library(readr)
DataCovid19_DKI_Jakarta <- read_csv("LiniearAlgebra/DataCovid19 DKI Jakarta.csv")
## Rows: 31 Columns: 15
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr   (3): country_region_code, country_region, Nama Kota
## dbl  (11): retail_and_recreation_percent_change_from_baseline, grocery_and_p...
## date  (1): date
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
DataCovid19_DKI_Jakarta
## # A tibble: 31 x 15
##    country_region_code country_region `Nama Kota` date       retail_and_recreat~
##    <chr>               <chr>          <chr>       <date>                   <dbl>
##  1 ID                  Indonesia      DKI JAKARTA 2022-01-01                   3
##  2 ID                  Indonesia      DKI JAKARTA 2022-01-02                  11
##  3 ID                  Indonesia      DKI JAKARTA 2022-01-03                  14
##  4 ID                  Indonesia      DKI JAKARTA 2022-01-04                  11
##  5 ID                  Indonesia      DKI JAKARTA 2022-01-05                  12
##  6 ID                  Indonesia      DKI JAKARTA 2022-01-06                  10
##  7 ID                  Indonesia      DKI JAKARTA 2022-01-07                   6
##  8 ID                  Indonesia      DKI JAKARTA 2022-01-08                   8
##  9 ID                  Indonesia      DKI JAKARTA 2022-01-09                   7
## 10 ID                  Indonesia      DKI JAKARTA 2022-01-10                   7
## # ... with 21 more rows, and 10 more variables:
## #   grocery_and_pharmacy_percent_change_from_baseline <dbl>,
## #   parks_percent_change_from_baseline <dbl>,
## #   transit_stations_percent_change_from_baseline <dbl>,
## #   workplaces_percent_change_from_baseline <dbl>,
## #   residential_percent_change_from_baseline <dbl>, POSITIF <dbl>,
## #   Dirawat <dbl>, Sembuh <dbl>, Meninggal <dbl>, `Self Isolation` <dbl>
library(ggplot2)
library(reshape2)
x<-DataCovid19_DKI_Jakarta$date
retail <- DataCovid19_DKI_Jakarta$retail_and_recreation_percent_change_from_baseline
grocery <- DataCovid19_DKI_Jakarta$grocery_and_pharmacy_percent_change_from_baseline
park <- DataCovid19_DKI_Jakarta$parks_percent_change_from_baseline
station <- DataCovid19_DKI_Jakarta$transit_stations_percent_change_from_baseline
workplace <- DataCovid19_DKI_Jakarta$workplaces_percent_change_from_baseline
residental <- DataCovid19_DKI_Jakarta$residential_percent_change_from_baseline
positif<-DataCovid19_DKI_Jakarta$POSITIF
dirawat<-DataCovid19_DKI_Jakarta$Dirawat
sembuh<-DataCovid19_DKI_Jakarta$Sembuh
meninggal<-DataCovid19_DKI_Jakarta$Meninggal
selfIsolation<-DataCovid19_DKI_Jakarta$`Self Isolation`
df <- data.frame(x, retail, grocery, park, station, workplace,residental,positif,dirawat,sembuh,meninggal,selfIsolation  )

# melt the data to a long format
df2 <- melt(data = df, id.vars = "x")

# plot, using the aesthetics argument 'colour'
ggplot(data = df2, aes(x = x, y = value, colour = variable))+
  geom_point() +
  geom_line() + 
  theme(legend.justification = "top") +
  labs(title = "Google Mobility Index", 
         subtitle = "Propinsi DKI Jakarta Indonesia 2022", 
         y = "Mobility", x = "Date") +
theme(axis.text.x = element_text(angle = -90))

library(ggplot2)
library(reshape2)
x<-DataCovid19_DKI_Jakarta$date
retail <- DataCovid19_DKI_Jakarta$retail_and_recreation_percent_change_from_baseline
grocery <- DataCovid19_DKI_Jakarta$grocery_and_pharmacy_percent_change_from_baseline
park <- DataCovid19_DKI_Jakarta$parks_percent_change_from_baseline
station <- DataCovid19_DKI_Jakarta$transit_stations_percent_change_from_baseline
workplace <- DataCovid19_DKI_Jakarta$workplaces_percent_change_from_baseline
residental <- DataCovid19_DKI_Jakarta$residential_percent_change_from_baseline
meninggal<-DataCovid19_DKI_Jakarta$Meninggal
selfIsolation<-DataCovid19_DKI_Jakarta$`Self Isolation`
df <- data.frame(x, retail, grocery, park, station, workplace,residental,meninggal,selfIsolation  )

# melt the data to a long format
df2 <- melt(data = df, id.vars = "x")

# plot, using the aesthetics argument 'colour'
ggplot(data = df2, aes(x = x, y = value, colour = variable))+
  geom_point() +
  geom_line() + 
  theme(legend.justification = "top") +
  labs(title = "Google Mobility Index", 
         subtitle = "Propinsi DKI Jakarta Indonesia 2022", 
         y = "Mobility", x = "Date") +
theme(axis.text.x = element_text(angle = -90))

# menghitung kernel density
dens <- density(DataCovid19_DKI_Jakarta$Sembuh)

# histogram
hist(DataCovid19_DKI_Jakarta$Sembuh, freq=FALSE, col="steelblue")

# tambahkan density plot
polygon(dens, border="red")

boxplot(DataCovid19_DKI_Jakarta$date~DataCovid19_DKI_Jakarta$Meninggal,
        # ubah warna outline menjadi steelblue
        border = "steelblue",
        # ubah warna box berdasarkan grup
        col= c("#999999", "#E69F00", "#56B4E9"))

summary(DataCovid19_DKI_Jakarta)
##  country_region_code country_region      Nama Kota              date           
##  Length:31           Length:31          Length:31          Min.   :2022-01-01  
##  Class :character    Class :character   Class :character   1st Qu.:2022-01-08  
##  Mode  :character    Mode  :character   Mode  :character   Median :2022-01-16  
##                                                            Mean   :2022-01-16  
##                                                            3rd Qu.:2022-01-23  
##                                                            Max.   :2022-01-31  
##  retail_and_recreation_percent_change_from_baseline
##  Min.   : 1.000                                    
##  1st Qu.: 6.000                                    
##  Median : 7.000                                    
##  Mean   : 7.452                                    
##  3rd Qu.: 9.000                                    
##  Max.   :14.000                                    
##  grocery_and_pharmacy_percent_change_from_baseline
##  Min.   :20.00                                    
##  1st Qu.:25.00                                    
##  Median :26.00                                    
##  Mean   :27.55                                    
##  3rd Qu.:29.50                                    
##  Max.   :36.00                                    
##  parks_percent_change_from_baseline
##  Min.   :-1.00                     
##  1st Qu.: 5.50                     
##  Median : 9.00                     
##  Mean   :10.94                     
##  3rd Qu.:14.00                     
##  Max.   :46.00                     
##  transit_stations_percent_change_from_baseline
##  Min.   :-17.00                               
##  1st Qu.:-15.00                               
##  Median :-14.00                               
##  Mean   :-12.65                               
##  3rd Qu.:-10.00                               
##  Max.   : -4.00                               
##  workplaces_percent_change_from_baseline
##  Min.   :-49.000                        
##  1st Qu.: -4.000                        
##  Median :  0.000                        
##  Mean   : -1.677                        
##  3rd Qu.:  3.000                        
##  Max.   :  8.000                        
##  residential_percent_change_from_baseline    POSITIF          Dirawat    
##  Min.   :3.000                            Min.   :865415   Min.   : 116  
##  1st Qu.:4.500                            1st Qu.:867106   1st Qu.: 278  
##  Median :5.000                            Median :870929   Median : 781  
##  Mean   :5.258                            Mean   :876297   Mean   :1635  
##  3rd Qu.:6.000                            3rd Qu.:880304   3rd Qu.:2126  
##  Max.   :7.000                            Max.   :913355   Max.   :6809  
##      Sembuh         Meninggal     Self Isolation 
##  Min.   :851280   Min.   :13588   Min.   :  342  
##  1st Qu.:851783   1st Qu.:13589   1st Qu.: 1456  
##  Median :853522   Median :13591   Median : 3035  
##  Mean   :855268   Mean   :13598   Mean   : 5749  
##  3rd Qu.:856934   3rd Qu.:13597   3rd Qu.: 7646  
##  Max.   :867519   Max.   :13666   Max.   :25361
model <- lm(DataCovid19_DKI_Jakarta$retail_and_recreation_percent_change_from_baseline ~ DataCovid19_DKI_Jakarta$`Self Isolation`)
summary(model)
## 
## Call:
## lm(formula = DataCovid19_DKI_Jakarta$retail_and_recreation_percent_change_from_baseline ~ 
##     DataCovid19_DKI_Jakarta$`Self Isolation`)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.1103 -1.5923 -0.3509  1.0961  7.2772 
## 
## Coefficients:
##                                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)                              6.645e+00  7.241e-01   9.177 4.47e-10
## DataCovid19_DKI_Jakarta$`Self Isolation` 1.403e-04  8.421e-05   1.666    0.106
##                                             
## (Intercept)                              ***
## DataCovid19_DKI_Jakarta$`Self Isolation`    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.998 on 29 degrees of freedom
## Multiple R-squared:  0.08735,    Adjusted R-squared:  0.05588 
## F-statistic: 2.776 on 1 and 29 DF,  p-value: 0.1065
anova(model)
## Analysis of Variance Table
## 
## Response: DataCovid19_DKI_Jakarta$retail_and_recreation_percent_change_from_baseline
##                                          Df  Sum Sq Mean Sq F value Pr(>F)
## DataCovid19_DKI_Jakarta$`Self Isolation`  1  24.954 24.9536  2.7756 0.1065
## Residuals                                29 260.724  8.9905
plot(model)

head(predict(model), n = 11)
##        1        2        3        4        5        6        7        8 
## 6.693091 6.705157 6.722834 6.733075 6.755522 6.779232 6.809676 6.832544 
##        9       10       11 
## 6.866074 6.898622 6.937063
head(resid(model), n = 11)
##          1          2          3          4          5          6          7 
## -3.6930912  4.2948435  7.2771664  4.2669249  5.2444778  3.2207681 -0.8096758 
##          8          9         10         11 
##  1.1674562  0.1339259  0.1013776 -5.9370631
DataCovid19_DKI_Jakarta$residuals<-model$residuals
DataCovid19_DKI_Jakarta$predicted<- model$fitted.values
DataCovid19_DKI_Jakarta
## # A tibble: 31 x 17
##    country_region_code country_region `Nama Kota` date       retail_and_recreat~
##    <chr>               <chr>          <chr>       <date>                   <dbl>
##  1 ID                  Indonesia      DKI JAKARTA 2022-01-01                   3
##  2 ID                  Indonesia      DKI JAKARTA 2022-01-02                  11
##  3 ID                  Indonesia      DKI JAKARTA 2022-01-03                  14
##  4 ID                  Indonesia      DKI JAKARTA 2022-01-04                  11
##  5 ID                  Indonesia      DKI JAKARTA 2022-01-05                  12
##  6 ID                  Indonesia      DKI JAKARTA 2022-01-06                  10
##  7 ID                  Indonesia      DKI JAKARTA 2022-01-07                   6
##  8 ID                  Indonesia      DKI JAKARTA 2022-01-08                   8
##  9 ID                  Indonesia      DKI JAKARTA 2022-01-09                   7
## 10 ID                  Indonesia      DKI JAKARTA 2022-01-10                   7
## # ... with 21 more rows, and 12 more variables:
## #   grocery_and_pharmacy_percent_change_from_baseline <dbl>,
## #   parks_percent_change_from_baseline <dbl>,
## #   transit_stations_percent_change_from_baseline <dbl>,
## #   workplaces_percent_change_from_baseline <dbl>,
## #   residential_percent_change_from_baseline <dbl>, POSITIF <dbl>,
## #   Dirawat <dbl>, Sembuh <dbl>, Meninggal <dbl>, `Self Isolation` <dbl>, ...
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v purrr   0.3.4     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
df<-DataCovid19_DKI_Jakarta
df
## # A tibble: 31 x 17
##    country_region_code country_region `Nama Kota` date       retail_and_recreat~
##    <chr>               <chr>          <chr>       <date>                   <dbl>
##  1 ID                  Indonesia      DKI JAKARTA 2022-01-01                   3
##  2 ID                  Indonesia      DKI JAKARTA 2022-01-02                  11
##  3 ID                  Indonesia      DKI JAKARTA 2022-01-03                  14
##  4 ID                  Indonesia      DKI JAKARTA 2022-01-04                  11
##  5 ID                  Indonesia      DKI JAKARTA 2022-01-05                  12
##  6 ID                  Indonesia      DKI JAKARTA 2022-01-06                  10
##  7 ID                  Indonesia      DKI JAKARTA 2022-01-07                   6
##  8 ID                  Indonesia      DKI JAKARTA 2022-01-08                   8
##  9 ID                  Indonesia      DKI JAKARTA 2022-01-09                   7
## 10 ID                  Indonesia      DKI JAKARTA 2022-01-10                   7
## # ... with 21 more rows, and 12 more variables:
## #   grocery_and_pharmacy_percent_change_from_baseline <dbl>,
## #   parks_percent_change_from_baseline <dbl>,
## #   transit_stations_percent_change_from_baseline <dbl>,
## #   workplaces_percent_change_from_baseline <dbl>,
## #   residential_percent_change_from_baseline <dbl>, POSITIF <dbl>,
## #   Dirawat <dbl>, Sembuh <dbl>, Meninggal <dbl>, `Self Isolation` <dbl>, ...
df%>%select(4,11,16,17)
## # A tibble: 31 x 4
##    date       POSITIF residuals predicted
##    <date>       <dbl>     <dbl>     <dbl>
##  1 2022-01-01  865415    -3.69       6.69
##  2 2022-01-02  865518     4.29       6.71
##  3 2022-01-03  865690     7.28       6.72
##  4 2022-01-04  865805     4.27       6.73
##  5 2022-01-05  866064     5.24       6.76
##  6 2022-01-06  866331     3.22       6.78
##  7 2022-01-07  866631    -0.810      6.81
##  8 2022-01-08  866909     1.17       6.83
##  9 2022-01-09  867302     0.134      6.87
## 10 2022-01-10  867662     0.101      6.90
## # ... with 21 more rows
library(tidyverse)
my_data <- as_tibble(DataCovid19_DKI_Jakarta)
my_data
## # A tibble: 31 x 17
##    country_region_code country_region `Nama Kota` date       retail_and_recreat~
##    <chr>               <chr>          <chr>       <date>                   <dbl>
##  1 ID                  Indonesia      DKI JAKARTA 2022-01-01                   3
##  2 ID                  Indonesia      DKI JAKARTA 2022-01-02                  11
##  3 ID                  Indonesia      DKI JAKARTA 2022-01-03                  14
##  4 ID                  Indonesia      DKI JAKARTA 2022-01-04                  11
##  5 ID                  Indonesia      DKI JAKARTA 2022-01-05                  12
##  6 ID                  Indonesia      DKI JAKARTA 2022-01-06                  10
##  7 ID                  Indonesia      DKI JAKARTA 2022-01-07                   6
##  8 ID                  Indonesia      DKI JAKARTA 2022-01-08                   8
##  9 ID                  Indonesia      DKI JAKARTA 2022-01-09                   7
## 10 ID                  Indonesia      DKI JAKARTA 2022-01-10                   7
## # ... with 21 more rows, and 12 more variables:
## #   grocery_and_pharmacy_percent_change_from_baseline <dbl>,
## #   parks_percent_change_from_baseline <dbl>,
## #   transit_stations_percent_change_from_baseline <dbl>,
## #   workplaces_percent_change_from_baseline <dbl>,
## #   residential_percent_change_from_baseline <dbl>, POSITIF <dbl>,
## #   Dirawat <dbl>, Sembuh <dbl>, Meninggal <dbl>, `Self Isolation` <dbl>, ...
my_data%>%select(date)
## # A tibble: 31 x 1
##    date      
##    <date>    
##  1 2022-01-01
##  2 2022-01-02
##  3 2022-01-03
##  4 2022-01-04
##  5 2022-01-05
##  6 2022-01-06
##  7 2022-01-07
##  8 2022-01-08
##  9 2022-01-09
## 10 2022-01-10
## # ... with 21 more rows