and mass balance expressions.

pH of hydrofluoric acid

We can show four equations:

HF dissociation

\(HF \rightleftarrows H^+ + F^-\)

\(K_a = \large \frac{[H^+][F^-]}{[HF]} = 6.8 \times 10^{-4}\)

Water Dissociation

\(H_2O \rightleftarrows H^+ + OH^-\)

\(K_w = [H^+][OH^-]] = 10^{-14}\)

Mass Balance

\([HF]_i = [HF] + [F^-]\)

Charge Balance

\([H^+] = [F^-]+ [OH^-]\)

Successively substituting the mass balance, charge balance, and \(K_w\) into the dissociation expression:

eliminate \([HF]\)

\(K_a = \large \frac{[H^+][F^-]}{[HF]_i-[[F^-]]}\)

eliminate \([F^-]\)

\(K_a = \large \frac{[H^+]([H^+]-[OH^-])}{[HF]_i-[H^+]+[OH^-]}\)

eliminate \([OH^-]\)

\(K_a = \large \frac{[H^+]([H^+]-\frac{K_w}{[H^+]})}{[HF]_i-[H^+]+\frac{K_w}{[H^+]}}\)

Finally, simplifying a bit:

\(K_a\times([HF]_i[H^+]-[H^+]^2+K_w)-([H^+]^3-K_w[H^+] = 0\)

We can solve this for \([H^+]\) using the uniroot command.

Ka <- 6.8 * 10^-4

Kw <-  10^(-14)

CHF <- 0.0010

Ka
## [1] 0.00068
Kw
## [1] 1e-14
HFFunc <-  function(H) {
  
  Ka * (CHF*H - H^2 + Kw) -(H^3-Kw*H)
  
}

  Hroot <-  uniroot(HFFunc,c(10^-6,10^-2),tol = 10^-18)

  hC  <-  Hroot$root
  
  hC
## [1] 0.0005519641
   solpH <- -log(hC,base = 10)
   
   solpH
## [1] 3.258089
  # compare with approximate method
   
   hapx <- sqrt(0.001 *  Ka)
   
   hapx
## [1] 0.0008246211
   pHapx <- -log(hapx,base=10)
   
   pHapx
## [1] 3.083746

We can also make a graphical illustration of root finding. We can explore the value of HFFunc for values of H+ ariund the root.

phseq <- seq(3.2,3.4,0.01)
      
      phseq
##  [1] 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34
## [16] 3.35 3.36 3.37 3.38 3.39 3.40
      hval <- 10^-phseq
      
      hval
##  [1] 0.0006309573 0.0006165950 0.0006025596 0.0005888437 0.0005754399
##  [6] 0.0005623413 0.0005495409 0.0005370318 0.0005248075 0.0005128614
## [11] 0.0005011872 0.0004897788 0.0004786301 0.0004677351 0.0004570882
## [16] 0.0004466836 0.0004365158 0.0004265795 0.0004168694 0.0004073803
## [21] 0.0003981072
    val  <- HFFunc(hval)
     
    val
##  [1] -9.285051e-11 -7.366706e-11 -5.592871e-11 -3.954115e-11 -2.441606e-11
##  [6] -1.047071e-11  2.372399e-12  1.418583e-11  2.503756e-11  3.499124e-11
## [11]  4.410651e-11  5.243921e-11  6.004165e-11  6.696282e-11  7.324858e-11
## [16]  7.894192e-11  8.408307e-11  8.870971e-11  9.285714e-11  9.655839e-11
## [21]  9.984442e-11
     plot(phseq,val)

# numerical soution of titration weak acid / strong base
#  derivation of acid base titratin curve in Harris 

#  used sapply to run unirooot for different values

#   generate full  titration curve

cA = 0.100   #  concentration acid Molar
cB = 0.100   #               base Molar
VA = 25.00   #  volume of acid ml
Ka = 1.00 * 10^(-3)
Kw = 1.00 * 10^(-14)

Kw
## [1] 1e-14
VB <- 0

 froot <- function(VB,H)
     
     
    { VB - (Ka/(H + Ka) - (H - Kw/H)/cA) /
          (1.00 +  (H - Kw/H)/cB) * cA*VA/cB  }  

    numb <- sapply(seq(0,30,1), function(VB) uniroot(froot, c(10^-12,10^-1),tol = 10^-16, VB=VB)$root)
    
 VB <- seq(0,30,1)
    numb
##  [1] 9.512492e-03 7.485454e-03 5.938106e-03 4.767242e-03 3.878322e-03
##  [6] 3.195567e-03 2.662759e-03 2.239722e-03 1.898090e-03 1.617788e-03
## [11] 1.384459e-03 1.187692e-03 1.019821e-03 8.751112e-04 7.492070e-04
## [16] 6.387531e-04 5.411300e-04 4.542669e-04 3.765081e-04 3.065155e-04
## [21] 2.431973e-04 1.856545e-04 1.331406e-04 8.503107e-05 4.079969e-05
## [26] 1.400290e-08 5.100016e-12 2.600001e-12 1.766666e-12 1.350022e-12
## [31] 1.099991e-12
    length(numb)
## [1] 31
    ph <- -log10(numb)
    ph
##  [1]  2.021706  2.125782  2.226352  2.321733  2.411356  2.495452  2.574668
##  [8]  2.649806  2.721683  2.791078  2.858720  2.925296  2.991476  3.057937
## [15]  3.125398  3.194667  3.266698  3.342689  3.424226  3.513548  3.614041
## [22]  3.731295  3.875690  4.070422  4.389343  7.853782 11.292428 11.585027
## [29] 11.752846 11.869659 11.958611
 VB
##  [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
## [26] 25 26 27 28 29 30
    length(VB)
## [1] 31
    length(ph)
## [1] 31
    plot(VB,ph,xlab = "volume of base/ml", main = "Titration")

Carbon Dioxide & Acidification

Kh <- 0.0034
Khyd  <-  0.0026 
Ka1   <-  1.67 * 10^-4
Ka2   <-   5.6 * 10^-11
Kw    <-  1.00 * 10^-14
ca <-  1.41 * 10^-5              # concentration of co2(aq)

Kh
## [1] 0.0034
Khyd
## [1] 0.0026
Ka1
## [1] 0.000167
Ka2
## [1] 5.6e-11
Kw
## [1] 1e-14
ca 
## [1] 1.41e-05
  froot3 <- function(H)       
  
  {H^3 - Kw*H - Ka1 * Khyd  * ca * H - 2.0 * Ka1 * Ka2 * Khyd * ca}
  
    
  X <- uniroot(froot3, c(10^(-6),10^(-4)), tol = 10^(-18))$root 
  
  X
## [1] 2.476388e-06
  pH <-  -log10(X)

  pH
## [1] 5.606181
  #   graph of froot3 in area around solution
  
  
      ph <- seq(5.5,5.7,0.02)
      
      ph
##  [1] 5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 5.66 5.68 5.70
      h <- 10^-ph
      
      h
##  [1] 3.162278e-06 3.019952e-06 2.884032e-06 2.754229e-06 2.630268e-06
##  [6] 2.511886e-06 2.398833e-06 2.290868e-06 2.187762e-06 2.089296e-06
## [11] 1.995262e-06
     val  <- froot3(h)
     
     val
##  [1]  1.223031e-17  9.022593e-18  6.302128e-18  4.002739e-18  2.066941e-18
##  [6]  4.448060e-19 -9.070142e-19 -2.026146e-18 -2.945236e-18 -3.692601e-18
## [11] -4.292791e-18
     plot(ph,val)

     #   the pH  of standing water is 5.6

Titrations

##  volume as function pH

# Generating Titration  Curve

#    pH f vol


cA = 0.100   #  concentration acid Molar
cB = 0.100   #               base Molar
VA = 25.00   #  volume of acid ml
Ka = 1.38 * 10^(-4)
Kw = 1.00 * 10^(-14)

 
 pH <- seq(3,12,0.5)
 pH
##  [1]  3.0  3.5  4.0  4.5  5.0  5.5  6.0  6.5  7.0  7.5  8.0  8.5  9.0  9.5 10.0
## [16] 10.5 11.0 11.5 12.0
 #   try using sequence 
length(pH)
## [1] 19
   H <- 10^-pH
   

 VB <-  (Ka/(H + Ka) - (H - Kw/H)/cA) /
 (1.00 +  (H - Kw/H)/cB) * cA*VA/cB   
   
   
VB
##  [1]  2.754094  7.492558 14.456342 20.324917 23.305981 24.438395 24.819651
##  [8] 24.942701 24.981897 24.994415 24.998684 25.001007 25.004819 25.015759
## [15] 25.050032 25.158610 25.505049 26.632771 30.555555
pH
##  [1]  3.0  3.5  4.0  4.5  5.0  5.5  6.0  6.5  7.0  7.5  8.0  8.5  9.0  9.5 10.0
## [16] 10.5 11.0 11.5 12.0
plot(VB,pH,main = "Weak Acid Titration",
     xlab = "Volume Base / ml", xlim = c(0,35),ylim = c(2,13) )

pH as function of volume

cA = 0.100   #  concentration acid Molar
cB = 0.100   #               base Molar
VA = 25.00   #  volume of acid ml
Ka = 1.00 * 10^-4
Kw = 1.00 * 10^-14

VB = 12.500  #   midpoint test



froot <- function(H)  {
  
  
   VB - (Ka/(H + Ka) - (H - Kw/H)/cA) /
  (1.00 +  (H - Kw/H)/cB) * cA*VA/cB   }


 #  VB  - (1.00 +  (H*cB - Kw/H)/cB) *  (Ka/(H + Ka) - (H - Kw/H)/cA) *  cA*VA/cB
                                   

 X <- uniroot(froot, c(10^(-12),10^(-3)), tol = 10^(-14)) 


X
## $root
## [1] 9.940534e-05
## 
## $f.root
## [1] 3.215206e-12
## 
## $iter
## [1] 10
## 
## $init.it
## [1] NA
## 
## $estim.prec
## [1] 5.000042e-15

Using sapply with uniroot

# numerical soution of titration weak acid / strong base
#  derivation of acid base titratin curve in Harris 

#  used sapply to run unirooot for different values

#   generate full  titration curve

cA = 0.100   #  concentration acid Molar
cB = 0.100   #               base Molar
VA = 25.00   #  volume of acid ml
Ka = 1.00 * 10^(-3)
Kw = 1.00 * 10^(-14)

Kw
## [1] 1e-14
VB <- 0

 froot <- function(VB,H)
     
     
    { VB - (Ka/(H + Ka) - (H - Kw/H)/cA) /
          (1.00 +  (H - Kw/H)/cB) * cA*VA/cB  }  

    numb <- sapply(seq(0,30,1), function(VB) uniroot(froot, c(10^-12,10^-1),tol = 10^-16, VB=VB)$root)
    
    # sapply can use sequential functions 
    
 VB <- seq(0,30,1)
    numb
##  [1] 9.512492e-03 7.485454e-03 5.938106e-03 4.767242e-03 3.878322e-03
##  [6] 3.195567e-03 2.662759e-03 2.239722e-03 1.898090e-03 1.617788e-03
## [11] 1.384459e-03 1.187692e-03 1.019821e-03 8.751112e-04 7.492070e-04
## [16] 6.387531e-04 5.411300e-04 4.542669e-04 3.765081e-04 3.065155e-04
## [21] 2.431973e-04 1.856545e-04 1.331406e-04 8.503107e-05 4.079969e-05
## [26] 1.400290e-08 5.100016e-12 2.600001e-12 1.766666e-12 1.350022e-12
## [31] 1.099991e-12
    length(numb)
## [1] 31
    ph <- -log10(numb)
    ph
##  [1]  2.021706  2.125782  2.226352  2.321733  2.411356  2.495452  2.574668
##  [8]  2.649806  2.721683  2.791078  2.858720  2.925296  2.991476  3.057937
## [15]  3.125398  3.194667  3.266698  3.342689  3.424226  3.513548  3.614041
## [22]  3.731295  3.875690  4.070422  4.389343  7.853782 11.292428 11.585027
## [29] 11.752846 11.869659 11.958611
 VB
##  [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
## [26] 25 26 27 28 29 30
    length(VB)
## [1] 31
    length(ph)
## [1] 31
    plot(VB,ph,xlab = "volume of base/ml", main = "Titration")

Binding Curves

Binding Curves (or Binding Assays) are an approach to determining the equilibrium constant for the interaction of two molecules, commonly used in biochemistry5. Typically, the a small molecule (commonly called the “ligand”) attaches to a larger molecule such as a protein. If we denote the protein as P and the ligand as L we can express the dissociation as:

\(PL \rightleftharpoons P + L\)

and where the total protein is the bound plus unbound.

\(P_{tot} = PL + P\)

With the dissociation constant:

\(K_d = \frac{[P][L]}{[PL]}\)

The concentration of the ligand (in excess) is varied and the fraction bound \(\frac{[PL]}{P_{tot}}\) is plotted versus the L6.

Substituting \(P_{tot} = P + PL\) into the \(K_d\) expression:

we get

\(K_d = \frac{([P_{tot}]-[PL])[L]}{PL]} = \frac{([P_{tot}][L]-[PL]{L]}}{[PL]}\)

\(K_d[PL] + [PL][L] = [P_{tot}][L]\)

\([PL](K_d +[L]) = [P_{tot}][L]\)

and we get expression for fraction bound as a function of \(K_d\) and L.

\(\frac{[PL]}{P_{tot}} = \frac{[L]}{K_d + [L]}\)

note as L increases the fraction bound goes from 0 to 1.

The key to binding assay is to find an experimental method to determine the concentration of PL, the bound form.

Although it is called a "binding assay" the equilibrium is discussed in terms of the dissociation, with $K_d$
knitr::include_graphics('250px-Myoglobin.png')
Myoglobin Binding

Myoglobin Binding

#  Nonlinear Regression / Binding Curve 
#  simulate noisy data for myoglobin  KD = 0.26  [L] in kPa
#  data generated with random noise added 

library(nls2)
## Loading required package: proto
 KD <- 0.26              # initializing variables
 L <- 0.0  
 y <- 0.0
 
 L <-  seq(.1,1.5,0.1)   #  set of 15 ligand concentrations 
 
 rnd <- rnorm(15,0,0.04)   #   set of 15 random values

 y <-  L/(KD+L) + rnd     #  binding curve fuction with noise
 
 plot(L,y, main = "Simulated binding data", xlab = "pO2 Kpa",
      ylab = "Fractional Binding")

tryfit <- nls2(y ~ L/(KD+L),  
              start = c(KD = 5))

summary(tryfit)
## 
## Formula: y ~ L/(KD + L)
## 
## Parameters:
##    Estimate Std. Error t value Pr(>|t|)    
## KD  0.24041    0.01382   17.39 7.07e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04139 on 14 degrees of freedom
## 
## Number of iterations to convergence: 7 
## Achieved convergence tolerance: 7.26e-06
plot(L,y, main = "Myoglobin Binding Curve", xlab = "pO2 Kpa", ylab = "Fractional Binding")
  
lines(L,predict(tryfit), col = "blue")    # add a line fitted to points

Fast Fourier Transform

FTNMR

Nyquist

Aliasing

Exponential & Logistic Models

#  Exponential fit, US population growth 1790 t0 1850

year <- c(0,10,20,30,40,50,60)  
length(year)
## [1] 7
pop <-  c( 3.929, 5.308, 7.240, 9.638, 12.866, 17.069, 23.192)
length(pop)
## [1] 7
#   A = Ai * exp(-k*t)
tryfit <- nls2(pop ~ alpha * exp(k*year) ,  
              start = c(alpha = 2.0, k = 0.05))

plot(year,pop,main = "US Population Growth, 1790-1850", xlab = "Starting 1790", ylab = "Population / Million")
lines(year,predict(tryfit),col="red")

summary(tryfit)
## 
## Formula: pop ~ alpha * exp(k * year)
## 
## Parameters:
##        Estimate Std. Error t value Pr(>|t|)    
## alpha 3.9744064  0.0407277   97.58 2.14e-09 ***
## k     0.0293421  0.0002023  145.02 2.96e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09817 on 5 degrees of freedom
## 
## Number of iterations to convergence: 5 
## Achieved convergence tolerance: 5.046e-08

Errors of linearization

Regression with Optimization

 #  test of  sublex (nelder mead variation) 

     #   use monte carlo to get error estimate 

     #  compare with nls2

     re <- 0
#   generate exponential data 

      xv  <- seq(0,9,1)
      
      alpha <- 7.5
      
      k  <- 0.2
      
      y  <- alpha*exp(k*xv)
      
      y
##  [1]  7.500000  9.160521 11.188685 13.665891 16.691557 20.387114 24.900877
##  [8] 30.414000 37.147743 45.372356
      plot(xv,y)

      length(xv)
## [1] 10
      rn <- rnorm(10,0,2)
      
      y <- y + rn      #   exp with noise
      
      plot(xv,y)  

      yfit <- 0
      
      library(nls2)
      
      yfit <- nls2(y~alpha*exp(k*xv),start=c(alpha=5,k=0.5))
      
      yfit     #  nls or nls2
## Nonlinear regression model
##   model: y ~ alpha * exp(k * xv)
##    data: <environment>
##  alpha      k 
## 7.3450 0.2025 
##  residual sum-of-squares: 31.85
## 
## Number of iterations to convergence: 7 
## Achieved convergence tolerance: 3.089e-06
      #   nelder mead function to be minimized
      
         
     library(subplex)
    
      #   exponential fit using subplex
      
      #  this looks similar to uniroot can do sapply?
      
      #  y is previously defined, data set
      
      myfun <- function (x) { 
        x1 <- x[1]
        x2 <- x[2]
        sum((y -  x1*exp(x2*xv))^2)
      }
      re <- subplex(par=c(1,6),fn=myfun)
      
      re  
## $par
## [1] 7.3450388 0.2024967
## 
## $value
## [1] 31.84612
## 
## $counts
## [1] 492
## 
## $convergence
## [1] 0
## 
## $message
## [1] "success! tolerance satisfied"
## 
## $hessian
## NULL
  #  this method described in phd thesis
  
  #  can we iterate this / sapply to do monte carlo 
  
 #  or solve equations 

  

Monte carlo Analysis

R Hints

Reports in Rmarkdown


  1. Introduction to Scientific Programming and Simulation Using R, CRC Press (2014)↩︎

  2. *Analytical Chemistry↩︎

  3. Bradford, M.M. (1976), Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1–2): 248–254↩︎

  4. Brady and Macnaughtan, Anal Biochem. 2015 Dec 15; 491: 43–51.Evaluation of Colorimetric Assays for Analyzing Reductively Methylated Proteins: Biases and Mechanistic Insights
  5. See Pollard, Thomas (2017). A Guide to Simple and Informative Binding Assays. Molecular Biology of the Cell 21(23)↩︎

  6. While the mathematics of equilibrium is similar to a simple acid, note the difference in a titration curve, where the -log(H) is measured↩︎