Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Fakultas : Sains dan Teknologi

Pengertian Inflow Outflow Uang Kartal

Banyaknya uang yang beredar di masyarakat akan berpengaruh pada kondisi perekonomian suatu negara. Bank Indonesia memiliki tujuan tunggal untuk mencapai dan menjaga kestabilan nilai rupiah. Oleh karena itu, BI sebagai bank sentral menyusun perencanaan untuk memenuhi kebutuhan uang rupiah. Perencanaan tersebut dapat dilakukan dengan melakukan peramalan untuk inflow dan outflow uang kartal. Inflow merupakan uang yang masuk ke BI melalui kegiatan penyetoran, sedangkan outflow merupakan uang yang keluar dari BI melalui kegiatan penarikan.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflowperbulan <- read_excel(path =  "~/linear algebra/inflow kalimantan perbulan.xlsx")
library(readxl)
dataoutflowperbulan <- read_excel(path = "~/linear algebra/Outflow kalimantan perbulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 7
##    Keterangan          Kalimantan `Kalimantan Barat` `Kalimantan Tengah`
##    <dttm>                   <dbl>              <dbl>               <dbl>
##  1 2011-01-01 00:00:00       982.               54.5               105. 
##  2 2011-02-01 00:00:00       486.               40.8                55.8
##  3 2011-03-01 00:00:00      1150.              259.                 64.3
##  4 2011-04-01 00:00:00       612.               91.0                45.2
##  5 2011-05-01 00:00:00       887.              217.                 46.0
##  6 2011-06-01 00:00:00       850.              156.                 74.6
##  7 2011-07-01 00:00:00       853.              189.                 34.2
##  8 2011-08-01 00:00:00       648.              121.                 24.0
##  9 2011-09-01 00:00:00      3685.              891.                213. 
## 10 2011-10-01 00:00:00      1076.              296.                 29.7
## # ... with 118 more rows, and 3 more variables: `Kalimantan Selatan` <dbl>,
## #   `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 7
##    Keterangan          Kalimantan `Kalimantan Barat` `Kalimantan Tengah`
##    <dttm>                   <dbl>              <dbl>               <dbl>
##  1 2011-01-01 00:00:00       582.               278.                167.
##  2 2011-02-01 00:00:00       859.               141.                318.
##  3 2011-03-01 00:00:00      1570.               155.                375.
##  4 2011-04-01 00:00:00      2337.               535.                591.
##  5 2011-05-01 00:00:00      2019.               272.                559.
##  6 2011-06-01 00:00:00      2439.               446.                657.
##  7 2011-07-01 00:00:00      2544.               436.                681.
##  8 2011-08-01 00:00:00      6258.              1040.               1030.
##  9 2011-09-01 00:00:00       671.               146.                175.
## 10 2011-10-01 00:00:00      2175.               217.                598.
## # ... with 118 more rows, and 3 more variables: `Kalimantan Selatan` <dbl>,
## #   `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
plot(datainflowperbulan$`Kalimantan Barat`,type = "l", col = "red")
lines(dataoutflowperbulan$`Kalimantan Barat`,col = "green")
legend("top", c("Inflow","Outflow"),fill = c("red","green"))

kalimantanbarattimeseries <- datainflowperbulan$`Kalimantan Barat`
plot.ts(kalimantanbarattimeseries, type = "l", col = "orange")

logKalimantanbarat <- log(datainflowperbulan$`Kalimantan Barat`)
plot.ts(logKalimantanbarat, type = "l", col = "blue")

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.3
KalimantanbaratSMA3 <- SMA(datainflowperbulan$`Kalimantan Barat`,n=8)
plot.ts(KalimantanbaratSMA3)

Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Kalimantan Barat

kalimantanbaratinflowtimeseries <- ts(datainflowperbulan$`Kalimantan Barat`, frequency = 12, start = c(2011,1))
kalimantanbaratinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   54.52903   40.77704  259.13753   90.97985  217.30091  156.45543
## 2012  554.21108  378.73583  275.40764  296.27418  199.65298  155.91181
## 2013  803.26038  289.11069  304.60544  404.76609  210.38169  232.54107
## 2014  897.16664  527.16265  393.59430  418.63956  331.61535  445.88874
## 2015 1320.97801  362.76288  632.01713  408.00876  318.30169  346.34378
## 2016  988.75508  806.80619  638.72282  409.60413  448.29223  275.91308
## 2017  960.95382  682.81728  537.12035  497.89399  530.62622  264.67476
## 2018 1521.58177  574.51997  623.75708  652.43127  549.84177 1738.46097
## 2019 1790.66589  817.42579  838.43411  732.16921  530.31507 2467.54886
## 2020 1753.44076 1017.45314  581.59030  575.08340  848.60905 1253.24845
## 2021 2148.58661  857.40587  826.18841  604.95489 1360.46043  747.64070
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  189.01409  120.68323  891.46424  295.89249  324.59072  190.01048
## 2012  281.71936  389.11640  410.17925  110.60402  259.14774   74.69476
## 2013  111.53951 1045.02374  182.96058  218.40604  173.62279   52.92774
## 2014   81.52122 1495.60233  493.05495  498.10248  237.79299  122.38756
## 2015 1218.50175  584.57309  433.13373  430.96591  261.72634  358.17088
## 2016 1529.45460  599.69187  558.51450  394.94231  430.61696  358.46736
## 2017 1634.88262  547.52037  607.96510  544.96541  500.59565  464.73927
## 2018 1121.97630  628.59937  758.17154  831.56893  691.39250  556.40304
## 2019  984.15747  942.05315  854.39510  785.49203  732.92579  371.99084
## 2020  628.95510  715.90227  693.42169  334.65855  619.15835  272.93062
## 2021  407.87206  644.62140
Kalimantanbaratoutflowtimeseries <- ts(dataoutflowperbulan$`Kalimantan Barat`, frequency = 12, start = c(2011,1))
Kalimantanbaratoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  278.37414  140.57045  155.30094  534.67670  271.63314  446.00305
## 2012  427.27419  188.70412  228.49078  463.10707  437.63095  427.52360
## 2013  189.09534  107.42857  227.01437  269.32429  315.74429  376.02955
## 2014  215.89969  172.52771  239.92174  548.44918  457.10510  493.40500
## 2015  141.38835  422.25947  403.69730  544.78024  617.68875  915.31132
## 2016  186.62621  363.22680  411.47885  588.48714  888.21262 2146.74210
## 2017  363.11931  490.14981  468.73932  655.84722  842.78603 2495.50597
## 2018  133.48537  758.56888  685.85240  617.40535 1542.99538 2409.70567
## 2019  246.09331  640.97200  660.94259 1241.08393 3432.22445   77.51182
## 2020  372.80013  446.36304  856.52520 1453.91208 1769.47074  325.66212
## 2021   26.53755  531.20752  760.51353 1521.69259 1773.30274  634.22032
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  435.85810 1039.53103  146.16216  216.84672  524.44890 1031.98540
## 2012  538.25954  878.30406   44.78650  518.33851  300.09053 1245.58814
## 2013 1300.62662  533.06895  219.03458  544.42063  404.43786 1524.86560
## 2014 1726.14834  295.23448  449.85115  423.49304  471.75388 1270.01026
## 2015 1644.33397  303.55670  456.42911  479.52159  653.05640 1903.58785
## 2016  469.98540  472.45871  779.14595  620.28463  920.49715 1555.06951
## 2017  227.28746  907.36011  596.94924  772.13991 1173.78035 2138.64459
## 2018  446.18321  999.25479  600.07518  863.63900  844.04957 2376.37449
## 2019 1029.75499  992.18920  716.86572  936.00870 1077.25427 2716.75786
## 2020 1160.00272  850.34828  984.22695 1352.99705 1016.64561 2911.55021
## 2021 1030.85375  679.97284
plot.ts(kalimantanbaratinflowtimeseries)

plot.ts(Kalimantanbaratoutflowtimeseries)

Kalimantanbaratintimeseriescomponents <- decompose(kalimantanbaratinflowtimeseries)
Kalimantanbaratintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2012  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2013  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2014  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2015  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2016  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2017  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2018  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2019  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2020  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
## 2021  643.863115   -1.771843  -80.503334 -127.585787 -176.599502  178.641254
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2012  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2013  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2014  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2015  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2016  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2017  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2018  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2019  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2020  187.979123  104.555644  -19.760201 -168.030727 -196.338290 -344.449452
## 2021  187.979123  104.555644
Kalimantanbaratouttimeseriescomponents <- decompose(Kalimantanbaratoutflowtimeseries)
Kalimantanbaratouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2012 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2013 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2014 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2015 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2016 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2017 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2018 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2019 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2020 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
## 2021 -572.27584 -391.34798 -307.50008  -72.22509  355.95425  274.25596
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2012  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2013  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2014  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2015  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2016  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2017  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2018  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2019  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2020  127.37235  -43.91939 -275.84674 -109.06470  -53.60175 1068.19899
## 2021  127.37235  -43.91939
plot(Kalimantanbaratintimeseriescomponents$seasonal,type = "l", col = "green")
lines(Kalimantanbaratouttimeseriescomponents$seasonal, col = "orange")
legend("top", c("Inflow","outflow"),fill = c("green","orange"))

plot(Kalimantanbaratintimeseriescomponents$trend, type = "l", col = "green")
lines(Kalimantanbaratouttimeseriescomponents$trend, col="black")
legend("top",c("Inflow","Outflow"),fill = c("green","black"))

plot(Kalimantanbaratintimeseriescomponents$random,type = "l", col = "green")
lines(Kalimantanbaratouttimeseriescomponents$random,col = "black")
legend("top",c("Inflow","Outflow"),fill = c("green","black"))

REFERENSI

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://rpubs.com/suhartono-uinmaliki/861286