log transform response time in descriptive section (done)

means and CI for faces, blackboxes, blur faces

## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## Loading required package: Matrix
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
## 
## Attaching package: 'plyr'
## The following object is masked from 'package:ggpubr':
## 
##     mutate
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ lubridate 1.9.2     ✔ tibble    3.2.1
## ✔ purrr     1.0.1     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%()     masks psych::%+%()
## ✖ ggplot2::alpha()   masks psych::alpha()
## ✖ dplyr::arrange()   masks plyr::arrange()
## ✖ purrr::compact()   masks plyr::compact()
## ✖ dplyr::count()     masks plyr::count()
## ✖ dplyr::desc()      masks plyr::desc()
## ✖ tidyr::expand()    masks Matrix::expand()
## ✖ dplyr::failwith()  masks plyr::failwith()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::id()        masks plyr::id()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ dplyr::mutate()    masks plyr::mutate(), ggpubr::mutate()
## ✖ tidyr::pack()      masks Matrix::pack()
## ✖ dplyr::rename()    masks plyr::rename()
## ✖ dplyr::summarise() masks plyr::summarise()
## ✖ dplyr::summarize() masks plyr::summarize()
## ✖ tidyr::unpack()    masks Matrix::unpack()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")`) to load all sj-packages at once!
## 
## Loading required package: carData
## 
## 
## Attaching package: 'car'
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## 
## The following object is masked from 'package:purrr':
## 
##     some
## 
## 
## The following object is masked from 'package:psych':
## 
##     logit

0. descriptives

a. how often is cued stim trusted?

round(prop.table(table(d$cuedFaceTrusted_1[d$study == 1])), 3)
## 
##     0     1 
## 0.484 0.516
round(prop.table(table(d$cuedFaceTrusted_1[d$study == 2])), 3)
## 
##     0     1 
## 0.486 0.514
round(prop.table(table(d$cuedFaceTrusted_1[d$study == 3])), 3)
## 
##     0     1 
## 0.496 0.504
round(prop.table(table(d$cuedFaceTrusted_1[d$study == 4])), 3)
## 
##     0     1 
## 0.484 0.516

b. participants in trust vs. distrust conditions

vector <- data.frame(d$participant, d$age, d$pt_gender, d$ethnicity, d$study, d$trustCondition)

vw <- vector %>%
  group_by(d.participant) %>%
  slice(1)

vw$d.age <- as.numeric(vw$d.age)
vw$d.study <- as.numeric(vw$d.study)

length(vw$d.participant[vw$d.trustCondition == "trust"]) #990
## [1] 990
length(vw$d.participant[vw$d.trustCondition == "distrust"]) #295
## [1] 295

c. age of participants?

# merged - age
describe(vw$d.age)
# by study
describeBy(vw$d.age, vw$d.study, na.rm = T)
## 
##  Descriptive statistics by group 
## group: 1
##    vars   n  mean   sd median trimmed mad min max range skew kurtosis  se
## X1    1 202 18.89 1.41     18    18.6   0  18  28    10 3.08    13.79 0.1
## ------------------------------------------------------------ 
## group: 2
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 220 19.31 1.63     19   19.03 1.48  18  31    13 3.58    18.47 0.11
## ------------------------------------------------------------ 
## group: 3
##    vars   n  mean   sd median trimmed mad min max range skew kurtosis  se
## X1    1 400 18.89 1.93     18   18.53   0  18  45    27 7.46    86.81 0.1
## ------------------------------------------------------------ 
## group: 4
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 462 19.3 2.31     19   18.97 1.48  18  51    33    8    91.32 0.11

d. gender across/within studies

# merged - gender
table(vw$d.pt_gender)
## 
## female   male 
##    881    404
prop.table(table(vw$d.pt_gender))
## 
##    female      male 
## 0.6856031 0.3143969
# study 1
table(vw$d.pt_gender[vw$d.study == 1])
## 
## female   male 
##    142     61
prop.table(table(vw$d.pt_gender[vw$d.study == 1]))
## 
##    female      male 
## 0.6995074 0.3004926
# study 2
table(vw$d.pt_gender[vw$d.study == 2])
## 
## female   male 
##    139     81
prop.table(table(vw$d.pt_gender[vw$d.study == 2]))
## 
##    female      male 
## 0.6318182 0.3681818
# study 3
table(vw$d.pt_gender[vw$d.study == 3])
## 
## female   male 
##    288    112
prop.table(table(vw$d.pt_gender[vw$d.study == 3]))
## 
## female   male 
##   0.72   0.28
# study 4
table(vw$d.pt_gender[vw$d.study == 4])
## 
## female   male 
##    312    150
prop.table(table(vw$d.pt_gender[vw$d.study == 4]))
## 
##    female      male 
## 0.6753247 0.3246753

e. ethnicity across/within studies

# merged - ethnicity
table(vw$d.ethnicity)
## 
##     Asian / Asian-American       Asian/Asian-American 
##                         99                         14 
##   Black / African-American     Black/African-American 
##                         27                          7 
##  Hispanic / Latin-American    Hispanic/Latin-American 
##                        106                         19 
##             middle eastern             Middle Eastern 
##                          1                          8 
##                        Mix            Mix Asian/White 
##                          1                          5 
##            Mix Black/White           Mix Latina/White 
##                          1                          1 
##                      mixed                      Mixed 
##                          4                          8 
##    Native-Pacific Islander  Native / Pacific-Islander 
##                          1                          3 
##              North African                      Other 
##                          1                         24 
##                    Persian              White / Asian 
##                          1                          3 
## White / Caucasian-American   White/Caucasian-American 
##                        794                        157
round(prop.table(table(vw$d.ethnicity)), 4)
## 
##     Asian / Asian-American       Asian/Asian-American 
##                     0.0770                     0.0109 
##   Black / African-American     Black/African-American 
##                     0.0210                     0.0054 
##  Hispanic / Latin-American    Hispanic/Latin-American 
##                     0.0825                     0.0148 
##             middle eastern             Middle Eastern 
##                     0.0008                     0.0062 
##                        Mix            Mix Asian/White 
##                     0.0008                     0.0039 
##            Mix Black/White           Mix Latina/White 
##                     0.0008                     0.0008 
##                      mixed                      Mixed 
##                     0.0031                     0.0062 
##    Native-Pacific Islander  Native / Pacific-Islander 
##                     0.0008                     0.0023 
##              North African                      Other 
##                     0.0008                     0.0187 
##                    Persian              White / Asian 
##                     0.0008                     0.0023 
## White / Caucasian-American   White/Caucasian-American 
##                     0.6179                     0.1222
# study 1
table(vw$d.ethnicity[vw$d.study == 1])
## 
##     Asian/Asian-American   Black/African-American  Hispanic/Latin-American 
##                       14                        7                       19 
##  Native-Pacific Islander                    Other White/Caucasian-American 
##                        1                        5                      157
round(prop.table(table(vw$d.ethnicity[vw$d.study == 1])), 3)
## 
##     Asian/Asian-American   Black/African-American  Hispanic/Latin-American 
##                    0.069                    0.034                    0.094 
##  Native-Pacific Islander                    Other White/Caucasian-American 
##                    0.005                    0.025                    0.773
# study 2
table(vw$d.ethnicity[vw$d.study == 2])
## 
##     Asian / Asian-American   Black / African-American 
##                         24                          3 
##  Hispanic / Latin-American                      Other 
##                         24                         14 
## White / Caucasian-American 
##                        155
round(prop.table(table(vw$d.ethnicity[vw$d.study == 2])),3)
## 
##     Asian / Asian-American   Black / African-American 
##                      0.109                      0.014 
##  Hispanic / Latin-American                      Other 
##                      0.109                      0.064 
## White / Caucasian-American 
##                      0.705
# study 3
table(vw$d.ethnicity[vw$d.study == 3])
## 
##     Asian / Asian-American   Black / African-American 
##                         35                          9 
##  Hispanic / Latin-American             Middle Eastern 
##                         36                          3 
##                        Mix            Mix Asian/White 
##                          1                          5 
##            Mix Black/White           Mix Latina/White 
##                          1                          1 
##  Native / Pacific-Islander              North African 
##                          2                          1 
##                      Other                    Persian 
##                          2                          1 
## White / Caucasian-American 
##                        303
round(prop.table(table(vw$d.ethnicity[vw$d.study == 3])),3)
## 
##     Asian / Asian-American   Black / African-American 
##                      0.088                      0.022 
##  Hispanic / Latin-American             Middle Eastern 
##                      0.090                      0.007 
##                        Mix            Mix Asian/White 
##                      0.002                      0.013 
##            Mix Black/White           Mix Latina/White 
##                      0.002                      0.002 
##  Native / Pacific-Islander              North African 
##                      0.005                      0.002 
##                      Other                    Persian 
##                      0.005                      0.002 
## White / Caucasian-American 
##                      0.757
# study 4
table(vw$d.ethnicity[vw$d.study == 4])
## 
##     Asian / Asian-American   Black / African-American 
##                         40                         15 
##  Hispanic / Latin-American             middle eastern 
##                         46                          1 
##             Middle Eastern                      mixed 
##                          5                          4 
##                      Mixed  Native / Pacific-Islander 
##                          8                          1 
##                      Other              White / Asian 
##                          3                          3 
## White / Caucasian-American 
##                        336
round(prop.table(table(vw$d.ethnicity[vw$d.study == 4])),3)
## 
##     Asian / Asian-American   Black / African-American 
##                      0.087                      0.032 
##  Hispanic / Latin-American             middle eastern 
##                      0.100                      0.002 
##             Middle Eastern                      mixed 
##                      0.011                      0.009 
##                      Mixed  Native / Pacific-Islander 
##                      0.017                      0.002 
##                      Other              White / Asian 
##                      0.006                      0.006 
## White / Caucasian-American 
##                      0.727

ANALYSES

1. contrast code model

#don't include stimulus gender because of black boxes
m1 <- glmer(cuedFaceTrusted_1 ~ trust_0 + faceVother + blurVblackbox + pt_female_.5 +
                (1 | participant) + (1 | joined.CU), 
              family = binomial("logit"), data = d)

summary(m1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trust_0 + faceVother + blurVblackbox + pt_female_.5 +  
##     (1 | participant) + (1 | joined.CU)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##  43384.5  43443.1 -21685.2  43370.5    32108 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3291 -0.8839  0.5374  0.8511  2.1936 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.4992   0.7066  
##  participant (Intercept) 0.1201   0.3465  
## Number of obs: 32115, groups:  joined.CU, 9081; participant, 1285
## 
## Fixed effects:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    0.08235    0.02531   3.254  0.00114 **
## trust_0       -0.08331    0.03937  -2.116  0.03433 * 
## faceVother     0.04089    0.04258   0.960  0.33684   
## blurVblackbox  0.11462    0.06927   1.655  0.09802 . 
## pt_female_.5   0.04002    0.03383   1.183  0.23690   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trst_0 fcVthr blrVbl
## trust_0     -0.140                     
## faceVother   0.553  0.248              
## blurVblckbx  0.095  0.000  0.090       
## pt_femal_.5 -0.248  0.004 -0.006  0.029
tab_model(m1)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.09 1.03 – 1.14 0.001
trust 0 0.92 0.85 – 0.99 0.034
faceVother 1.04 0.96 – 1.13 0.337
blurVblackbox 1.12 0.98 – 1.28 0.098
pt female 5 1.04 0.97 – 1.11 0.237
Random Effects
σ2 3.29
τ00 joined.CU 0.50
τ00 participant 0.12
ICC 0.16
N participant 1285
N joined.CU 9081
Observations 32115
Marginal R2 / Conditional R2 0.001 / 0.159

a. black boxes simple effects

m1bb <- glmer(cuedFaceTrusted_1 ~ faces_1 + blur_1 + pt_female_.5 +
                (1 | participant) + (1 | joined.CU), 
              family = binomial("logit"), data = d[d$trustCondition == "trust",])

summary(m1bb)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ faces_1 + blur_1 + pt_female_.5 + (1 | participant) +  
##     (1 | joined.CU)
##    Data: d[d$trustCondition == "trust", ]
## 
##      AIC      BIC   logLik deviance df.resid 
##  33530.4  33579.1 -16759.2  33518.4    24763 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1383 -0.8766  0.5450  0.8397  2.0110 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.513    0.7162  
##  participant (Intercept) 0.162    0.4025  
## Number of obs: 24769, groups:  joined.CU, 8858; participant, 991
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   0.15008    0.05529   2.714  0.00664 **
## faces_1      -0.10565    0.06089  -1.735  0.08274 . 
## blur_1       -0.11867    0.07365  -1.611  0.10712   
## pt_female_.5  0.07523    0.04127   1.823  0.06829 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) facs_1 blur_1
## faces_1     -0.894              
## blur_1      -0.736  0.673       
## pt_femal_.5 -0.117 -0.016 -0.034
tab_model(m1bb)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.16 1.04 – 1.29 0.007
faces 1 0.90 0.80 – 1.01 0.083
blur 1 0.89 0.77 – 1.03 0.107
pt female 5 1.08 0.99 – 1.17 0.068
Random Effects
σ2 3.29
τ00 joined.CU 0.51
τ00 participant 0.16
ICC 0.17
N participant 991
N joined.CU 8858
Observations 24769
Marginal R2 / Conditional R2 0.001 / 0.171

b. blurred faces simple effects

m1bf <- glmer(cuedFaceTrusted_1 ~ faces_1 + blackboxes_1 + pt_female_.5 +
                (1 | participant) + (1 | joined.CU), 
              family = binomial("logit"), 
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)), 
              data = d[d$trustCondition == "trust",])

summary(m1bf)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ faces_1 + blackboxes_1 + pt_female_.5 + (1 |  
##     participant) + (1 | joined.CU)
##    Data: d[d$trustCondition == "trust", ]
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##  33530.4  33579.1 -16759.2  33518.4    24763 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1383 -0.8766  0.5450  0.8397  2.0110 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.513    0.7162  
##  participant (Intercept) 0.162    0.4025  
## Number of obs: 24769, groups:  joined.CU, 8858; participant, 991
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.03141    0.04984   0.630   0.5286  
## faces_1       0.01302    0.05566   0.234   0.8150  
## blackboxes_1  0.11868    0.07365   1.611   0.1071  
## pt_female_.5  0.07523    0.04127   1.823   0.0683 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) facs_1 blck_1
## faces_1     -0.871              
## blackboxs_1 -0.661  0.587       
## pt_femal_.5 -0.180  0.027  0.034
tab_model(m1bf)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.03 0.94 – 1.14 0.529
faces 1 1.01 0.91 – 1.13 0.815
blackboxes 1 1.13 0.97 – 1.30 0.107
pt female 5 1.08 0.99 – 1.17 0.068
Random Effects
σ2 3.29
τ00 joined.CU 0.51
τ00 participant 0.16
ICC 0.17
N participant 991
N joined.CU 8858
Observations 24769
Marginal R2 / Conditional R2 0.001 / 0.171

c. faces simple effects

m1ft <- glmer(cuedFaceTrusted_1 ~ blackboxes_1 + blur_1 + pt_female_.5 +
                (1 | participant) + (1 | joined.CU), 
              family = binomial("logit"), 
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)), 
              data = d[d$trustCondition == "trust",])

summary(m1ft)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ blackboxes_1 + blur_1 + pt_female_.5 + (1 |  
##     participant) + (1 | joined.CU)
##    Data: d[d$trustCondition == "trust", ]
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##  33530.4  33579.1 -16759.2  33518.4    24763 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1383 -0.8766  0.5450  0.8397  2.0110 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.513    0.7162  
##  participant (Intercept) 0.162    0.4025  
## Number of obs: 24769, groups:  joined.CU, 8858; participant, 991
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.04443    0.02735   1.624   0.1043  
## blackboxes_1  0.10565    0.06089   1.735   0.0827 .
## blur_1       -0.01302    0.05566  -0.234   0.8150  
## pt_female_.5  0.07523    0.04127   1.823   0.0683 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) blck_1 blur_1
## blackboxs_1 -0.420              
## blur_1      -0.447  0.204       
## pt_femal_.5 -0.274  0.016 -0.027
tab_model(m1ft)
  cuedFaceTrusted_1
Predictors Odds Ratios CI p
(Intercept) 1.05 0.99 – 1.10 0.104
blackboxes 1 1.11 0.99 – 1.25 0.083
blur 1 0.99 0.89 – 1.10 0.815
pt female 5 1.08 0.99 – 1.17 0.068
Random Effects
σ2 3.29
τ00 joined.CU 0.51
τ00 participant 0.16
ICC 0.17
N participant 991
N joined.CU 8858
Observations 24769
Marginal R2 / Conditional R2 0.001 / 0.171

2. does difference in trustworthiness interact with avg trustworthiness

a. faces

d1 <- d[d$stimCondition == "faces",]

m2CC <- glmer(cuedFaceTrusted_1 ~ trust_.5 * trustDiff.CUC * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU), 
              family = binomial("logit"),  
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              data = d1)
## Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :
## convergence code 1 from bobyqa: bobyqa -- maximum number of function
## evaluations exceeded
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0904896 (tol = 0.002, component 1)
summary(m2CC)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trust_.5 * trustDiff.CUC * trustAvg.CUC +  
##     pt_female_.5 + stim_female_.5 + (1 | participant) + (1 |      joined.CU)
##    Data: d1
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##  32738.8  32836.2 -16357.4  32714.8    24661 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6388 -0.8633  0.4885  0.8465  2.2385 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.47377  0.6883  
##  participant (Intercept) 0.08277  0.2877  
## Number of obs: 24673, groups:  joined.CU, 4595; participant, 993
## 
## Fixed effects:
##                                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                          0.137323   0.178080   0.771  0.44063    
## trust_.5                            -0.066074   0.212013  -0.312  0.75531    
## trustDiff.CUC                       -1.795594   0.362510  -4.953  7.3e-07 ***
## trustAvg.CUC                        -0.034030   0.055135  -0.617  0.53709    
## pt_female_.5                         0.004725   0.036126   0.131  0.89593    
## stim_female_.5                      -0.049539   0.047735  -1.038  0.29936    
## trust_.5:trustDiff.CUC              -0.292167   0.589606  -0.496  0.62023    
## trust_.5:trustAvg.CUC                0.047727   0.066159   0.721  0.47067    
## trustDiff.CUC:trustAvg.CUC           0.334817   0.113616   2.947  0.00321 ** 
## trust_.5:trustDiff.CUC:trustAvg.CUC  0.129066   0.183760   0.702  0.48245    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trs_.5 trD.CUC tA.CUC pt__.5 st__.5 tr_.5:D.CUC t_.5:A
## trust_.5    -0.241                                                       
## trstDff.CUC -0.022  0.022                                                
## trstAvg.CUC -0.990  0.240  0.022                                         
## pt_femal_.5 -0.041 -0.006 -0.002   0.005                                 
## stim_fml_.5 -0.482 -0.019  0.000   0.443  0.001                          
## tr_.5:D.CUC  0.018 -0.032 -0.514  -0.019  0.004  0.000                   
## tr_.5:A.CUC  0.237 -0.985 -0.023  -0.245  0.006  0.021  0.033            
## tD.CUC:A.CU  0.022 -0.023 -0.993  -0.022  0.001 -0.001  0.508       0.024
## t_.5:D.CUC: -0.018  0.033  0.512   0.019 -0.004  0.000 -0.992      -0.034
##             tD.CUC:
## trust_.5           
## trstDff.CUC        
## trstAvg.CUC        
## pt_femal_.5        
## stim_fml_.5        
## tr_.5:D.CUC        
## tr_.5:A.CUC        
## tD.CUC:A.CU        
## t_.5:D.CUC: -0.515 
## optimizer (bobyqa) convergence code: 1 (bobyqa -- maximum number of function evaluations exceeded)
## Model failed to converge with max|grad| = 0.0904896 (tol = 0.002, component 1)

i. trust

d2 <- d[d$stimCondition == "faces" & d$trustCondition == "trust",]

mft <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)), 
              family = binomial("logit"),
              data = d2)

summary(mft)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##  22967.2  23029.3 -11475.6  22951.2    17319 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5056 -0.8454  0.4876  0.8220  2.1534 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.5220   0.7225  
##  participant (Intercept) 0.1233   0.3511  
## Number of obs: 17327, groups:  joined.CU, 4372; participant, 699
## 
## Fixed effects:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                 0.10777    0.19423   0.555 0.578988    
## trustDiff.CUC              -1.92561    0.33952  -5.672 1.42e-08 ***
## trustAvg.CUC               -0.01338    0.05998  -0.223 0.823488    
## pt_female_.5                0.03624    0.04655   0.779 0.436228    
## stim_female_.5             -0.06568    0.05298  -1.240 0.215090    
## trustDiff.CUC:trustAvg.CUC  0.38996    0.10614   3.674 0.000239 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC -0.010                             
## trstAvg.CUC -0.989  0.009                      
## pt_femal_.5 -0.052  0.002   0.009              
## stim_fml_.5 -0.502  0.000   0.467  0.002       
## tD.CUC:A.CU  0.009 -0.994  -0.008 -0.003  0.000
- hi/low diff
m3ft.hi <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC.plus.sd * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d2)

summary(m3ft.hi)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC.plus.sd * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##  22967.2  23029.3 -11475.6  22951.2    17319 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5056 -0.8454  0.4876  0.8220  2.1534 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.5220   0.7225  
##  participant (Intercept) 0.1233   0.3511  
## Number of obs: 17327, groups:  joined.CU, 4372; participant, 699
## 
## Fixed effects:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        -0.93306    0.26580  -3.510 0.000448 ***
## trustDiff.CUC.plus.sd              -1.92560    0.33939  -5.674  1.4e-08 ***
## trustAvg.CUC                        0.19740    0.08262   2.389 0.016877 *  
## pt_female_.5                        0.03624    0.04655   0.779 0.436238    
## stim_female_.5                     -0.06568    0.05298  -1.240 0.215087    
## trustDiff.CUC.plus.sd:trustAvg.CUC  0.38996    0.10610   3.675 0.000238 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC.. tA.CUC pt__.5 st__.5
## trstD.CUC..  0.683                               
## trstAvg.CUC -0.991 -0.683                        
## pt_femal_.5 -0.036  0.002     0.004              
## stim_fml_.5 -0.367  0.000     0.339  0.002       
## tD.CUC..:A. -0.679 -0.994     0.688 -0.003  0.000
m3ft.low <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC.min.sd * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d2)

summary(m3ft.low)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC.min.sd * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##  22967.2  23029.3 -11475.6  22951.2    17319 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5056 -0.8454  0.4876  0.8220  2.1534 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.5220   0.7225  
##  participant (Intercept) 0.1233   0.3511  
## Number of obs: 17327, groups:  joined.CU, 4372; participant, 699
## 
## Fixed effects:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.14864    0.26858   4.277 1.90e-05 ***
## trustDiff.CUC.min.sd              -1.92564    0.33968  -5.669 1.44e-08 ***
## trustAvg.CUC                      -0.22417    0.08337  -2.689  0.00717 ** 
## pt_female_.5                       0.03624    0.04655   0.779  0.43624    
## stim_female_.5                    -0.06568    0.05298  -1.240  0.21511    
## trustDiff.CUC.min.sd:trustAvg.CUC  0.38997    0.10619   3.672  0.00024 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC.. tA.CUC pt__.5 st__.5
## trstD.CUC.. -0.691                               
## trstAvg.CUC -0.992  0.691                        
## pt_femal_.5 -0.039  0.002     0.008              
## stim_fml_.5 -0.363 -0.001     0.336  0.002       
## tD.CUC..:A.  0.686 -0.994    -0.694 -0.003  0.000
tab_model(mft, m3ft.hi, m3ft.low)
  cuedFaceTrusted_1 cuedFaceTrusted_1 cuedFaceTrusted_1
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 1.11 0.76 – 1.63 0.579 0.39 0.23 – 0.66 <0.001 3.15 1.86 – 5.34 <0.001
trustDiff CUC 0.15 0.07 – 0.28 <0.001
trustAvg CUC 0.99 0.88 – 1.11 0.823 1.22 1.04 – 1.43 0.017 0.80 0.68 – 0.94 0.007
pt female 5 1.04 0.95 – 1.14 0.436 1.04 0.95 – 1.14 0.436 1.04 0.95 – 1.14 0.436
stim female 5 0.94 0.84 – 1.04 0.215 0.94 0.84 – 1.04 0.215 0.94 0.84 – 1.04 0.215
trustDiff CUC × trustAvg
CUC
1.48 1.20 – 1.82 <0.001
trustDiff CUC plus sd 0.15 0.07 – 0.28 <0.001
trustDiff CUC plus sd ×
trustAvg CUC
1.48 1.20 – 1.82 <0.001
trustDiff CUC min sd 0.15 0.07 – 0.28 <0.001
trustDiff CUC min sd ×
trustAvg CUC
1.48 1.20 – 1.82 <0.001
Random Effects
σ2 3.29 3.29 3.29
τ00 0.52 joined.CU 0.52 joined.CU 0.52 joined.CU
0.12 participant 0.12 participant 0.12 participant
ICC 0.16 0.16 0.16
N 699 participant 699 participant 699 participant
4372 joined.CU 4372 joined.CU 4372 joined.CU
Observations 17327 17327 17327
Marginal R2 / Conditional R2 0.037 / 0.195 0.037 / 0.195 0.037 / 0.195
plot_models(mft, m3ft.hi, m3ft.low)

- hi/low avg
m4.hi <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.plus.sd + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d2)

summary(m4.hi)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.plus.sd + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##  22967.2  23029.3 -11475.6  22951.2    17319 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5056 -0.8454  0.4876  0.8220  2.1534 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.5220   0.7225  
##  participant (Intercept) 0.1233   0.3511  
## Number of obs: 17327, groups:  joined.CU, 4372; participant, 699
## 
## Fixed effects:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                         0.10181    0.16779   0.607 0.543999    
## trustDiff.CUC                      -1.75161    0.29234  -5.992 2.08e-09 ***
## trustAvg.CUC.plus.sd               -0.01338    0.05997  -0.223 0.823445    
## pt_female_.5                        0.03624    0.04655   0.779 0.436234    
## stim_female_.5                     -0.06568    0.05298  -1.240 0.215078    
## trustDiff.CUC:trustAvg.CUC.plus.sd  0.38996    0.10608   3.676 0.000237 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC -0.010                             
## trstA.CUC.. -0.986  0.009                      
## pt_femal_.5 -0.059  0.002   0.009              
## stim_fml_.5 -0.506  0.000   0.467  0.002       
## tD.CUC:A.CU  0.009 -0.992  -0.008 -0.003  0.000
m4.low <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.min.sd + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d2)

summary(m4.low)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.min.sd + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d2
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##  22967.2  23029.3 -11475.6  22951.2    17319 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5056 -0.8454  0.4876  0.8220  2.1534 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.5220   0.7225  
##  participant (Intercept) 0.1233   0.3511  
## Number of obs: 17327, groups:  joined.CU, 4372; participant, 699
## 
## Fixed effects:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        0.11377    0.22062   0.516 0.606077    
## trustDiff.CUC                     -2.09957    0.38608  -5.438 5.38e-08 ***
## trustAvg.CUC.min.sd               -0.01339    0.05995  -0.223 0.823292    
## pt_female_.5                       0.03624    0.04655   0.779 0.436243    
## stim_female_.5                    -0.06568    0.05297  -1.240 0.214984    
## trustDiff.CUC:trustAvg.CUC.min.sd  0.38995    0.10599   3.679 0.000234 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC -0.009                             
## trstA.CUC.. -0.992  0.009                      
## pt_femal_.5 -0.047  0.002   0.009              
## stim_fml_.5 -0.498  0.000   0.467  0.002       
## tD.CUC:A.CU  0.009 -0.995  -0.008 -0.003  0.000
tab_model(mft, m4.hi, m4.low)
  cuedFaceTrusted_1 cuedFaceTrusted_1 cuedFaceTrusted_1
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 1.11 0.76 – 1.63 0.579 1.11 0.80 – 1.54 0.544 1.12 0.73 – 1.73 0.606
trustDiff CUC 0.15 0.07 – 0.28 <0.001 0.17 0.10 – 0.31 <0.001 0.12 0.06 – 0.26 <0.001
trustAvg CUC 0.99 0.88 – 1.11 0.823
pt female 5 1.04 0.95 – 1.14 0.436 1.04 0.95 – 1.14 0.436 1.04 0.95 – 1.14 0.436
stim female 5 0.94 0.84 – 1.04 0.215 0.94 0.84 – 1.04 0.215 0.94 0.84 – 1.04 0.215
trustDiff CUC × trustAvg
CUC
1.48 1.20 – 1.82 <0.001
trustAvg CUC plus sd 0.99 0.88 – 1.11 0.823
trustDiff CUC × trustAvg
CUC plus sd
1.48 1.20 – 1.82 <0.001
trustAvg CUC min sd 0.99 0.88 – 1.11 0.823
trustDiff CUC × trustAvg
CUC min sd
1.48 1.20 – 1.82 <0.001
Random Effects
σ2 3.29 3.29 3.29
τ00 0.52 joined.CU 0.52 joined.CU 0.52 joined.CU
0.12 participant 0.12 participant 0.12 participant
ICC 0.16 0.16 0.16
N 699 participant 699 participant 699 participant
4372 joined.CU 4372 joined.CU 4372 joined.CU
Observations 17327 17327 17327
Marginal R2 / Conditional R2 0.037 / 0.195 0.037 / 0.195 0.037 / 0.195
plot_models(mft, m4.hi, m4.low)

ii. distrust

d3 <- d[d$stimCondition == "faces" & d$trustCondition == "distrust",]

m0CC <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU), 
              family = binomial("logit"),  
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              data = d3)
## boundary (singular) fit: see help('isSingular')
summary(m0CC)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d3
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   9949.1  10004.3  -4966.5   9933.1     7338 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9244 -0.9033 -0.5544  0.9080  1.7156 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.3352   0.5789  
##  participant (Intercept) 0.0000   0.0000  
## Number of obs: 7346, groups:  joined.CU, 2140; participant, 295
## 
## Fixed effects:
##                             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                 0.014144   0.237879   0.059  0.95259   
## trustDiff.CUC              -1.832866   0.568789  -3.222  0.00127 **
## trustAvg.CUC               -0.003963   0.073777  -0.054  0.95716   
## pt_female_.5               -0.046912   0.054304  -0.864  0.38766   
## stim_female_.5             -0.007598   0.071160  -0.107  0.91497   
## trustDiff.CUC:trustAvg.CUC  0.331806   0.178003   1.864  0.06231 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC -0.030                             
## trstAvg.CUC -0.990  0.033                      
## pt_femal_.5 -0.039 -0.007  -0.002              
## stim_fml_.5 -0.488 -0.005   0.452  0.000       
## tD.CUC:A.CU  0.032 -0.992  -0.034  0.006  0.004
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
- hi/low diff
m0.hi <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC.plus.sd * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d3)
## Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :
## convergence code 1 from bobyqa: bobyqa -- maximum number of function
## evaluations exceeded
## boundary (singular) fit: see help('isSingular')
summary(m0.hi)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC.plus.sd * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d3
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   9949.1  10004.3  -4966.5   9933.1     7338 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9244 -0.9033 -0.5544  0.9080  1.7156 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.3352   0.5789  
##  participant (Intercept) 0.0000   0.0000  
## Number of obs: 7346, groups:  joined.CU, 2140; participant, 295
## 
## Fixed effects:
##                                     Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                        -0.976534   0.382872  -2.551  0.01076 * 
## trustDiff.CUC.plus.sd              -1.832786   0.568672  -3.223  0.00127 **
## trustAvg.CUC                        0.175376   0.119238   1.471  0.14134   
## pt_female_.5                       -0.046914   0.054304  -0.864  0.38764   
## stim_female_.5                     -0.007598   0.071158  -0.107  0.91497   
## trustDiff.CUC.plus.sd:trustAvg.CUC  0.331781   0.177966   1.864  0.06228 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC.. tA.CUC pt__.5 st__.5
## trstD.CUC..  0.784                               
## trstAvg.CUC -0.991 -0.780                        
## pt_femal_.5 -0.030 -0.007     0.004              
## stim_fml_.5 -0.307 -0.005     0.283  0.000       
## tD.CUC..:A. -0.777 -0.992     0.786  0.006  0.004
## optimizer (bobyqa) convergence code: 1 (bobyqa -- maximum number of function evaluations exceeded)
## boundary (singular) fit: see help('isSingular')
m0.low <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC.min.sd * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d3)
## Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :
## convergence code 1 from bobyqa: bobyqa -- maximum number of function
## evaluations exceeded
## boundary (singular) fit: see help('isSingular')
summary(m0.low)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC.min.sd * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d3
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   9949.1  10004.3  -4966.5   9933.1     7338 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9244 -0.9033 -0.5544  0.9080  1.7156 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.3352   0.5789  
##  participant (Intercept) 0.0000   0.0000  
## Number of obs: 7346, groups:  joined.CU, 2140; participant, 295
## 
## Fixed effects:
##                                    Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                        1.004723   0.393904   2.551  0.01075 * 
## trustDiff.CUC.min.sd              -1.832645   0.567953  -3.227  0.00125 **
## trustAvg.CUC                      -0.183271   0.123036  -1.490  0.13634   
## pt_female_.5                      -0.046910   0.054304  -0.864  0.38767   
## stim_female_.5                    -0.007597   0.071158  -0.107  0.91497   
## trustDiff.CUC.min.sd:trustAvg.CUC  0.331737   0.177745   1.866  0.06199 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC.. tA.CUC pt__.5 st__.5
## trstD.CUC.. -0.797                               
## trstAvg.CUC -0.992  0.794                        
## pt_femal_.5 -0.018 -0.007    -0.006              
## stim_fml_.5 -0.291 -0.005     0.268  0.000       
## tD.CUC..:A.  0.792 -0.992    -0.801  0.006  0.004
## optimizer (bobyqa) convergence code: 1 (bobyqa -- maximum number of function evaluations exceeded)
## boundary (singular) fit: see help('isSingular')
tab_model(m0CC, m0.hi, m0.low)
  cuedFaceTrusted_1 cuedFaceTrusted_1 cuedFaceTrusted_1
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 1.01 0.64 – 1.62 0.953 0.38 0.18 – 0.80 0.011 2.73 1.26 – 5.91 0.011
trustDiff CUC 0.16 0.05 – 0.49 0.001
trustAvg CUC 1.00 0.86 – 1.15 0.957 1.19 0.94 – 1.51 0.141 0.83 0.65 – 1.06 0.136
pt female 5 0.95 0.86 – 1.06 0.388 0.95 0.86 – 1.06 0.388 0.95 0.86 – 1.06 0.388
stim female 5 0.99 0.86 – 1.14 0.915 0.99 0.86 – 1.14 0.915 0.99 0.86 – 1.14 0.915
trustDiff CUC × trustAvg
CUC
1.39 0.98 – 1.98 0.062
trustDiff CUC plus sd 0.16 0.05 – 0.49 0.001
trustDiff CUC plus sd ×
trustAvg CUC
1.39 0.98 – 1.98 0.062
trustDiff CUC min sd 0.16 0.05 – 0.49 0.001
trustDiff CUC min sd ×
trustAvg CUC
1.39 0.98 – 1.97 0.062
Random Effects
σ2 3.29 3.29 3.29
τ00 0.34 joined.CU 0.34 joined.CU 0.34 joined.CU
0.00 participant 0.00 participant 0.00 participant
N 295 participant 295 participant 295 participant
2140 joined.CU 2140 joined.CU 2140 joined.CU
Observations 7346 7346 7346
Marginal R2 / Conditional R2 0.029 / NA 0.029 / NA 0.029 / NA
plot_models(m0CC, m0.hi, m0.low)

- hi/low avg
m5.hi <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.plus.sd + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d3)
## boundary (singular) fit: see help('isSingular')
summary(m5.hi)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.plus.sd + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d3
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   9949.1  10004.3  -4966.5   9933.1     7338 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9244 -0.9033 -0.5544  0.9080  1.7156 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.3352   0.5789  
##  participant (Intercept) 0.0000   0.0000  
## Number of obs: 7346, groups:  joined.CU, 2140; participant, 295
## 
## Fixed effects:
##                                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                         0.012371   0.205334   0.060 0.951960    
## trustDiff.CUC                      -1.684796   0.490034  -3.438 0.000586 ***
## trustAvg.CUC.plus.sd               -0.003961   0.073776  -0.054 0.957185    
## pt_female_.5                       -0.046913   0.054305  -0.864 0.387651    
## stim_female_.5                     -0.007598   0.071160  -0.107 0.914971    
## trustDiff.CUC:trustAvg.CUC.plus.sd  0.331800   0.177981   1.864 0.062287 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC -0.030                             
## trstA.CUC.. -0.987  0.032                      
## pt_femal_.5 -0.046 -0.008  -0.002              
## stim_fml_.5 -0.493 -0.005   0.452  0.000       
## tD.CUC:A.CU  0.031 -0.989  -0.033  0.006  0.004
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
m5.low <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.min.sd + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d3)
## boundary (singular) fit: see help('isSingular')
summary(m5.low)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.min.sd + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d3
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   9949.1  10004.3  -4966.5   9933.1     7338 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9244 -0.9033 -0.5544  0.9080  1.7156 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.3352   0.5789  
##  participant (Intercept) 0.0000   0.0000  
## Number of obs: 7346, groups:  joined.CU, 2140; participant, 295
## 
## Fixed effects:
##                                    Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                        0.015916   0.270515   0.059  0.95308   
## trustDiff.CUC                     -1.980856   0.647762  -3.058  0.00223 **
## trustAvg.CUC.min.sd               -0.003964   0.073777  -0.054  0.95715   
## pt_female_.5                      -0.046911   0.054305  -0.864  0.38767   
## stim_female_.5                    -0.007600   0.071160  -0.107  0.91494   
## trustDiff.CUC:trustAvg.CUC.min.sd  0.331789   0.178031   1.864  0.06237 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC -0.031                             
## trstA.CUC.. -0.992  0.032                      
## pt_femal_.5 -0.034 -0.007  -0.002              
## stim_fml_.5 -0.484 -0.005   0.452  0.000       
## tD.CUC:A.CU  0.032 -0.994  -0.033  0.006  0.004
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
tab_model(m0CC, m5.hi, m5.low)
  cuedFaceTrusted_1 cuedFaceTrusted_1 cuedFaceTrusted_1
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 1.01 0.64 – 1.62 0.953 1.01 0.68 – 1.51 0.952 1.02 0.60 – 1.73 0.953
trustDiff CUC 0.16 0.05 – 0.49 0.001 0.19 0.07 – 0.48 0.001 0.14 0.04 – 0.49 0.002
trustAvg CUC 1.00 0.86 – 1.15 0.957
pt female 5 0.95 0.86 – 1.06 0.388 0.95 0.86 – 1.06 0.388 0.95 0.86 – 1.06 0.388
stim female 5 0.99 0.86 – 1.14 0.915 0.99 0.86 – 1.14 0.915 0.99 0.86 – 1.14 0.915
trustDiff CUC × trustAvg
CUC
1.39 0.98 – 1.98 0.062
trustAvg CUC plus sd 1.00 0.86 – 1.15 0.957
trustDiff CUC × trustAvg
CUC plus sd
1.39 0.98 – 1.98 0.062
trustAvg CUC min sd 1.00 0.86 – 1.15 0.957
trustDiff CUC × trustAvg
CUC min sd
1.39 0.98 – 1.98 0.062
Random Effects
σ2 3.29 3.29 3.29
τ00 0.34 joined.CU 0.34 joined.CU 0.34 joined.CU
0.00 participant 0.00 participant 0.00 participant
N 295 participant 295 participant 295 participant
2140 joined.CU 2140 joined.CU 2140 joined.CU
Observations 7346 7346 7346
Marginal R2 / Conditional R2 0.029 / NA 0.029 / NA 0.029 / NA
plot_models(m0CC, m5.hi, m5.low)

b. blurry faces

d4 <- d[d$stimCondition == "blurryFaces",]

m6bft <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d4)

summary(m6bft)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d4
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   5368.9   5419.0  -2676.4   5352.9     3886 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4749 -0.9465  0.6758  0.9178  1.2974 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.1608   0.4011  
##  participant (Intercept) 0.1267   0.3559  
## Number of obs: 3894, groups:  joined.CU, 2370; participant, 163
## 
## Fixed effects:
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                -0.42354    0.34555  -1.226   0.2203  
## trustDiff.CUC              -1.11743    0.53541  -2.087   0.0369 *
## trustAvg.CUC                0.14401    0.10638   1.354   0.1758  
## pt_female_.5                0.08133    0.09743   0.835   0.4038  
## stim_female_.5             -0.10067    0.08035  -1.253   0.2103  
## trustDiff.CUC:trustAvg.CUC  0.35704    0.16635   2.146   0.0319 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC  0.019                             
## trstAvg.CUC -0.990 -0.020                      
## pt_femal_.5 -0.059 -0.014  -0.002              
## stim_fml_.5 -0.495 -0.004   0.488 -0.001       
## tD.CUC:A.CU -0.021 -0.995   0.021  0.014  0.005
- hi/low diff
m6bft.hi <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC.plus.sd * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d4)
## Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :
## convergence code 1 from bobyqa: bobyqa -- maximum number of function
## evaluations exceeded
summary(m6bft.hi)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC.plus.sd * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d4
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   5368.9   5419.0  -2676.4   5352.9     3886 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4749 -0.9465  0.6758  0.9178  1.2974 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.1609   0.4011  
##  participant (Intercept) 0.1267   0.3559  
## Number of obs: 3894, groups:  joined.CU, 2370; participant, 163
## 
## Fixed effects:
##                                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                        -1.02749    0.45494  -2.258   0.0239 *
## trustDiff.CUC.plus.sd              -1.11735    0.53547  -2.087   0.0369 *
## trustAvg.CUC                        0.33698    0.14074   2.394   0.0167 *
## pt_female_.5                        0.08133    0.09743   0.835   0.4038  
## stim_female_.5                     -0.10068    0.08035  -1.253   0.2102  
## trustDiff.CUC.plus.sd:trustAvg.CUC  0.35702    0.16637   2.146   0.0319 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC.. tA.CUC pt__.5 st__.5
## trstD.CUC..  0.651                               
## trstAvg.CUC -0.992 -0.651                        
## pt_femal_.5 -0.054 -0.014     0.007              
## stim_fml_.5 -0.379 -0.004     0.372 -0.001       
## tD.CUC..:A. -0.649 -0.995     0.655  0.014  0.005
## optimizer (bobyqa) convergence code: 1 (bobyqa -- maximum number of function evaluations exceeded)
m6bft.low <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC.min.sd * trustAvg.CUC + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d4)

summary(m6bft.low)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC.min.sd * trustAvg.CUC + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d4
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   5368.9   5419.0  -2676.4   5352.9     3886 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4749 -0.9465  0.6758  0.9178  1.2974 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.1608   0.4011  
##  participant (Intercept) 0.1267   0.3559  
## Number of obs: 3894, groups:  joined.CU, 2370; participant, 163
## 
## Fixed effects:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                        0.18045    0.44648   0.404   0.6861  
## trustDiff.CUC.min.sd              -1.11744    0.53552  -2.087   0.0369 *
## trustAvg.CUC                      -0.04898    0.13783  -0.355   0.7223  
## pt_female_.5                       0.08133    0.09743   0.835   0.4038  
## stim_female_.5                    -0.10067    0.08036  -1.253   0.2103  
## trustDiff.CUC.min.sd:trustAvg.CUC  0.35704    0.16639   2.146   0.0319 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC.. tA.CUC pt__.5 st__.5
## trstD.CUC.. -0.633                               
## trstAvg.CUC -0.992  0.634                        
## pt_femal_.5 -0.037 -0.014    -0.011              
## stim_fml_.5 -0.381 -0.004     0.373 -0.001       
## tD.CUC..:A.  0.629 -0.995    -0.636  0.014  0.005
tab_model(m6bft, m6bft.hi, m6bft.low)
  cuedFaceTrusted_1 cuedFaceTrusted_1 cuedFaceTrusted_1
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 0.65 0.33 – 1.29 0.220 0.36 0.15 – 0.87 0.024 1.20 0.50 – 2.87 0.686
trustDiff CUC 0.33 0.11 – 0.93 0.037
trustAvg CUC 1.15 0.94 – 1.42 0.176 1.40 1.06 – 1.85 0.017 0.95 0.73 – 1.25 0.722
pt female 5 1.08 0.90 – 1.31 0.404 1.08 0.90 – 1.31 0.404 1.08 0.90 – 1.31 0.404
stim female 5 0.90 0.77 – 1.06 0.210 0.90 0.77 – 1.06 0.210 0.90 0.77 – 1.06 0.210
trustDiff CUC × trustAvg
CUC
1.43 1.03 – 1.98 0.032
trustDiff CUC plus sd 0.33 0.11 – 0.93 0.037
trustDiff CUC plus sd ×
trustAvg CUC
1.43 1.03 – 1.98 0.032
trustDiff CUC min sd 0.33 0.11 – 0.93 0.037
trustDiff CUC min sd ×
trustAvg CUC
1.43 1.03 – 1.98 0.032
Random Effects
σ2 3.29 3.29 3.29
τ00 0.16 joined.CU 0.16 joined.CU 0.16 joined.CU
0.13 participant 0.13 participant 0.13 participant
ICC 0.08 0.08 0.08
N 163 participant 163 participant 163 participant
2370 joined.CU 2370 joined.CU 2370 joined.CU
Observations 3894 3894 3894
Marginal R2 / Conditional R2 0.004 / 0.084 0.004 / 0.084 0.004 / 0.084
plot_models(m6bft, m6bft.hi, m6bft.low)

- hi/low avg
m7bft.hi <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.plus.sd + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d4)

summary(m7bft.hi)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.plus.sd + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d4
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   5368.9   5419.0  -2676.4   5352.9     3886 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4749 -0.9465  0.6758  0.9178  1.2974 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.1608   0.4011  
##  participant (Intercept) 0.1267   0.3559  
## Number of obs: 3894, groups:  joined.CU, 2370; participant, 163
## 
## Fixed effects:
##                                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                        -0.35929    0.29867  -1.203   0.2290  
## trustDiff.CUC                      -0.95809    0.46166  -2.075   0.0380 *
## trustAvg.CUC.plus.sd                0.14401    0.10639   1.354   0.1759  
## pt_female_.5                        0.08133    0.09743   0.835   0.4038  
## stim_female_.5                     -0.10067    0.08036  -1.253   0.2103  
## trustDiff.CUC:trustAvg.CUC.plus.sd  0.35703    0.16638   2.146   0.0319 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC  0.019                             
## trstA.CUC.. -0.986 -0.020                      
## pt_femal_.5 -0.069 -0.014  -0.002              
## stim_fml_.5 -0.496 -0.004   0.488 -0.001       
## tD.CUC:A.CU -0.021 -0.994   0.021  0.014  0.005
m7bft.low <- glmer(cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.min.sd + pt_female_.5 + stim_female_.5 +
                (1 | participant) + (1 | joined.CU),   
              control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000)),
              family = binomial("logit"), 
              data = d4)

summary(m7bft.low)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## cuedFaceTrusted_1 ~ trustDiff.CUC * trustAvg.CUC.min.sd + pt_female_.5 +  
##     stim_female_.5 + (1 | participant) + (1 | joined.CU)
##    Data: d4
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   5368.9   5419.0  -2676.4   5352.9     3886 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4749 -0.9465  0.6758  0.9178  1.2974 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  joined.CU   (Intercept) 0.1608   0.4011  
##  participant (Intercept) 0.1267   0.3559  
## Number of obs: 3894, groups:  joined.CU, 2370; participant, 163
## 
## Fixed effects:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                       -0.48782    0.39259  -1.243   0.2140  
## trustDiff.CUC                     -1.27673    0.60940  -2.095   0.0362 *
## trustAvg.CUC.min.sd                0.14401    0.10638   1.354   0.1758  
## pt_female_.5                       0.08133    0.09743   0.835   0.4038  
## stim_female_.5                    -0.10067    0.08035  -1.253   0.2103  
## trustDiff.CUC:trustAvg.CUC.min.sd  0.35704    0.16637   2.146   0.0319 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) trD.CUC tA.CUC pt__.5 st__.5
## trstDff.CUC  0.019                             
## trstA.CUC.. -0.992 -0.020                      
## pt_femal_.5 -0.052 -0.014  -0.002              
## stim_fml_.5 -0.495 -0.004   0.488 -0.001       
## tD.CUC:A.CU -0.021 -0.996   0.021  0.014  0.005
tab_model(m6bft, m7bft.hi, m7bft.low)
  cuedFaceTrusted_1 cuedFaceTrusted_1 cuedFaceTrusted_1
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 0.65 0.33 – 1.29 0.220 0.70 0.39 – 1.25 0.229 0.61 0.28 – 1.33 0.214
trustDiff CUC 0.33 0.11 – 0.93 0.037 0.38 0.16 – 0.95 0.038 0.28 0.08 – 0.92 0.036
trustAvg CUC 1.15 0.94 – 1.42 0.176
pt female 5 1.08 0.90 – 1.31 0.404 1.08 0.90 – 1.31 0.404 1.08 0.90 – 1.31 0.404
stim female 5 0.90 0.77 – 1.06 0.210 0.90 0.77 – 1.06 0.210 0.90 0.77 – 1.06 0.210
trustDiff CUC × trustAvg
CUC
1.43 1.03 – 1.98 0.032
trustAvg CUC plus sd 1.15 0.94 – 1.42 0.176
trustDiff CUC × trustAvg
CUC plus sd
1.43 1.03 – 1.98 0.032
trustAvg CUC min sd 1.15 0.94 – 1.42 0.176
trustDiff CUC × trustAvg
CUC min sd
1.43 1.03 – 1.98 0.032
Random Effects
σ2 3.29 3.29 3.29
τ00 0.16 joined.CU 0.16 joined.CU 0.16 joined.CU
0.13 participant 0.13 participant 0.13 participant
ICC 0.08 0.08 0.08
N 163 participant 163 participant 163 participant
2370 joined.CU 2370 joined.CU 2370 joined.CU
Observations 3894 3894 3894
Marginal R2 / Conditional R2 0.004 / 0.084 0.004 / 0.084 0.004 / 0.084
plot_models(m6bft, m7bft.hi, m7bft.low)