Removal or Adjustment to Data

Data Removal

We removed the following dimensions from the original dataset. They include the following:
1) Parent Institution - we removed this dimension because this information could be summarized by the county data, and we didn't want our data broken down by institution, we cared more about the region it was in.
2) Holding Offense - we removed this dimension because it was more succintly summarized in the Offense Type dimension.
3) Holding Offense Category - we removed this dimension because it was more succintly summarized in the Offense Type dimension.
4) Sentence Months - we removed this dimension because we added it into our sentence years dimension so all of the time served could be one dimension.
5) IDOC # - this column was filtered out when we imported the data since it wasn't necessary/helpful for any analysis
6) Name - this column was filtered out when we imported the data since it wasn't necessary/helpful for any analysis
7) Date of Birth - this column was removed because we used it to calculate age so it contained the same data as another dimension

Data Addition

We added the following dimensions to the original dataset. They include the following:
1) Age at Sentencing - this was calculated by taking the difference between the difference between the sentencing date and the date of birth.
2) Life - in the Sentence Years dimension, some of them would say "LIFE" instead of a number of years. We extracted the Life data into it's own column with a binary response.
3) Sexually Dangerous Person - in the Sentence Years dimension, some of them would say "SDP" instead of a number of years. We extracted the SDP data into it's own column with a binary response.

Categorical Variables

We had a lot of categorical variables that we transformed to dummy variables in Excel. They include the following:
1) Sex - there were only two response types for sex: "Male" and "Female". We created the dimension Female which was a 1 for the "Female" response and 0 if they are not "Female". If this variable is 0, that means "Male".
2) Race - there were 7 response types: "White", "Black", "Hispanic", "Asian", "American Indian", "Bi-Racial", and "Unknown". We created 6 dimensions of White, Black, Hispanic, Asian, AmericanIndian, and BiRacial, where the response was 1 if they were the corresponding race and 0 if they were not. If all of these dimensions are turned to 0, that means the race is "Unknown". 
3) Veteran Status - there were 3 response types: "Yes", "No", and "Unknown". We created the dimensions Veteran and NotVeteran, where the response was 1 if they held the corresponding status and 0 if not. If these two dimensions are turned to 0, that means the veteran status is "Unknown".
4) Admission Type - there were 4 response types: "Court admissions", "New sentence violators", "Technical violators", and "Other". We created 3 dimensions of CourtAdmissions, NewSentenceViolators, and TechnicalViolators, where the response was 1 if they had the corresponding admission type and 0 if they did not. If all of these dimensions are turned to 0, that means the admission type is "Other".
5) Crime Class - there were 7 response types: "Class 1", "Class 2", "Class 3", "Class 4", "Class X", "Murder", and "Unclassified". We created 6 dimensions of Class1, Class2, Class3, Class4, ClassX, and Murder, where the response was 1 if they had the corresponding crime class and 0 if they did not. If all of these dimensions are turned to 0, that means the crime class is "Unclassified".
6) Offense Type - there were 5 response types: "Drug Crimes", "Person Crimes", "Property Crimes", "Sex Crimes", and "Other Crimes". We created 4 dimensions of DrugCrimes, PersonCrimes, SexCrimes, and PropertyCrimes, where the response was 1 if they had the corresponding offense type and 0 if they did not. If all of these dimensions are turned to 0, that means the offense type is "Other Crimes".
7) Sentence Years - there were 2 responses in this dimension that were not numerical, "LIFE" for a life sentence and "SDP" for a sexually dangerous person. We extracted each of these into their own columns with binary response and set the years to 120.
8) Truth in Sentencing - this data had quite a few response types, with "Day-for-Day", "100%", "85%", and "75%", where each of those categories were further split into a type of crime, for example, "85% Agg DUI w Death". The data this column conveyed was the minimum amount of their sentence the inmate would have to serve, so 75% means they have to serve at least 75% of their sentence length. Since we already had columns for types of crime, we chose to lump together each percentage category and ignore the type of crime with it. Thus, we created 3 dimensions of 100p, 85p, and 75p for "100%", "85%", and "75%" respectively, where the response was 1 if they had to serve the corresponding length of time and 0 if they did not. If all of these dimensions are turned to 0, that means the time to serve is "Day-by-Day". 
9) Sentencing County - this data had a lot of response types since there are so many counties. We decided that we did care about the area since that could have an effect, but we don't need to break it up by every individual county. Instead, we decided to break it up into four regions, northeast, northwest, southeast, and southwest. We used a map to determine where each county fell to group them in their respective region. Thus, we created 3 dimensions of "Northeast", "Northwest", and "Southwest", where the response was 1 if they were in the corresponding region and 0 if they were not. If all of these dimensions are turned to 0, that means the region is "Southeast".

Changes to Data

Age at Sentence - there were 4 nonsensical ages we calculated, likely due to error in the data set. We set these four values to NA.
Dates - for Projected MSR Date and Projected Discharge Date, there were values of 0, which was due to missing data. We set these values to NA. 

Important Note:
Dates are stored as sequential serial numbers so that they can be used in calculation. By default, January 1, 1900 is Serial number 1. Serial number 39448 would be January 1, 2008 because it is 39,477 days after January 1, 1900. 

Transformations

Since nearly all of our data was categorical, the main transformation we did was converting our categorical variables to dummy variables with binary response. Beyond that, we didn't feel that it was appropriate to transform any of our data. For our non-binary variables, we do not think transformations are necessary. These dimensions are explored in univariate and bivariate analysis for why we don't think we need to transform. Some reasons that someone might choose to transform data are to improve interpretability, de-clutter graphs, and get insight about the relationship between variables. We don't believe that any of these supposed benefits can be achieved by transforming our data further.

Data Import

library(readxl)
PrisonData <- read_excel("C:/Users/Sarah Chock/OneDrive - University of St. Thomas/Senior Year/STAT 360 Comp Stat and Data Analysis/Project/Project Data/FinalProjectDataV5.xlsx")
FinalProjectData <- as.matrix(PrisonData[,3:39])
head(FinalProjectData)
##      Female White Black Hispanic Asian American Indian BiRacial Veteran
## [1,]      0     1     0        0     0               0        0       1
## [2,]      0     0     1        0     0               0        0       0
## [3,]      0     0     1        0     0               0        0       0
## [4,]      0     0     1        0     0               0        0       0
## [5,]      0     0     1        0     0               0        0       0
## [6,]      0     0     1        0     0               0        0       0
##      NotVeteran CurrentAdmissionDate CourtAdmissions NewSentenceViolators
## [1,]          0                30363               1                    0
## [2,]          1                32500               0                    1
## [3,]          1                27082               1                    0
## [4,]          1                30575               0                    1
## [5,]          1                38699               1                    0
## [6,]          1                36784               0                    0
##      TechnicalViolators ProjectedMSRDate ProjectedDischargeDate CustodyDate
## [1,]                  0            48544                  49639       30281
## [2,]                  0            60493                  61589       31684
## [3,]                  0                0                      0       30006
## [4,]                  0                0                      0       30054
## [5,]                  0                0                      0       36071
## [6,]                  0                0                      0       31932
##      SentenceDate Class1 Class2 Class3 Class4 ClassX Murder PersonCrimes
## [1,]        30362      0      0      0      0      1      0            1
## [2,]        31996      0      0      0      0      1      0            0
## [3,]        30006      0      0      0      0      0      1            1
## [4,]        30574      0      0      0      0      0      1            1
## [5,]        38695      0      0      0      0      0      1            1
## [6,]        32881      0      0      0      0      0      1            1
##      SexCrimes DrugCrimes PropertyCrimes LifeSentence SexuallyDangerousPerson
## [1,]         0          0              0            0                       0
## [2,]         1          0              0            0                       0
## [3,]         0          0              0            1                       0
## [4,]         0          0              0            1                       0
## [5,]         0          0              0            1                       0
## [6,]         0          0              0            1                       0
##      SentenceYears 100p 85p 75p AgeAtSentence Northwest Southwest Northeast
## [1,]            50    0   0   0      33.67283         0         0         0
## [2,]            60    0   0   0      33.36893         0         0         1
## [3,]           120    0   0   0      26.11910         0         0         1
## [4,]           120    0   0   0      30.45038         0         0         1
## [5,]           120    0   0   0      50.85010         0         0         1
## [6,]           120    0   0   0      44.97194         0         0         1

Data Cleaning

# Fix Ages
FinalProjectData[which(FinalProjectData[,34]<5),34] <- NA

# Fix Projected MSR Date
FinalProjectData[which(FinalProjectData[,14]<1),14] <- NA

# Fix Projected Discharge Date
FinalProjectData[which(FinalProjectData[,15]<1),15] <- NA

Univariate Analysis

summary(FinalProjectData)
##      Female            White            Black           Hispanic     
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.04682   Mean   :0.3164   Mean   :0.5441   Mean   :0.1309  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##                                                                      
##      Asian          American Indian       BiRacial           Veteran       
##  Min.   :0.000000   Min.   :0.000000   Min.   :0.000000   Min.   :0.00000  
##  1st Qu.:0.000000   1st Qu.:0.000000   1st Qu.:0.000000   1st Qu.:0.00000  
##  Median :0.000000   Median :0.000000   Median :0.000000   Median :0.00000  
##  Mean   :0.003734   Mean   :0.001329   Mean   :0.001975   Mean   :0.02661  
##  3rd Qu.:0.000000   3rd Qu.:0.000000   3rd Qu.:0.000000   3rd Qu.:0.00000  
##  Max.   :1.000000   Max.   :1.000000   Max.   :1.000000   Max.   :1.00000  
##                                                                            
##    NotVeteran     CurrentAdmissionDate CourtAdmissions  NewSentenceViolators
##  Min.   :0.0000   Min.   :23154        Min.   :0.0000   Min.   :0.00000     
##  1st Qu.:0.0000   1st Qu.:40822        1st Qu.:1.0000   1st Qu.:0.00000     
##  Median :1.0000   Median :43336        Median :1.0000   Median :0.00000     
##  Mean   :0.6012   Mean   :42073        Mean   :0.8648   Mean   :0.05296     
##  3rd Qu.:1.0000   3rd Qu.:44336        3rd Qu.:1.0000   3rd Qu.:0.00000     
##  Max.   :1.0000   Max.   :44560        Max.   :1.0000   Max.   :1.00000     
##                                                                             
##  TechnicalViolators ProjectedMSRDate ProjectedDischargeDate  CustodyDate   
##  Min.   :0.00000    Min.   :28957    Min.   :44293          Min.   :23024  
##  1st Qu.:0.00000    1st Qu.:44831    1st Qu.:45572          1st Qu.:39909  
##  Median :0.00000    Median :45487    Median :46356          Median :42576  
##  Mean   :0.07835    Mean   :47219    Mean   :48003          Mean   :41405  
##  3rd Qu.:0.00000    3rd Qu.:47720    3rd Qu.:48454          3rd Qu.:43786  
##  Max.   :1.00000    Max.   :65379    Max.   :65368          Max.   :44552  
##                     NA's   :2178     NA's   :5055                          
##   SentenceDate       Class1           Class2           Class3       
##  Min.   :23110   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:40738   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :43180   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :41958   Mean   :0.1231   Mean   :0.1723   Mean   :0.07339  
##  3rd Qu.:44187   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :44552   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##                                                                     
##      Class4            ClassX           Murder       PersonCrimes   
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.000   Median :1.0000  
##  Mean   :0.05257   Mean   :0.3502   Mean   :0.223   Mean   :0.6105  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:0.000   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##                                                                     
##    SexCrimes        DrugCrimes     PropertyCrimes     LifeSentence    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.1805   Mean   :0.1127   Mean   :0.09019   Mean   :0.05379  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##                                                                       
##  SexuallyDangerousPerson SentenceYears         100p             85p        
##  Min.   :0.000000        Min.   :  1.00   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000000        1st Qu.:  6.00   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.000000        Median : 12.00   Median :0.0000   Median :0.0000  
##  Mean   :0.005422        Mean   : 24.19   Mean   :0.1625   Mean   :0.3032  
##  3rd Qu.:0.000000        3rd Qu.: 28.00   3rd Qu.:0.0000   3rd Qu.:1.0000  
##  Max.   :1.000000        Max.   :600.00   Max.   :1.0000   Max.   :1.0000  
##                                                                            
##       75p          AgeAtSentence     Northwest        Southwest     
##  Min.   :0.00000   Min.   :14.98   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:24.82   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :31.12   Median :0.0000   Median :0.0000  
##  Mean   :0.01153   Mean   :33.47   Mean   :0.1315   Mean   :0.1123  
##  3rd Qu.:0.00000   3rd Qu.:39.93   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :83.83   Max.   :1.0000   Max.   :1.0000  
##                    NA's   :4                                        
##    Northeast    
##  Min.   :0.000  
##  1st Qu.:0.000  
##  Median :1.000  
##  Mean   :0.652  
##  3rd Qu.:1.000  
##  Max.   :1.000  
## 
library(moments)

Female

# Mean
meanfemale <- mean(FinalProjectData[,1])
meanfemale
## [1] 0.04682058
#Standard Deviation
sdfemale <- sd(FinalProjectData[,1])
sdfemale
## [1] 0.2112582
#Sample Variance
varfemale  <- var(FinalProjectData[,1])
varfemale
## [1] 0.04463002
#Skewness
skewfemale <- skewness(FinalProjectData[,1])
skewfemale
## [1] 4.290367
#Kurtosis
kurtfemale <- kurtosis(FinalProjectData[,1])
kurtfemale
## [1] 19.40725
#1D Outliers
which(abs(scale(FinalProjectData[,1]))>3)
##    [1]   631   632   633   634   635  1078  1079  1080  1081  1082  1083  1084
##   [13]  1085  1086  1916  1917  1918  1919  1920  1921  1922  1923  1924  1925
##   [25]  1926  1927  2766  3849  3862  3863  3864  3865  3866  3867  3868  3869
##   [37]  3870  3871  3872  3873  5539  5540  5541  5542  5543  5544  5545  5546
##   [49]  5547  5548  5549  5550  5551  5552  5553  5554  5555  5556  5557  5558
##   [61]  5559  5560  5561  5562  5839  5840  5841  5842  5843  5844  5845  5846
##   [73]  5847  5848  5849  5850  5851  5852  5853 11278 11529 11666 12268 12269
##   [85] 12270 12271 12272 12460 12461 12462 12670 12671 12672 14709 14710 14711
##   [97] 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723
##  [109] 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735
##  [121] 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747
##  [133] 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759
##  [145] 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771
##  [157] 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783
##  [169] 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795
##  [181] 14796 14797 14798 17053 17054 17055 17056 17057 17058 17059 17060 17061
##  [193] 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073
##  [205] 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085
##  [217] 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097
##  [229] 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109
##  [241] 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121
##  [253] 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133
##  [265] 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145
##  [277] 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157
##  [289] 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169
##  [301] 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181
##  [313] 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193
##  [325] 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205
##  [337] 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217
##  [349] 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229
##  [361] 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241
##  [373] 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253
##  [385] 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265
##  [397] 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277
##  [409] 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289
##  [421] 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301
##  [433] 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313
##  [445] 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325
##  [457] 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337
##  [469] 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349
##  [481] 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361
##  [493] 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373
##  [505] 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385
##  [517] 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397
##  [529] 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409
##  [541] 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421
##  [553] 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433
##  [565] 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445
##  [577] 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457
##  [589] 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469
##  [601] 17470 17471 17472 17473 17474 17475 17476 17477 17478 19001 19002 19019
##  [613] 19029 19036 19087 19089 19122 19133 19148 19165 19177 19181 19203 19252
##  [625] 19301 19324 19339 19384 19411 19423 19424 19445 19475 19558 19559 19609
##  [637] 19641 19663 19666 19683 19686 19753 19754 19817 19855 19859 19872 19885
##  [649] 19887 19894 19895 19918 19919 19921 19931 19951 19992 19994 20021 20032
##  [661] 20065 20089 20102 20125 20156 20186 20193 20221 20242 20261 20279 20283
##  [673] 20320 20327 20328 20370 20381 20382 20412 20423 20452 20458 20463 20541
##  [685] 20563 20610 20612 20616 20624 20632 20649 20656 20675 20828 20863 20865
##  [697] 20889 20890 20996 21065 21066 21076 21093 21125 21162 21164 21179 21180
##  [709] 21203 21213 21217 21226 21272 21279 21287 21312 21313 21315 21328 21329
##  [721] 21334 21343 21415 21456 21457 21479 21505 21538 21546 21558 21560 21577
##  [733] 21590 21594 21598 21600 21617 21620 21625 21645 21682 21695 21696 21738
##  [745] 21796 21800 21816 21822 21852 21861 21867 21878 21880 21896 21929 21937
##  [757] 21981 21998 21999 22037 22045 22046 22053 22068 22069 22070 22071 22085
##  [769] 22087 22092 22111 22145 22160 22175 22197 22239 22241 22242 22250 22283
##  [781] 22290 22323 22365 22375 22376 22385 22432 22452 22468 22481 22488 22495
##  [793] 22507 22508 22552 22553 22554 22555 22560 22561 22582 22592 22621 22633
##  [805] 22639 22659 22661 22675 22677 22710 22711 22728 22737 22750 22765 22802
##  [817] 22809 22825 22826 22830 22832 22833 22864 22865 22871 22878 22892 22928
##  [829] 22940 22941 22958 22970 22974 22991 22994 22995 23049 23050 23068 23075
##  [841] 23083 23091 23111 23130 23149 23159 23177 23195 23200 23209 23251 23270
##  [853] 23279 23310 23340 23353 23360 23363 23377 23378 23389 23429 23466 23467
##  [865] 23470 23499 23500 23504 23511 23512 23518 23533 23542 23544 23547 23549
##  [877] 23577 23579 23592 23602 23614 23615 23653 23660 23672 23676 23700 23711
##  [889] 23713 23714 23715 23716 23717 23762 23763 23781 23787 23811 23813 23857
##  [901] 23868 23869 23886 23901 23928 23929 23931 23932 23935 23978 23979 23998
##  [913] 23999 24002 24010 24025 24027 24035 24040 24054 24070 24084 24095 24096
##  [925] 24104 24134 24146 24158 24159 24165 24182 24188 24206 24269 24277 24281
##  [937] 24289 24317 24344 24345 24348 24359 24361 24364 24378 24379 24385 24396
##  [949] 24397 24398 24412 24413 24414 24421 24425 24439 24454 24476 24477 24478
##  [961] 24479 24483 24491 24513 24535 24536 24550 24565 24572 24589 24590 24592
##  [973] 24594 24596 24597 24603 24604 24605 24606 24642 24657 24658 24659 24676
##  [985] 24688 24699 24729 24730 24742 24744 24745 24773 24774 24775 24777 24778
##  [997] 24779 24795 24796 24813 24815 24817 24818 24843 24844 24845 24846 24856
## [1009] 24878 24885 24891 24896 24917 24927 24950 24970 24981 24990 25045 25086
## [1021] 25087 25099 25127 25128 25129 25161 25167 25169 25170 25187 25195 25196
## [1033] 25197 25222 25227 25228 25229 25286 25287 25288 25321 25322 25336 25342
## [1045] 25345 25349 25350 25385 25400 25407 25417 25426 25427 25428 25433 25438
## [1057] 25446 25447 25458 25462 25479 25489 25519 25520 25526 25561 25585 25600
## [1069] 25607 25609 25620 25632 25633 25635 25636 25637 25638 25639 25658 25659
## [1081] 25665 25678 25685 25716 25743 25748 25749 25750 25757 25758 25767 25768
## [1093] 25769 25776 25785 25821 25824 25871 25899 25905 25921 25928 25929 25947
## [1105] 25978 25980 25982 25991 25995 26007 26026 26032 26033 26040 26058 26059
## [1117] 26068 26069 26070 26076 26093 26151 26158 26159 26160 26161 26162 26163
## [1129] 26170 26171 26189 26196 26197 26222 26276 26287 26311 26322 26323 26325
## [1141] 26331 26345 26348 26349 26400 26401 26403 26432 26463 26464 26466 26479
## [1153] 26480 26525 26528 26533 26546 26548 26598 26603 26676 26678 26691 26692
## [1165] 26695 26696 26697 26698 26700 26712 26715 26716 26719 26739 26757 26764
## [1177] 26777 26778 26788 26798 26800 26813 26820 26821 26897 26899 26901 26918
## [1189] 26919 26922 26931 26932 26933 27038 27047 27048 27049 27050 27051 27052
## [1201] 27053 27054 27055 27056 27080 27082 27100 27102 27106 27107 27114 27115
## [1213] 27116 27117 27118 27127 27128 27129 27131 27135 27148 27149 27150 27151
## [1225] 27159 27161 27173 27179 27230 27240 27252 27253 27254 27257 27279 27288
## [1237] 27290 27304 27306 27312 27322 27323 27324 27325 27333 27334 27337 27350
## [1249] 27351 27352 27363 27364 27365 27400 27415 27416 27417 27426 27427 27431
## [1261] 27433 27434 27435 27436 27437 27438 27440 27443 27449 27450 27452 27454
## [1273] 27463 27464 27493 27500 27503 27505 27523 27528 27530 27531 27537 27551
## [1285] 27571 27572 27604 27606 27633 27634 27663 27711 27746 27747 27749 27750
## [1297] 27751 27752 27753 27763 27765 27766 27767 27768
# All of the females are considered outliers because there are so few of them.

#Plot
stripchart(FinalProjectData[,1], method = "stack")

White

# Mean
meanwhite <- mean(FinalProjectData[,2])
meanwhite
## [1] 0.316398
#Standard Deviation
sdwhite <- sd(FinalProjectData[,2])
sdwhite
## [1] 0.4650786
#Sample Variance
varwhite  <- var(FinalProjectData[,2])
varwhite
## [1] 0.2162981
#Skewness
skewwhite <- skewness(FinalProjectData[,2])
skewwhite
## [1] 0.7895669
#Kurtosis
kurtwhite <- kurtosis(FinalProjectData[,2])
kurtwhite
## [1] 1.623416
#1D Outliers
which(abs(scale(FinalProjectData[,2]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,2], method = "stack")

Black

# Mean
meanblack <- mean(FinalProjectData[,3])
meanblack
## [1] 0.5440738
#Standard Deviation
sdblack <- sd(FinalProjectData[,3])
sdblack
## [1] 0.4980627
#Sample Variance
varblack  <- var(FinalProjectData[,3])
varblack
## [1] 0.2480664
#Skewness
skewblack <- skewness(FinalProjectData[,3])
skewblack
## [1] -0.1769842
#Kurtosis
kurtblack <- kurtosis(FinalProjectData[,3])
kurtblack
## [1] 1.031323
#1D Outliers
which(abs(scale(FinalProjectData[,3]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,3], method = "stack")

Hispanic

# Mean
meanhisp <- mean(FinalProjectData[,4])
meanhisp
## [1] 0.130875
#Standard Deviation
sdhisp <- sd(FinalProjectData[,4])
sdhisp
## [1] 0.3372697
#Sample Variance
varhisp  <- var(FinalProjectData[,4])
varhisp
## [1] 0.1137508
#Skewness
skewhisp <- skewness(FinalProjectData[,4])
skewhisp
## [1] 2.18894
#Kurtosis
kurthisp <- kurtosis(FinalProjectData[,4])
kurthisp
## [1] 5.79146
#1D Outliers
which(abs(scale(FinalProjectData[,4]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,4], method = "stack")

Asian

#Mean
meanasian <- mean(FinalProjectData[,5])
meanasian
## [1] 0.003734157
#Standard Deviation
sdasian <- sd(FinalProjectData[,5])
sdasian
## [1] 0.06099464
#Sample Variance
varasian  <- var(FinalProjectData[,5])
varasian
## [1] 0.003720346
#Skewness
skewasian <- skewness(FinalProjectData[,5])
skewasian
## [1] 16.27273
#Kurtosis
kurtasian <- kurtosis(FinalProjectData[,5])
kurtasian
## [1] 265.8018
#1D Outliers
which(abs(scale(FinalProjectData[,5]))>3)
##   [1]  1001  2661  3869  4037  4837  6532  6838  7121  7179  7342  7376  7558
##  [13]  7689  7714  8061  8212  8220  8282  8348  8715  8804  8976  9006  9114
##  [25]  9461  9959  9964 10000 10010 10087 10339 10464 10610 10927 11036 11142
##  [37] 12086 12135 12352 12850 13275 13457 13578 13771 13827 14099 14424 14646
##  [49] 14686 14719 14807 14893 14974 15017 15254 15309 15313 15776 16311 16463
##  [61] 16578 16587 16640 16790 17138 17156 17191 17326 17351 19019 19329 19699
##  [73] 20004 20243 20278 20588 20755 21145 21412 21493 21903 22180 22528 22614
##  [85] 23296 23407 23452 23882 23971 23976 24619 25514 25581 25669 25715 25774
##  [97] 25996 26110 26252 26541 27074 27282 27651 27751
# All of the Asian prisoners are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,5], method = "stack")

Ameican Indian

#Mean
meanai <- mean(FinalProjectData[,6])
meanai
## [1] 0.001328498
#Standard Deviation
sdai <- sd(FinalProjectData[,6])
sdai
## [1] 0.036425
#Sample Variance
varai  <- var(FinalProjectData[,6])
varai
## [1] 0.001326781
#Skewness
skewai <- skewness(FinalProjectData[,6])
skewai
## [1] 27.38122
#Kurtosis
kurtai <- kurtosis(FinalProjectData[,6])
kurtai
## [1] 750.7311
#1D Outliers
which(abs(scale(FinalProjectData[,6]))>3)
##  [1]   552   710  1291  1812  1921  2476  3632  5607  5613  6404  8539  8648
## [13] 11495 12273 12724 13924 14730 15709 17045 17092 19003 19036 20196 21113
## [25] 21270 22167 23529 23722 23941 24165 24542 24555 25151 25702 26466 27108
## [37] 27214
# All of the American Indian prisoners are considered outliers because there are so few of them.

#Plot
stripchart(FinalProjectData[,6], method = "stack")

Bi-Racial

#Mean
meanbr <- mean(FinalProjectData[,7])
meanbr
## [1] 0.001974794
#Standard Deviation
sdbr <- sd(FinalProjectData[,7])
sdbr
## [1] 0.04439556
#Sample Variance
varbr  <- var(FinalProjectData[,7])
varbr
## [1] 0.001970965
#Skewness
skewbr <- skewness(FinalProjectData[,7])
skewbr
## [1] 22.43622
#Kurtosis
kurtbr <- kurtosis(FinalProjectData[,7])
kurtbr
## [1] 504.3838
#1D Outliers
which(abs(scale(FinalProjectData[,7]))>3)
##  [1]  6047  7445 15187 17073 17186 17238 18467 18636 19301 20070 20742 20977
## [13] 21598 21723 21738 21764 21891 22019 22053 22068 22070 22283 22361 22592
## [25] 23075 23255 23339 23363 23540 23559 24357 24832 25005 25063 25107 25163
## [37] 25202 25277 25401 25901 25920 26050 26200 26522 26539 26643 26751 26765
## [49] 26853 26949 27030 27495 27496 27782 27787
# All of the Bi-Racial prisoners are considered outliers because there are so few of them.

#Plot
stripchart(FinalProjectData[,7], method = "stack")

Veteran

#Mean
meanvet <- mean(FinalProjectData[,8])
meanvet
## [1] 0.02660587
#Standard Deviation
sdvet <- sd(FinalProjectData[,8])
sdvet
## [1] 0.1609314
#Sample Variance
varvet  <- var(FinalProjectData[,8])
varvet
## [1] 0.02589892
#Skewness
skewvet <- skewness(FinalProjectData[,8])
skewvet
## [1] 5.883284
#Kurtosis
kurtvet <- kurtosis(FinalProjectData[,8])
kurtvet
## [1] 35.61303
#1D Outliers
which(abs(scale(FinalProjectData[,8]))>3)
##   [1]     1    35    45    47    52    53    58    60    61    87    96   100
##  [13]   160   168   185   224   240   279   308   309   310   312   319   321
##  [25]   326   370   378   379   395   432   445   519   608   610   613   654
##  [37]   664   679   876   950  1092  1094  1109  1132  1134  1159  1170  1172
##  [49]  1198  1234  1272  1283  1313  1320  1325  1357  1358  1388  1435  1466
##  [61]  1507  1530  1569  1692  1841  1924  1934  2073  2156  2170  2256  2301
##  [73]  2302  2349  2387  2403  2464  2538  2603  2627  2680  2772  2785  2914
##  [85]  2950  2952  2966  2968  3005  3016  3044  3052  3055  3086  3097  3103
##  [97]  3115  3127  3145  3156  3158  3202  3218  3232  3237  3241  3242  3244
## [109]  3251  3256  3282  3283  3301  3325  3328  3358  3372  3387  3404  3456
## [121]  3504  3518  3537  3634  3727  3777  3792  3814  3821  3826  3827  3841
## [133]  3850  3856  3879  3966  3968  3992  4023  4128  4132  4212  4240  4365
## [145]  4377  4522  4569  4610  4614  4635  4700  4708  4805  4836  4878  4880
## [157]  4988  5099  5242  5248  5304  5306  5328  5359  5382  5431  5480  5495
## [169]  5510  5567  5607  5619  5662  5666  5689  5743  5749  5753  5772  5776
## [181]  5798  5873  5876  5882  5900  5952  5978  5984  5989  6006  6038  6051
## [193]  6052  6055  6071  6085  6102  6110  6562  6665  6708  6811  6821  6839
## [205]  6934  6941  7197  7223  7424  7592  8132  8173  8190  8269  8341  8390
## [217]  8444  8479  8499  8593  8658  9340  9342  9407  9525  9559  9562  9681
## [229]  9848  9873  9882  9970 10082 10114 10193 10205 10473 10705 10758 10814
## [241] 10869 10887 11050 11181 11204 11212 11216 11230 11239 11262 11281 11293
## [253] 11306 11336 11340 11353 11357 11366 11386 11387 11397 11401 11402 11406
## [265] 11445 11453 11461 11467 11472 11475 11479 11480 11487 11503 11520 11528
## [277] 11536 11537 11545 11549 11565 11569 11580 11581 11625 11636 11644 11662
## [289] 11694 11735 11790 11830 11852 11853 11863 11872 11927 11929 11935 11951
## [301] 11958 11992 11993 12007 12008 12034 12051 12060 12071 12089 12093 12094
## [313] 12110 12118 12176 12177 12183 12185 12191 12195 12217 12252 12280 12325
## [325] 12329 12337 12338 12348 12422 12428 12438 12456 12459 12505 12525 12535
## [337] 12562 12568 12572 12578 12588 12589 12599 12624 12639 12653 12654 12657
## [349] 12660 12661 12673 12706 12707 12723 12737 12759 12780 12804 12831 12841
## [361] 12903 12939 12957 12992 13087 13217 13446 13481 13653 13663 13778 13801
## [373] 13895 13934 14002 14063 14078 14153 14179 14278 14347 14434 14621 14695
## [385] 14965 14969 14982 15065 15071 15102 15131 15212 15380 15467 15520 15835
## [397] 15863 15997 16092 16128 16170 16499 16580 16589 16607 16751 16802 16805
## [409] 16820 16877 17011 17053 17528 17577 17585 17587 17652 17655 17689 17727
## [421] 17740 17754 17873 17893 17928 17931 17950 18033 18036 18077 18081 18088
## [433] 18094 18107 18113 18116 18142 18157 18174 18181 18208 18213 18251 18254
## [445] 18257 18266 18276 18283 18294 18324 18338 18358 18365 18377 18410 18412
## [457] 18417 18431 18433 18442 18516 18534 18537 18551 18572 18613 18624 18626
## [469] 18635 18661 18676 18739 18743 18749 18771 18774 18780 18808 18809 18846
## [481] 18867 18878 18879 18892 18900 18901 18933 18956 18990 18993 19054 19074
## [493] 19082 19096 19255 19274 19277 19300 19333 19408 19558 19616 19661 19733
## [505] 19765 19830 19860 19863 19869 19989 19990 20101 20128 20349 20385 20423
## [517] 20457 20476 20562 20594 20622 20671 20687 20728 20885 20929 20947 20964
## [529] 20979 21048 21116 21117 21157 21211 21212 21237 21259 21270 21335 21336
## [541] 21376 21384 21507 21575 21586 21629 21678 21731 21743 21798 21855 22062
## [553] 22080 22159 22174 22206 22212 22249 22269 22289 22302 22347 22349 22378
## [565] 22399 22400 22404 22430 22445 22480 22513 22521 22544 22574 22581 22701
## [577] 22702 22712 22717 22813 22844 22887 22890 22906 22918 23002 23028 23119
## [589] 23121 23135 23139 23145 23154 23165 23193 23211 23267 23284 23306 23307
## [601] 23316 23320 23325 23341 23373 23375 23384 23424 23452 23494 23517 23520
## [613] 23553 23626 23631 23673 23725 23739 23749 23759 23767 23768 23789 23814
## [625] 23823 23837 23864 23919 23937 23954 23975 24031 24046 24048 24072 24144
## [637] 24153 24208 24209 24247 24298 24337 24338 24411 24457 24530 24539 24586
## [649] 24644 24647 24669 24707 24714 24746 24753 24814 24860 24879 24881 24884
## [661] 24942 24951 24977 24998 25024 25055 25065 25070 25075 25078 25091 25121
## [673] 25184 25252 25275 25291 25394 25405 25429 25441 25538 25549 25616 25644
## [685] 25670 25701 25706 25720 25733 25744 25780 25800 25819 25859 25892 25912
## [697] 25920 25954 26017 26020 26042 26062 26077 26097 26115 26203 26206 26216
## [709] 26335 26410 26435 26438 26481 26497 26522 26532 26538 26560 26763 26796
## [721] 26902 26934 26957 27034 27040 27061 27062 27075 27079 27120 27218 27344
## [733] 27356 27372 27414 27453 27520 27527 27545 27591 27645
# All of the veteran prisoners are considered outliers because there are so few of them.

#Plot
stripchart(FinalProjectData[,8], method = "stack")

Not Veteran

#Mean
meannotvet <- mean(FinalProjectData[,9])
meannotvet
## [1] 0.6011992
#Standard Deviation
sdnotvet <- sd(FinalProjectData[,9])
sdnotvet
## [1] 0.4896604
#Sample Variance
varnotvet  <- var(FinalProjectData[,9])
varnotvet
## [1] 0.2397673
#Skewness
skewnotvet <- skewness(FinalProjectData[,9])
skewnotvet
## [1] -0.413352
#Kurtosis
kurtnotvet <- kurtosis(FinalProjectData[,9])
kurtnotvet
## [1] 1.17086
#1D Outliers
which(abs(scale(FinalProjectData[,9]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,9], method = "stack")

Current Admission Date

#Mean
meancuraddate <- mean(FinalProjectData[,10])
meancuraddate
## [1] 42072.98
#Standard Deviation
sdcuraddate <- sd(FinalProjectData[,10])
sdcuraddate
## [1] 3010.276
#Sample Variance
varcuraddate  <- var(FinalProjectData[,10])
varcuraddate
## [1] 9061759
#Skewness
skewcuraddate <- skewness(FinalProjectData[,10])
skewcuraddate
## [1] -1.655884
#Kurtosis
kurtcuraddate <- kurtosis(FinalProjectData[,10])
kurtcuraddate
## [1] 5.61483
#1D Outliers
which(abs(scale(FinalProjectData[,10]))>3)
##   [1]     1     2     3     4     7     8     9    10    11    12    13    14
##  [13]    16    24    28    31    35    37    39    41    42    44    45    48
##  [25]    49    51    53    56    63    64    65    66    67    68    69    71
##  [37]    75    77    79    80    81    83    85    87    89    90    92    96
##  [49]    97    98    99   112   113   115   116   117   118   121   122   128
##  [61]   129   131   140   141   150   155   156   160   163   164   170   172
##  [73]   173   181   183   187   188   190   193   196   197   200   201   205
##  [85]   206   216   218   228   229   235   239   240   247   252   254   256
##  [97]   257   260   270   274   278   283   284   285   293   295   305   309
## [109]   312   316   317   318   319   327   330   332   334   336   337   338
## [121]   339   340   345   349   354   373   380   381   383   386   404   406
## [133]   413   414   423   426   432   434   458   460   484   491   492   494
## [145]   497   507   520   521   522   523   524   609   612   631   659  3819
## [157]  3820  3821  3822  3823  3824  3826  3827  3828  3829  3830  3831  3832
## [169]  3833  3834  3835  3836  3837  3839  3840  3842  3843  3844  3845  3846
## [181]  3847  3848  3849  3851  3852  3853  3854  3855  3856  3857  3858  3859
## [193]  3860  6139  6140 11193 11206 11209 11212 11215 11216 11221 11222 11223
## [205] 11225 11227 11232 11233 11234 11238 11239 11241 11242 11244 11246 11250
## [217] 11253 11255 11256 11257 11266 11267 11269 11270 11272 11274 11278 11280
## [229] 11281 11284 11288 11297 11300 11302 11308 11310 11312 11313 11314 11317
## [241] 11319 11321 11322 11324 11328 11329 11331 11333 11341 11344 11346 11349
## [253] 11352 11355 11356 11358 11364 11379 11384 11390 11399 11410 11411 11418
## [265] 11423 11431 11433 11435 11442 11446 11447 11450 11452 11454 11458 11459
## [277] 11468 11472 11474 11480 11487 11491 11497 11498 11499 11504 11507 11514
## [289] 11520 11523 11526 11532 11537 11540 11544 11548 11555 11567 11569 11570
## [301] 11573 11584 11600 11615 11618 11623 11625 11626 11627 11629 11635 11636
## [313] 11637 11639 11641 11642 11656 11659 11666 11668 11671 11685 11686 11689
## [325] 11690 11694 11699 11700 11705 11711 11712 11715 11716 11724 11736 11737
## [337] 11744 11750 11766 11769 11770 11773 11774 11781 11783 11803 11804 11806
## [349] 11815 11823 11827 11831 11833 11846 11851 11853 11857 11860 11871 11873
## [361] 11877 11880 11887 11888 11897 11905 11912 11919 11929 11935 11948 11951
## [373] 11953 11958 11966 11969 11972 11975 11993 12003 12007 12009 12018 12019
## [385] 12021 12023 12024 12029 12033 12034 12045 12049 12051 12056 12057 12069
## [397] 12084 12085 12086 12089 12090 12093 12094 12096 12100 12103 12105 12107
## [409] 12118 12124 12134 12141 12145 12151 12162 12164 12169 12170 12173 12174
## [421] 12175 12183 12184 12190 12209 12217 12241 12246 12252 12262 12263 12264
## [433] 12269 12270 12271 12276 12283 12284 12286 12288 12289 12297 12299 12307
## [445] 12314 12315 12316 12319 12324 12325 12329 12345 12348 12351 12353 12357
## [457] 12371 12373 12387 12390 12394 12400 12401 12422 12424 12434 12437 12441
## [469] 12459 12462 12463 12478 12483 12491 12508 12521 12539 12544 12546 12550
## [481] 12553 12562 12566 12571 12572 12584 12586 12591 12592 12596 12597 12599
## [493] 12601 12606 12626 12629 12641 12645 12653 12654 12657 12668 12670 12672
## [505] 12673 12674 12684 12699 12711 12714 12720 12723
# There are just above 500 outliers in the Current Admission Date variable because it is skewed left. These outliers would be the people who have been in prison the longest. 

#Plot
stripchart(FinalProjectData[,10], method = "stack")

Court admissions

#Mean
mean_court_admin <- mean(FinalProjectData[,11])
mean_court_admin
## [1] 0.8648163
#Standard Deviation
sd_court_admin <- sd(FinalProjectData[,11])
sd_court_admin
## [1] 0.3419258
#Sample Variance
var_court_admin  <- var(FinalProjectData[,11])
var_court_admin
## [1] 0.1169132
#Skewness
skew_court_admin <- skewness(FinalProjectData[,11])
skew_court_admin
## [1] -2.13393
#Kurtosis
kurt_court_admin <- kurtosis(FinalProjectData[,11])
kurt_court_admin
## [1] 5.553659
#1D Outliers
which(abs(scale(FinalProjectData[,11]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,11], method = "stack")

New Sentence Violators

#Mean
mean_new_sent <- mean(FinalProjectData[,12])
mean_new_sent
## [1] 0.0529604
#Standard Deviation
sd_new_sent <- sd(FinalProjectData[,12])
sd_new_sent
## [1] 0.2239585
#Sample Variance
var_new_sent  <- var(FinalProjectData[,12])
var_new_sent
## [1] 0.05015739
#Skewness
skew_new_sent <- skewness(FinalProjectData[,12])
skew_new_sent
## [1] 3.992237
#Kurtosis
kurt_new_sent <- kurtosis(FinalProjectData[,12])
kurt_new_sent
## [1] 16.93796
#1D Outliers
which(abs(scale(FinalProjectData[,12]))>3)
##    [1]     2     4     7     8     9    13    14    22    23    24    31    33
##   [13]    35    38    39    40    42    46    49    51    53    56    58    63
##   [25]    64    65    67    68    73    75    79    80    83    85    89    90
##   [37]    99   105   109   114   115   116   117   122   128   129   135   140
##   [49]   152   154   155   160   163   167   170   172   179   181   183   188
##   [61]   193   197   200   201   206   214   216   218   219   229   240   248
##   [73]   252   256   260   263   273   274   278   279   280   284   285   300
##   [85]   305   331   335   337   339   340   345   349   354   359   361   362
##   [97]   364   374   377   388   389   393   407   420   422   447   449   452
##  [109]   480   504   505   508   512   515   549   566   570   624   628   640
##  [121]   656   668   680   683   689   693   709   723   729   732   755   785
##  [133]   791   792   793   805   815   840   849   850   851   859   876   889
##  [145]   919   933   987   999  1014  1040  1041  1054  1056  1083  1084  1090
##  [157]  1148  1163  1169  1179  1186  1192  1206  1207  1243  1274  1286  1290
##  [169]  1295  1305  1327  1329  1337  1339  1342  1347  1348  1354  1365  1369
##  [181]  1371  1386  1396  1412  1468  1488  1505  1525  1526  1538  1543  1549
##  [193]  1560  1562  1564  1616  1635  1661  1669  1679  1681  1683  1704  1762
##  [205]  1766  1769  1785  1795  1832  1835  1836  1840  1856  1859  1864  1904
##  [217]  1937  1942  1959  1966  1976  1983  1992  2006  2014  2024  2028  2040
##  [229]  2046  2051  2058  2076  2085  2095  2098  2099  2124  2157  2166  2182
##  [241]  2202  2209  2212  2240  2251  2253  2256  2269  2276  2277  2280  2302
##  [253]  2306  2308  2325  2341  2344  2362  2376  2394  2410  2416  2451  2468
##  [265]  2473  2485  2494  2510  2524  2530  2551  2570  2580  2597  2600  2601
##  [277]  2610  2633  2634  2635  2652  2695  2696  2733  2751  2762  2764  2800
##  [289]  2870  2904  2935  2951  2971  2990  3008  3009  3019  3024  3030  3049
##  [301]  3050  3058  3068  3072  3087  3094  3176  3183  3191  3195  3246  3255
##  [313]  3259  3271  3294  3295  3296  3298  3326  3361  3377  3382  3397  3417
##  [325]  3421  3429  3437  3444  3454  3461  3470  3478  3514  3555  3557  3580
##  [337]  3585  3604  3607  3610  3625  3641  3645  3660  3672  3711  3736  3746
##  [349]  3754  3782  3795  3800  3815  3835  3836  3840  3845  3876  3877  3878
##  [361]  3888  3899  3900  3910  3928  3931  3937  3951  3952  3962  3972  3983
##  [373]  3985  3986  3996  4001  4014  4029  4033  4038  4069  4075  4086  4089
##  [385]  4116  4134  4139  4141  4142  4166  4168  4194  4210  4229  4244  4274
##  [397]  4275  4283  4320  4324  4332  4339  4358  4381  4438  4441  4505  4509
##  [409]  4535  4613  4677  4685  4693  4701  4738  4739  4740  4747  4753  4761
##  [421]  4771  4800  4816  4820  4839  4845  4869  4872  4882  4891  4927  4948
##  [433]  4954  4961  4967  4968  4975  4992  5000  5007  5016  5018  5029  5042
##  [445]  5058  5061  5073  5093  5106  5172  5173  5183  5189  5195  5201  5202
##  [457]  5221  5256  5289  5379  5390  5391  5413  5454  5468  5471  5539  5560
##  [469]  5572  5587  5600  5631  5642  5647  5649  5657  5692  5707  5708  5709
##  [481]  5726  5744  5745  5773  5777  5785  5786  5796  5801  5813  5889  5891
##  [493]  5924  5929  5971  5983  5985  6001  6009  6018  6019  6024  6025  6044
##  [505]  6064  6073  6084  6088  6094  6104  6111  6114  6121  6122  6128  6144
##  [517]  6160  6167  6171  6181  6189  6254  6277  6302  6304  6311  6317  6379
##  [529]  6389  6404  6430  6456  6467  6474  6491  6494  6528  6561  6624  6647
##  [541]  6669  6687  6706  6725  6737  6738  6752  6815  6823  6825  6828  6834
##  [553]  6850  6889  6913  6915  6923  6926  6979  7006  7029  7030  7046  7058
##  [565]  7096  7113  7118  7136  7137  7144  7145  7192  7196  7199  7205  7273
##  [577]  7305  7338  7383  7448  7467  7484  7500  7514  7548  7589  7596  7602
##  [589]  7640  7687  7707  7720  7755  7761  7780  7785  7789  7801  7803  7812
##  [601]  7825  7857  7867  7902  7964  7972  7984  8016  8050  8063  8067  8114
##  [613]  8219  8236  8290  8295  8315  8340  8389  8466  8502  8503  8554  8568
##  [625]  8589  8590  8598  8603  8605  8635  8660  8677  8678  8711  8720  8749
##  [637]  8763  8809  8823  8833  8875  8877  8933  8934  8954  8967  8968  8991
##  [649]  8996  9009  9022  9027  9072  9081  9120  9127  9129  9130  9148  9211
##  [661]  9215  9276  9295  9329  9363  9369  9373  9387  9401  9418  9429  9440
##  [673]  9441  9447  9453  9460  9472  9521  9533  9546  9607  9726  9736  9753
##  [685]  9838  9874  9892  9908  9909  9975 10039 10071 10127 10186 10187 10221
##  [697] 10222 10224 10231 10235 10296 10323 10358 10395 10431 10434 10512 10527
##  [709] 10541 10548 10605 10636 10647 10657 10665 10676 10682 10702 10709 10725
##  [721] 10756 10764 10851 10869 10899 10911 10992 11031 11032 11045 11093 11115
##  [733] 11121 11139 11157 11175 11207 11215 11220 11221 11224 11226 11237 11242
##  [745] 11243 11252 11257 11260 11265 11281 11296 11299 11300 11301 11317 11320
##  [757] 11322 11324 11328 11333 11349 11354 11358 11360 11377 11384 11392 11412
##  [769] 11424 11441 11442 11445 11474 11481 11482 11486 11491 11497 11509 11520
##  [781] 11529 11535 11548 11572 11583 11584 11588 11598 11603 11607 11611 11613
##  [793] 11620 11621 11622 11627 11631 11634 11650 11659 11667 11671 11673 11674
##  [805] 11676 11678 11686 11690 11692 11698 11700 11703 11715 11716 11721 11725
##  [817] 11730 11732 11751 11752 11760 11763 11778 11783 11800 11805 11838 11840
##  [829] 11868 11870 11874 11879 11892 11897 11911 11915 11920 11928 11936 11953
##  [841] 11960 11985 11992 11995 12000 12015 12036 12055 12058 12098 12108 12137
##  [853] 12138 12139 12152 12163 12193 12215 12216 12220 12234 12236 12249 12253
##  [865] 12279 12292 12298 12306 12310 12312 12318 12321 12340 12361 12370 12377
##  [877] 12397 12404 12405 12425 12440 12447 12451 12453 12469 12488 12490 12510
##  [889] 12529 12537 12567 12578 12583 12602 12607 12615 12627 12635 12638 12644
##  [901] 12656 12665 12678 12679 12683 12693 12706 12715 12717 12726 12730 12763
##  [913] 12818 12865 12866 12895 12901 12908 12925 12989 12990 12998 13014 13058
##  [925] 13080 13098 13124 13160 13169 13207 13209 13217 13278 13311 13332 13338
##  [937] 13370 13371 13374 13376 13453 13456 13465 13468 13474 13484 13505 13546
##  [949] 13565 13589 13659 13717 13752 13815 13826 13856 13872 13874 13913 13928
##  [961] 13938 13948 13962 13963 14011 14021 14037 14108 14110 14112 14135 14160
##  [973] 14165 14175 14198 14208 14236 14241 14248 14251 14318 14364 14365 14386
##  [985] 14408 14426 14431 14460 14486 14519 14592 14603 14615 14625 14636 14664
##  [997] 14707 14751 14800 14805 14810 14841 14877 14881 15002 15069 15072 15132
## [1009] 15144 15192 15220 15246 15249 15251 15292 15299 15318 15327 15346 15347
## [1021] 15362 15385 15386 15391 15402 15457 15458 15480 15481 15489 15491 15492
## [1033] 15547 15601 15612 15631 15645 15681 15711 15742 15762 15765 15806 15808
## [1045] 15829 15832 15833 15861 15874 15889 15911 15953 16012 16050 16073 16075
## [1057] 16077 16107 16123 16134 16143 16152 16160 16173 16196 16210 16211 16249
## [1069] 16281 16288 16292 16344 16390 16402 16425 16460 16495 16498 16516 16538
## [1081] 16552 16577 16591 16606 16618 16662 16666 16680 16695 16711 16728 16734
## [1093] 16759 16768 16833 16834 16839 16860 16867 16882 16887 16894 16899 16966
## [1105] 16994 17011 17031 17040 17042 17120 17122 17201 17202 17267 17310 17355
## [1117] 17399 17484 17508 17529 17534 17545 17549 17559 17569 17573 17584 17607
## [1129] 17618 17627 17681 17700 17702 17711 17730 17744 17750 17773 17799 17809
## [1141] 17814 17816 17828 17851 17918 17941 17948 17961 17966 17967 17972 17975
## [1153] 17988 18002 18027 18038 18042 18046 18056 18062 18074 18085 18091 18097
## [1165] 18112 18126 18141 18147 18158 18164 18180 18184 18196 18211 18214 18230
## [1177] 18249 18250 18253 18261 18275 18283 18309 18342 18349 18368 18371 18372
## [1189] 18378 18386 18391 18395 18419 18425 18444 18462 18477 18479 18482 18485
## [1201] 18486 18496 18503 18510 18541 18570 18577 18581 18586 18594 18601 18603
## [1213] 18629 18673 18688 18693 18698 18713 18720 18727 18730 18742 18745 18756
## [1225] 18765 18768 18785 18792 18794 18807 18861 18862 18876 18888 18914 18924
## [1237] 18932 18944 18959 18974 19008 19015 19033 19072 19120 19189 19215 19253
## [1249] 19278 19290 19353 19373 19375 19379 19421 19444 19459 19467 19474 19522
## [1261] 19525 19534 19546 19569 19572 19575 19602 19629 19646 19662 19728 19730
## [1273] 19794 19920 19926 19935 19936 19942 19956 19970 19981 20060 20082 20105
## [1285] 20119 20177 20183 20195 20200 20251 20252 20292 20304 20324 20346 20360
## [1297] 20361 20362 20363 20404 20411 20419 20426 20428 20499 20501 20504 20539
## [1309] 20567 20574 20603 20608 20633 20663 20690 20703 20706 20714 20716 20739
## [1321] 20744 20783 20786 20793 20801 20803 20806 20841 20866 20878 20907 20921
## [1333] 20949 20962 20980 21011 21019 21123 21157 21161 21177 21192 21193 21207
## [1345] 21221 21240 21243 21296 21319 21344 21356 21363 21366 21369 21392 21447
## [1357] 21452 21519 21528 21534 21556 21570 21586 21600 21623 21636 21646 21653
## [1369] 21701 21720 21723 21724 21730 21747 21748 21783 21818 21832 21852 21869
## [1381] 21871 21888 21957 21963 21974 21975 21977 21982 21983 21985 21986 21989
## [1393] 22010 22012 22066 22099 22127 22162 22193 22221 22238 22279 22303 22321
## [1405] 22326 22349 22382 22422 22469 22470 22486 22522 22550 22564 22572 22574
## [1417] 22602 22613 22636 22656 22677 22698 22736 22773 22808 22895 23020 23125
## [1429] 23176 23177 23227 23240 23266 23272 23322 23362 23364 23435 23453 23456
## [1441] 23461 23472 23500 23505 23511 23518 23548 23724 23736 23752 23771 23784
## [1453] 23791 23794 23917 23933 23952 23992 24091 24111 24120 24156 24165 24175
## [1465] 24218 24255 24308 24333 24346 24414 24492 24557 24562 24715 24891
# All 1475 new sentence violators are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,12], method = "stack")

Technical Violators

#Mean
mean_tech_viol <- mean(FinalProjectData[,13])
mean_tech_viol
## [1] 0.07834548
#Standard Deviation
sd_tech_viol <- sd(FinalProjectData[,13])
sd_tech_viol
## [1] 0.2687193
#Sample Variance
var_tech_viol  <- var(FinalProjectData[,13])
var_tech_viol
## [1] 0.07221006
#Skewness
skew_tech_viol <- skewness(FinalProjectData[,13])
skew_tech_viol
## [1] 3.138309
#Kurtosis
kurt_tech_viol <- kurtosis(FinalProjectData[,13])
kurt_tech_viol
## [1] 10.84898
#1D Outliers
which(abs(scale(FinalProjectData[,13]))>3)
##    [1]    52    69   103   113   125   131   178   184   186   194   213   227
##   [13]   230   238   249   272   301   306   321   322   346   355   381   382
##   [25]   383   384   415   435   438   451   463   468   472   477   478   501
##   [37]   564   571   580   657   665   679   685   695   711   738   740   750
##   [49]   767   769   806   807   809   819   822   826   833   846   852   855
##   [61]   872   880   887   894   897   917   932   942   954   959   980   990
##   [73]   994  1011  1018  1019  1022  1024  1037  1062  1063  1064  1075  1077
##   [85]  1096  1126  1129  1140  1151  1156  1177  1178  1182  1183  1188  1189
##   [97]  1191  1220  1249  1257  1278  1292  1300  1307  1308  1315  1326  1328
##  [109]  1332  1333  1344  1352  1355  1366  1372  1374  1385  1392  1406  1408
##  [121]  1436  1445  1451  1467  1477  1478  1483  1484  1487  1501  1524  1550
##  [133]  1555  1592  1607  1630  1640  1642  1654  1680  1763  1764  1825  1828
##  [145]  1829  1833  1838  1847  1857  1880  1896  1910  1931  1977  1989  1996
##  [157]  2053  2062  2075  2090  2138  2156  2168  2178  2185  2211  2217  2230
##  [169]  2282  2289  2312  2336  2354  2369  2383  2412  2428  2436  2446  2456
##  [181]  2462  2472  2518  2519  2534  2539  2558  2576  2581  2585  2592  2607
##  [193]  2612  2627  2631  2647  2656  2680  2688  2693  2705  2720  2742  2757
##  [205]  2788  2790  2806  2824  2825  2826  2846  2853  2865  2879  2884  2918
##  [217]  2934  2944  2986  3004  3017  3028  3047  3079  3086  3101  3112  3120
##  [229]  3128  3134  3144  3152  3153  3160  3162  3171  3172  3173  3198  3214
##  [241]  3222  3239  3243  3245  3249  3250  3263  3317  3332  3363  3366  3376
##  [253]  3380  3383  3384  3385  3392  3403  3406  3408  3431  3433  3435  3442
##  [265]  3451  3457  3458  3462  3475  3491  3496  3522  3529  3536  3550  3551
##  [277]  3564  3575  3581  3637  3654  3666  3668  3671  3681  3682  3720  3731
##  [289]  3735  3743  3753  3763  3765  3766  3784  3792  3793  3796  3818  3825
##  [301]  3838  3841  3850  3890  3898  3924  3927  3959  3997  4013  4032  4045
##  [313]  4047  4052  4084  4107  4127  4132  4137  4179  4189  4234  4237  4239
##  [325]  4243  4246  4281  4317  4322  4330  4364  4375  4384  4385  4401  4423
##  [337]  4430  4450  4481  4487  4519  4536  4537  4559  4561  4590  4591  4592
##  [349]  4598  4607  4609  4616  4634  4654  4655  4684  4702  4711  4712  4719
##  [361]  4749  4750  4764  4765  4767  4830  4860  4877  4957  4972  4982  5019
##  [373]  5020  5027  5033  5044  5065  5104  5116  5161  5168  5181  5204  5211
##  [385]  5225  5226  5229  5258  5271  5283  5300  5304  5319  5329  5350  5354
##  [397]  5359  5362  5364  5371  5382  5383  5386  5403  5419  5425  5438  5464
##  [409]  5512  5514  5519  5542  5585  5596  5602  5629  5637  5695  5727  5735
##  [421]  5763  5779  5797  5811  5820  5832  5833  5862  5895  5896  5900  5911
##  [433]  5915  5919  5921  5923  5928  5936  5944  5958  5972  5995  6011  6029
##  [445]  6040  6047  6083  6095  6098  6125  6127  6129  6133  6159  6164  6173
##  [457]  6175  6179  6183  6184  6188  6193  6198  6200  6212  6233  6238  6248
##  [469]  6249  6251  6252  6259  6265  6269  6281  6288  6309  6328  6334  6348
##  [481]  6351  6354  6359  6384  6386  6392  6397  6398  6436  6440  6469  6472
##  [493]  6473  6477  6484  6504  6507  6521  6526  6535  6538  6551  6552  6565
##  [505]  6577  6592  6600  6602  6628  6633  6646  6653  6674  6733  6734  6735
##  [517]  6740  6741  6742  6759  6761  6768  6776  6795  6804  6835  6839  6841
##  [529]  6853  6856  6859  6866  6869  6870  6875  6878  6914  6918  6933  6938
##  [541]  6940  6957  6992  7012  7021  7033  7035  7051  7071  7085  7095  7108
##  [553]  7122  7127  7130  7140  7201  7216  7220  7228  7238  7249  7257  7268
##  [565]  7269  7274  7277  7286  7325  7347  7353  7380  7384  7398  7399  7407
##  [577]  7427  7436  7439  7466  7502  7518  7520  7529  7537  7541  7546  7555
##  [589]  7557  7572  7574  7581  7590  7619  7638  7646  7654  7667  7686  7704
##  [601]  7706  7711  7712  7723  7739  7753  7754  7764  7766  7800  7804  7807
##  [613]  7820  7829  7845  7882  7908  7917  7918  7936  7959  7961  7965  7989
##  [625]  8026  8027  8061  8062  8066  8081  8083  8086  8098  8102  8107  8129
##  [637]  8135  8139  8141  8163  8167  8169  8186  8189  8217  8226  8245  8256
##  [649]  8264  8267  8273  8293  8317  8322  8336  8337  8343  8359  8368  8406
##  [661]  8413  8435  8436  8494  8496  8497  8498  8506  8508  8517  8520  8525
##  [673]  8535  8550  8561  8578  8585  8596  8597  8602  8620  8633  8663  8673
##  [685]  8691  8696  8707  8717  8733  8746  8748  8765  8768  8770  8786  8795
##  [697]  8797  8814  8829  8849  8856  8872  8882  8905  8929  8938  8939  8946
##  [709]  8949  8950  8955  8961  8975  8976  8977  8981  9003  9043  9046  9047
##  [721]  9056  9063  9068  9078  9102  9108  9117  9135  9166  9169  9182  9186
##  [733]  9197  9200  9208  9214  9219  9226  9235  9266  9275  9281  9284  9289
##  [745]  9291  9301  9312  9320  9331  9332  9340  9351  9378  9386  9396  9436
##  [757]  9477  9486  9493  9507  9536  9542  9567  9574  9583  9584  9590  9601
##  [769]  9604  9630  9644  9655  9657  9685  9706  9725  9760  9768  9769  9790
##  [781]  9802  9806  9820  9839  9840  9852  9864  9872  9873  9884  9906  9913
##  [793]  9920  9923  9932  9935  9936  9951  9964  9974  9979  9985  9988 10015
##  [805] 10027 10036 10044 10050 10051 10074 10078 10101 10103 10134 10144 10150
##  [817] 10156 10157 10160 10170 10178 10229 10236 10237 10240 10243 10252 10272
##  [829] 10282 10283 10308 10333 10338 10349 10363 10385 10387 10403 10415 10422
##  [841] 10429 10435 10443 10445 10474 10478 10485 10515 10531 10533 10544 10553
##  [853] 10555 10558 10564 10577 10579 10580 10590 10608 10629 10654 10660 10684
##  [865] 10691 10694 10705 10777 10818 10834 10855 10864 10870 10874 10886 10896
##  [877] 10941 10974 10997 10998 11013 11035 11048 11050 11068 11072 11083 11085
##  [889] 11086 11099 11107 11108 11117 11127 11134 11140 11150 11155 11160 11166
##  [901] 11173 11178 11185 11187 11246 11294 11311 11321 11325 11326 11400 11405
##  [913] 11407 11415 11417 11430 11438 11440 11462 11470 11488 11512 11544 11551
##  [925] 11565 11566 11578 11589 11593 11605 11616 11617 11629 11633 11653 11683
##  [937] 11688 11707 11723 11727 11747 11768 11792 11812 11834 11839 11842 11849
##  [949] 11867 11893 11923 11926 11934 11940 11943 11946 11959 11962 11974 11983
##  [961] 11989 11997 12008 12012 12027 12062 12064 12072 12082 12100 12131 12136
##  [973] 12166 12172 12201 12202 12222 12232 12287 12308 12322 12323 12347 12362
##  [985] 12363 12378 12410 12419 12420 12439 12475 12480 12493 12498 12502 12523
##  [997] 12549 12557 12568 12589 12624 12660 12661 12690 12696 12701 12708 12712
## [1009] 12718 12721 12738 12761 12807 12816 12824 12827 12846 12875 12885 12904
## [1021] 12907 12911 12939 12959 12960 12962 12963 12966 12994 13008 13019 13037
## [1033] 13038 13048 13066 13117 13122 13141 13143 13155 13157 13174 13199 13225
## [1045] 13237 13244 13307 13319 13337 13341 13373 13377 13389 13396 13409 13424
## [1057] 13425 13438 13461 13464 13480 13501 13516 13580 13583 13584 13593 13594
## [1069] 13605 13617 13678 13682 13704 13711 13715 13722 13725 13726 13742 13760
## [1081] 13765 13777 13779 13787 13791 13795 13797 13824 13837 13845 13847 13851
## [1093] 13868 13873 13881 13893 13943 13950 13956 13978 13984 14018 14023 14032
## [1105] 14039 14052 14064 14111 14125 14131 14162 14164 14179 14199 14229 14240
## [1117] 14244 14273 14274 14280 14285 14288 14298 14319 14331 14336 14339 14383
## [1129] 14385 14399 14412 14421 14428 14437 14470 14475 14515 14518 14532 14537
## [1141] 14549 14554 14556 14584 14589 14599 14630 14634 14638 14649 14671 14681
## [1153] 14697 14700 14705 14749 14782 14792 14817 14847 14879 14900 14935 14945
## [1165] 14946 14953 14967 15003 15007 15011 15030 15047 15073 15081 15093 15097
## [1177] 15101 15121 15131 15142 15176 15186 15202 15203 15214 15239 15244 15252
## [1189] 15267 15276 15283 15298 15329 15335 15348 15373 15400 15420 15422 15424
## [1201] 15428 15444 15487 15498 15517 15535 15537 15559 15579 15583 15622 15630
## [1213] 15642 15664 15669 15686 15689 15697 15709 15715 15719 15730 15758 15770
## [1225] 15783 15793 15794 15798 15824 15826 15837 15840 15855 15873 15888 15894
## [1237] 15896 15898 15899 15900 15904 15909 15921 15925 15940 15981 15985 15986
## [1249] 15988 15990 15993 16005 16013 16019 16033 16060 16068 16072 16087 16099
## [1261] 16119 16125 16127 16149 16153 16156 16170 16179 16205 16216 16235 16261
## [1273] 16263 16266 16267 16272 16293 16312 16320 16330 16333 16356 16359 16372
## [1285] 16379 16380 16381 16389 16410 16420 16437 16475 16477 16481 16485 16500
## [1297] 16507 16511 16523 16525 16536 16559 16574 16609 16625 16626 16636 16649
## [1309] 16651 16659 16681 16687 16704 16735 16737 16741 16752 16754 16783 16797
## [1321] 16842 16850 16852 16853 16879 16883 16897 16900 16902 16911 16914 16921
## [1333] 16930 16944 16950 16951 16979 16980 16989 17002 17012 17020 17024 17028
## [1345] 17036 17045 17101 17125 17130 17142 17177 17211 17223 17297 17363 17381
## [1357] 17410 17415 17420 17430 17448 17455 17456 17458 17459 17466 17467 17481
## [1369] 17490 17506 17507 17516 17523 17539 17546 17567 17583 17603 17613 17615
## [1381] 17622 17630 17654 17662 17663 17667 17687 17696 17705 17719 17720 17725
## [1393] 17749 17765 17777 17782 17790 17794 17798 17804 17843 17880 17883 17884
## [1405] 17891 17894 17895 17896 17900 17902 17903 17909 17911 17930 17932 17933
## [1417] 17938 17964 17970 17974 17978 17983 18018 18037 18054 18057 18068 18072
## [1429] 18077 18086 18105 18123 18138 18146 18148 18153 18163 18198 18204 18210
## [1441] 18216 18263 18269 18276 18277 18279 18288 18297 18299 18304 18310 18316
## [1453] 18320 18321 18339 18345 18351 18367 18369 18390 18405 18416 18418 18426
## [1465] 18429 18431 18436 18439 18446 18460 18465 18468 18495 18511 18513 18515
## [1477] 18520 18543 18559 18560 18578 18579 18585 18598 18611 18615 18642 18647
## [1489] 18648 18668 18675 18677 18692 18703 18706 18714 18750 18757 18760 18777
## [1501] 18783 18784 18786 18790 18799 18816 18833 18847 18860 18875 18889 18895
## [1513] 18910 18915 18935 18936 18940 18943 18958 18994 18995 19005 19055 19063
## [1525] 19067 19084 19095 19105 19107 19117 19119 19125 19131 19139 19162 19165
## [1537] 19178 19185 19191 19196 19200 19204 19205 19234 19240 19247 19266 19271
## [1549] 19291 19294 19303 19315 19326 19336 19338 19349 19381 19382 19385 19406
## [1561] 19415 19416 19428 19431 19445 19448 19461 19480 19505 19510 19548 19591
## [1573] 19597 19603 19633 19637 19644 19656 19669 19674 19700 19720 19733 19737
## [1585] 19743 19756 19760 19781 19786 19793 19795 19805 19813 19823 19824 19855
## [1597] 19861 19863 19882 19905 19927 19937 19944 19946 19954 19999 20016 20027
## [1609] 20031 20036 20050 20061 20062 20070 20083 20087 20099 20132 20150 20153
## [1621] 20154 20165 20167 20170 20187 20189 20223 20235 20265 20286 20313 20317
## [1633] 20319 20337 20345 20369 20392 20399 20402 20405 20409 20425 20441 20442
## [1645] 20462 20464 20466 20469 20484 20502 20544 20594 20602 20610 20612 20618
## [1657] 20619 20623 20642 20647 20654 20669 20670 20679 20683 20698 20700 20726
## [1669] 20734 20740 20743 20747 20750 20764 20795 20810 20815 20844 20848 20858
## [1681] 20883 20886 20898 20908 20912 20928 20940 20965 20981 20989 21002 21006
## [1693] 21013 21015 21060 21089 21101 21102 21104 21112 21115 21116 21119 21125
## [1705] 21129 21138 21147 21156 21171 21173 21181 21209 21218 21232 21267 21275
## [1717] 21278 21281 21300 21301 21317 21326 21368 21373 21375 21417 21431 21453
## [1729] 21475 21478 21497 21527 21530 21535 21538 21551 21553 21562 21572 21578
## [1741] 21581 21584 21598 21602 21606 21631 21642 21651 21652 21661 21671 21679
## [1753] 21732 21750 21762 21797 21801 21810 21813 21835 21843 21847 21848 21859
## [1765] 21861 21887 21902 21910 21921 21929 21932 21934 22003 22009 22016 22019
## [1777] 22043 22045 22048 22052 22068 22084 22112 22114 22118 22132 22136 22158
## [1789] 22165 22184 22186 22190 22192 22215 22220 22236 22248 22254 22282 22287
## [1801] 22291 22300 22307 22313 22315 22324 22335 22341 22353 22362 22383 22387
## [1813] 22388 22391 22405 22414 22421 22427 22433 22452 22456 22459 22476 22484
## [1825] 22507 22517 22518 22519 22521 22523 22528 22538 22552 22559 22578 22582
## [1837] 22589 22590 22593 22594 22597 22604 22611 22612 22649 22652 22661 22671
## [1849] 22700 22705 22712 22721 22733 22734 22754 22775 22779 22782 22787 22790
## [1861] 22831 22839 22841 22842 22845 22848 22854 22861 22864 22878 22888 22890
## [1873] 22892 22909 22910 22911 22918 22920 22923 22925 22926 22935 22940 22946
## [1885] 22973 22983 22985 22997 23050 23051 23061 23066 23069 23092 23108 23112
## [1897] 23120 23127 23137 23141 23142 23145 23150 23151 23169 23187 23188 23199
## [1909] 23208 23217 23224 23226 23246 23247 23259 23273 23276 23285 23297 23306
## [1921] 23311 23321 23326 23336 23345 23348 23351 23354 23365 23370 23373 23397
## [1933] 23421 23425 23438 23439 23440 23446 23451 23458 23477 23485 23492 23510
## [1945] 23513 23514 23522 23526 23528 23545 23555 23559 23565 23573 23587 23599
## [1957] 23611 23613 23620 23629 23639 23640 23641 23642 23649 23650 23690 23703
## [1969] 23709 23726 23727 23728 23733 23741 23742 23766 23768 23770 23775 23786
## [1981] 23807 23831 23838 23843 23848 23854 23855 23869 23870 23875 23890 23892
## [1993] 23894 23944 23953 23955 23963 23973 23977 23978 23990 23991 23993 24006
## [2005] 24007 24014 24039 24040 24046 24063 24066 24069 24076 24081 24082 24086
## [2017] 24113 24118 24123 24133 24153 24158 24162 24183 24186 24189 24194 24213
## [2029] 24217 24226 24230 24234 24240 24244 24247 24248 24251 24263 24292 24304
## [2041] 24315 24347 24351 24355 24356 24358 24359 24360 24363 24374 24379 24384
## [2053] 24397 24410 24419 24446 24468 24493 24494 24497 24501 24503 24548 24573
## [2065] 24580 24592 24595 24607 24612 24625 24649 24654 24691 24703 24721 24723
## [2077] 24734 24773 24785 24786 24796 24817 24837 24851 24856 24860 24866 24869
## [2089] 24875 24882 24886 24895 24907 24924 24937 24986 25093 25098 25111 25124
## [2101] 25132 25144 25176 25190 25210 25221 25233 25234 25238 25250 25252 25255
## [2113] 25261 25278 25279 25296 25307 25320 25321 25340 25375 25378 25408 25452
## [2125] 25453 25455 25507 25517 25537 25566 25574 25575 25619 25628 25629 25655
## [2137] 25726 25736 25766 25774 25785 25804 25818 25881 25945 25967 26015 26037
## [2149] 26044 26048 26073 26079 26086 26169 26191 26203 26256 26290 26361 26398
## [2161] 26433 26447 26461 26470 26538 26635 26733 26747 26809 26886 26953 27065
## [2173] 27086 27143 27174 27394 27492 27520 27606 27707 27717 27770
# All 2182 technical violators are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,13], method = "stack")

Projected MSR Date

#Mean
meanprojmsrdate <- mean(FinalProjectData[,14], na.rm = TRUE)
meanprojmsrdate
## [1] 47218.68
#Standard Deviation
sdprojmsrdate <- sd(FinalProjectData[,14], na.rm = TRUE)
sdprojmsrdate
## [1] 4100.456
#Sample Variance
varprojmsrdate  <- var(FinalProjectData[,14], na.rm = TRUE)
varprojmsrdate
## [1] 16813744
#Skewness
skewprojmsrdate <- skewness(FinalProjectData[,14], na.rm = TRUE)
skewprojmsrdate
## [1] 2.132513
#Kurtosis
kurtprojmsrdate <- kurtosis(FinalProjectData[,14], na.rm = TRUE)
kurtprojmsrdate
## [1] 7.404976
#1D Outliers
which(abs(scale(FinalProjectData[,14]))>3)
##   [1]     2   123   137   219   450   456   486   639   903   957  1016  1085
##  [13]  1095  1146  1363  1468  1478  1507  1543  1558  1594  1606  1674  1678
##  [25]  1774  1793  1808  1834  1862  1911  1915  1946  1952  1974  2026  2076
##  [37]  2091  2131  2149  2192  2207  2232  2238  2240  2251  2274  2316  2333
##  [49]  2351  2360  2365  2414  2418  2460  2480  2494  2599  2645  2662  2664
##  [61]  2672  2725  2734  2737  2752  2769  2771  2812  2850  2870  2885  2887
##  [73]  2894  2913  2917  2929  3022  3151  3161  3175  3185  3268  3291  3359
##  [85]  3372  3402  3569  3580  3588  3606  3663  3673  3674  3701  3771  3803
##  [97]  3809  3828  3831  3834  3842  3844  3845  3847  3849  3854  3856  3858
## [109]  3859  3889  3926  3943  3961  4010  4029  4064  4079  4114  4140  4226
## [121]  4274  4284  4293  4359  4382  4395  4396  4415  4419  4451  4453  4478
## [133]  4544  4573  4594  4676  4709  4724  4761  4782  4875  4879  4958  5018
## [145]  5051  5075  5105  5118  5120  5150  5165  5183  5217  5223  5238  5263
## [157]  5284  5358  5379  5399  5463  5499  5529  5550  5587  5633  5697  5742
## [169]  5778  5780  5813  5819  5834  5907  5948  6018  6192  6208  6230  6240
## [181]  6245  6262  6268  6316  6341  6349  6382  6383  6396  6422  6475  6482
## [193]  6492  6500  6586  6587  6598  6627  6658  6667  6671  6679  6689  6747
## [205]  6815  6887  6973  7029  7057  7075  7190  7209  7215  7219  7239  7278
## [217]  7357  7414  7458  7485  7494  7505  7525  7552  7637  7662  7672  7679
## [229]  7694  7730  7741  7748  7761  7799  7847  7852  7855  7906  7950  8022
## [241]  8057  8058  8071  8080  8089  8249  8301  8312  8320  8347  8367  8371
## [253]  8379  8405  8419  8571  8637  8651  8657  8812  8834  8865  8876  8892
## [265]  8965  8969  8983  9040  9048  9073  9150  9156  9258  9274  9285  9307
## [277]  9309  9323  9379  9413  9414  9503  9522  9557  9559  9575  9616  9637
## [289]  9643  9646  9652  9673  9679  9738  9773  9784  9813  9821  9837  9882
## [301]  9901  9905  9926  9959  9987 10084 10106 10116 10121 10155 10192 10246
## [313] 10297 10344 10402 10421 10462 10474 10492 10493 10535 10538 10556 10560
## [325] 10573 10588 10599 10671 10685 10720 10744 10769 10839 10867 10868 10884
## [337] 10922 10939 10946 10984 11026 11161 11176 11224 11296 11298 11339 11345
## [349] 11413 11449 11562 11706 11748 11764 11775 11843 11882 11939 12068 12099
## [361] 12251 12365 12384 12391 12433 12445 12468 12506 12561 12605 12716 12755
## [373] 12766 12799 12820 12836 12843 12865 12882 12894 12903 12914 12964 12971
## [385] 12983 13044 13046 13075 13167 13216 13222 13227 13327 13365 13374 13382
## [397] 13401 13448 13473 13505 13508 13509 13517 13518 13521 13522 13553 13573
## [409] 13574 13608 13636 13641 13654 13662 13683 13690 13705 13761 13766 13775
## [421] 13782 13794 13865 13869 13903 13908 13909 13916 13925 13926 13939 13965
## [433] 13967 13969 13985 14019 14044 14063 14084 14088 14187 14193 14205 14207
## [445] 14209 14283 14309 14349 14407 14458 14481 14501 14565 14590 14601 14610
## [457] 14627 14640 14644 14667 14676 14684 14693 14822 14849 14852 14862 14909
## [469] 14969 14982 15011 15023 15024 15095 15116 15188 15221 15260 15279 15354
## [481] 15355 15366 15390 15421 15443 15475 15483 15484 15490 15510 15513 15549
## [493] 15559 15564 15616 15625 15629 15640 15670 15712 15771 15784 15815 15849
## [505] 15906 15907 15915 15920 15934 15952 15954 15958 15960 15967 15999 16000
## [517] 16097 16100 16105 16106 16130 16131 16154 16165 16174 16218 16234 16252
## [529] 16255 16315 16390 16424 16451 16456 16466 16468 16534 16546 16555 16562
## [541] 16563 16607 16608 16650 16654 16668 16672 16701 16765 16777 16781 16785
## [553] 16803 16829 16830 16834 16898 16924 16985 17004 17005 17046 17076 17149
## [565] 17173 17259 17311 17324 17351 17425 17439 17561 17609 17618 17707 17821
## [577] 17824 18092 18099 18100 18110 18147 18173 18186 18197 18214 18295 18380
## [589] 18410 18440 18451 18555 18649 18713 18821 18849 18850 18952 18999 19062
## [601] 19064 19136 19144 19195 19208 19257 19264 19274 19326 19355 19426 19436
## [613] 19446 19509 19571 19585 19604 19625 19695 19717 19722 19771 19825 19831
## [625] 19835 19948 20042 20045 20073 20101 20126 20203 20262 20267 20274 20293
## [637] 20340 20366 20389 20471 20554 20628 20657 20666 20722 20723 20733 20749
## [649] 20884 20911 20941 20956 21033 21083 21148 21151 21158 21187 21234 21286
## [661] 21349 21410 21420 21438 21664 21694 21746 21768 21795 21808 21812 21922
## [673] 21972 21994 22074 22173 22175 22183 22209 22212 22234 22237 22273 22325
## [685] 22366 22419 22585 22615 22729 22742 22753 22769 22770 22794 22821 22823
## [697] 22915 22921 22969 22976 22996 23028 23043 23119 23134 23341 23368 23433
## [709] 23452 23460 23582 23605 23612 23638 23675 23762 23820 23835 23911 24116
## [721] 24137 24160 24181 24319 24385 24386 24444 24455 24461 24495 24499 24549
## [733] 24639 24695 25158 25558 25817 25853 25887 26043 26090 26095 26315 26404
## [745] 26501 26871 27156 27514 27578
# Approximately 750 Projected MSR Dates are considered outliers because the kurtosis is high and the variable is skewed right. 

#Plot
stripchart(FinalProjectData[,14], method = "stack")

Projected Discharge Date

#Mean
meanprojdisdate <- mean(FinalProjectData[,15], na.rm = TRUE)
meanprojdisdate
## [1] 48002.59
#Standard Deviation
sdprojdisdate <- sd(FinalProjectData[,15], na.rm = TRUE)
sdprojdisdate
## [1] 4085.952
#Sample Variance
varprojdisdate  <- var(FinalProjectData[,15], na.rm = TRUE)
varprojdisdate
## [1] 16695001
#Skewness
skewprojdisdate <- skewness(FinalProjectData[,15], na.rm = TRUE)
skewprojdisdate
## [1] 2.08815
#Kurtosis
kurtprojdisdate <- kurtosis(FinalProjectData[,15], na.rm = TRUE)
kurtprojdisdate
## [1] 6.957268
#1D Outliers
which(abs(scale(FinalProjectData[,15]))>3)
##   [1]     2   123   137   219   450   486   639   709   903   957  1016  1085
##  [13]  1088  1095  1176  1363  1468  1478  1507  1594  1606  1678  1793  1834
##  [25]  1862  1911  1915  1946  1952  1974  2026  2076  2091  2113  2131  2149
##  [37]  2192  2207  2232  2238  2240  2274  2316  2333  2351  2360  2370  2380
##  [49]  2414  2418  2460  2480  2494  2535  2599  2645  2662  2664  2672  2725
##  [61]  2734  2752  2769  2771  2812  2850  2870  2885  2887  2894  2917  2929
##  [73]  3022  3029  3051  3151  3175  3185  3268  3291  3359  3372  3402  3569
##  [85]  3580  3588  3597  3606  3673  3674  3701  3771  3803  3828  3834  3842
##  [97]  3844  3845  3854  3858  3859  3926  3943  3961  3987  4010  4029  4064
## [109]  4076  4079  4114  4140  4226  4274  4284  4359  4415  4419  4451  4453
## [121]  4544  4557  4558  4573  4594  4709  4724  4761  4782  4875  4879  4958
## [133]  5018  5051  5080  5105  5118  5120  5128  5150  5165  5183  5217  5223
## [145]  5238  5263  5284  5358  5379  5399  5463  5550  5587  5633  5697  5742
## [157]  5778  5819  5834  5907  5948  6018  6192  6208  6230  6240  6245  6262
## [169]  6268  6316  6341  6349  6382  6383  6426  6475  6480  6586  6627  6658
## [181]  6667  6679  6689  6696  6747  6815  6887  6912  6973  7057  7075  7190
## [193]  7209  7215  7219  7239  7278  7326  7357  7442  7458  7485  7494  7525
## [205]  7552  7637  7662  7672  7694  7741  7748  7761  7799  7847  7852  7855
## [217]  7906  7979  8057  8058  8080  8089  8249  8301  8312  8320  8347  8367
## [229]  8371  8379  8405  8419  8502  8581  8637  8651  8657  8812  8865  8876
## [241]  8892  8965  8983  9040  9048  9122  9258  9307  9309  9379  9414  9522
## [253]  9557  9559  9575  9616  9643  9646  9652  9673  9679  9738  9773  9784
## [265]  9837  9882  9901  9905  9926  9959  9987 10084 10106 10116 10121 10155
## [277] 10246 10297 10402 10421 10462 10492 10493 10535 10538 10556 10560 10573
## [289] 10599 10671 10685 10744 10769 10839 10867 10868 10884 10922 10939 10946
## [301] 10984 11026 11138 11161 11176 11224 11296 11298 11345 11413 11503 11706
## [313] 11748 11764 11775 11843 11882 11939 12251 12384 12391 12433 12468 12506
## [325] 12561 12608 12716 12732 12755 12766 12799 12865 12882 12894 12903 12914
## [337] 12964 12971 12983 13044 13075 13216 13222 13227 13327 13365 13374 13382
## [349] 13401 13448 13505 13508 13509 13517 13518 13521 13522 13553 13573 13608
## [361] 13636 13641 13649 13654 13662 13666 13683 13690 13705 13714 13740 13761
## [373] 13766 13775 13782 13794 13865 13869 13895 13903 13908 13909 13916 13926
## [385] 13934 13936 13939 13965 13967 13969 14008 14044 14088 14187 14193 14198
## [397] 14205 14209 14283 14309 14318 14349 14407 14456 14458 14481 14501 14565
## [409] 14590 14601 14610 14627 14631 14640 14644 14658 14667 14676 14684 14852
## [421] 14862 14909 14969 14982 15011 15044 15077 15095 15116 15161 15260 15279
## [433] 15354 15355 15366 15390 15421 15443 15475 15483 15484 15490 15510 15513
## [445] 15549 15559 15564 15616 15625 15629 15640 15754 15771 15784 15815 15849
## [457] 15907 15915 15920 15934 15952 15954 15958 15960 15967 15999 16000 16097
## [469] 16100 16106 16130 16154 16165 16174 16218 16234 16252 16255 16282 16315
## [481] 16384 16390 16424 16451 16456 16466 16468 16522 16546 16562 16650 16654
## [493] 16668 16765 16777 16781 16785 16803 16829 16830 16834 16837 16985 17004
## [505] 17005 17046 17050 17076 17149 17173 17259 17311 17324 17351 17425 17439
## [517] 17617 17707 17821 17824 17897 17905 18000 18092 18099 18100 18110 18147
## [529] 18173 18197 18214 18295 18341 18380 18428 18440 18451 18555 18649 18726
## [541] 18728 18781 18821 18849 18850 18852 18952 19062 19064 19104 19136 19144
## [553] 19195 19257 19274 19436 19509 19585 19604 19625 19681 19695 19717 19722
## [565] 19771 19825 19831 19835 19948 19993 20045 20073 20126 20164 20203 20262
## [577] 20267 20274 20293 20340 20366 20389 20471 20554 20628 20657 20666 20723
## [589] 20733 20749 20877 20884 20941 20956 21033 21073 21083 21148 21151 21158
## [601] 21187 21286 21377 21410 21420 21664 21694 21768 21812 21922 21994 22173
## [613] 22183 22209 22234 22273 22325 22366 22585 22615 22729 22753 22769 22821
## [625] 22823 22915 22969 22976 22996 23043 23119 23341 23368 23486 23605 23612
## [637] 23638 23675 23762 23820 23911 24116 24137 24160 24181 24319 24385 24386
## [649] 24455 24461 24499 24549 24614 24695 25158 25653 25680 25817 25853 25887
## [661] 26043 26095 26315 26404 26501 27006 27156 27514
# Approximately 700 Projected Discharge Dates are considered outliers because the kurtosis is high and the variable is skewed right. 

#Plot
stripchart(FinalProjectData[,15], method = "stack")

Custody Date

#Mean
meancustodydate <- mean(FinalProjectData[,16])
meancustodydate
## [1] 41404.82
#Standard Deviation
sdcustodydate <- sd(FinalProjectData[,16])
sdcustodydate
## [1] 3138.06
#Sample Variance
varcustodydate  <- var(FinalProjectData[,16])
varcustodydate
## [1] 9847422
#Skewness
skewcustodydate <- skewness(FinalProjectData[,16])
skewcustodydate
## [1] -1.430418
#Kurtosis
kurtcustodydate <- kurtosis(FinalProjectData[,16])
kurtcustodydate
## [1] 4.788124
#1D Outliers
which(abs(scale(FinalProjectData[,16]))>3)
##   [1]     1     2     3     4     6     7     8     9    10    11    12    13
##  [13]    14    16    17    24    28    31    35    39    41    42    44    45
##  [25]    48    49    51    53    56    63    64    65    67    68    69    71
##  [37]    75    77    79    80    81    83    85    87    89    90    92    97
##  [49]    98    99   112   113   115   116   117   122   129   140   141   150
##  [61]   155   156   160   163   170   172   173   178   181   183   187   193
##  [73]   197   200   201   205   206   216   218   229   235   240   252   254
##  [85]   256   257   260   270   274   278   283   284   285   293   295   301
##  [97]   305   309   316   317   319   327   330   332   336   337   338   339
## [109]   340   345   348   354   371   373   380   383   386   434   484   542
## [121]   544   550   563   719   873  1030  3818  3819  3820  3821  3822  3823
## [133]  3824  3825  3826  3827  3828  3829  3830  3831  3832  3833  3834  3835
## [145]  3836  3837  3838  3839  3840  3841  3842  3843  3844  3845  3846  3847
## [157]  3848  3849  3851  3852  3853  3854  3855  3856  3857  3858  3859  6139
## [169]  6140 11206 11209 11212 11215 11216 11221 11222 11225 11227 11232 11234
## [181] 11238 11239 11242 11244 11245 11250 11253 11255 11266 11269 11270 11272
## [193] 11274 11278 11280 11281 11284 11288 11302 11308 11312 11313 11314 11317
## [205] 11319 11321 11322 11324 11328 11329 11331 11333 11340 11341 11344 11346
## [217] 11349 11352 11355 11356 11358 11364 11379 11384 11390 11411 11418 11423
## [229] 11452 11454 11458 11459 11468 11472 11480 11487 11491 11497 11498 11499
## [241] 11504 11507 11514 11520 11523 11526 11532 11537 11540 11544 11548 11555
## [253] 11569 11570 11573 11600 11615 11623 11625 11626 11627 11629 11635 11636
## [265] 11637 11639 11641 11642 11656 11659 11664 11666 11668 11686 11689 11690
## [277] 11694 11700 11705 11711 11712 11715 11716 11724 11736 11737 11744 11750
## [289] 11766 11769 11770 11773 11774 11781 11783 11803 11804 11806 11815 11823
## [301] 11827 11831 11833 11846 11851 11852 11853 11857 11860 11871 11873 11877
## [313] 11880 11887 11888 11897 11899 11905 11919 11935 11948 11951 11953 11958
## [325] 11966 11969 11972 11975 11993 12003 12007 12018 12019 12021 12023 12024
## [337] 12029 12033 12034 12045 12049 12056 12057 12069 12085 12086 12089 12090
## [349] 12093 12094 12096 12102 12103 12105 12107 12118 12124 12134 12141 12150
## [361] 12151 12162 12164 12169 12170 12173 12174 12175 12183 12184 12190 12209
## [373] 12217 12241 12246 12252 12262 12263 12264 12269 12270 12271 12276 12283
## [385] 12284 12286 12288 12289 12297 12299 12307 12314 12315 12316 12319 12324
## [397] 12325 12329 12345 12348 12351 12373 12390 12401 12434 12441 12463 12478
## [409] 12508 12539 12550 12553 12566 12591 12592 12596 12597 12670 12711 12723
# Approximately 450 Custody Dates are considered outliers because the variable is skewed left.

#Plot
stripchart(FinalProjectData[,16], method = "stack")

Sentence Date

#Mean
meansentdate <- mean(FinalProjectData[,17])
meansentdate
## [1] 41958.47
#Standard Deviation
sdsentdate <- sd(FinalProjectData[,17])
sdsentdate
## [1] 2981.937
#Sample Variance
varsentdate  <- var(FinalProjectData[,17])
varsentdate
## [1] 8891946
#Skewness
skewsentdate <- skewness(FinalProjectData[,17])
skewsentdate
## [1] -1.650769
#Kurtosis
kurtsentdate <- kurtosis(FinalProjectData[,17])
kurtsentdate
## [1] 5.653045
#1D Outliers
which(abs(scale(FinalProjectData[,17]))>3)
##   [1]     1     2     3     4     6     7     8     9    10    11    12    13
##  [13]    14    16    17    24    28    31    35    37    39    41    42    44
##  [25]    45    48    49    51    53    56    63    64    65    66    67    68
##  [37]    69    71    75    77    79    80    81    83    85    87    89    90
##  [49]    92    96    97    98    99   113   115   116   117   118   122   128
##  [61]   129   131   140   141   150   156   160   163   164   170   172   173
##  [73]   178   181   183   187   188   193   196   197   200   201   205   206
##  [85]   216   218   228   229   235   239   240   252   254   256   257   260
##  [97]   270   274   278   283   285   293   295   301   305   309   312   316
## [109]   317   318   319   330   332   334   336   337   338   339   340   345
## [121]   349   354   371   373   380   381   383   401   404   406   413   414
## [133]   423   426   432   458   460   484   492   494   497   507   520   542
## [145]   550   609   612   631   659   719   734  3818  3819  3820  3821  3822
## [157]  3823  3824  3825  3826  3827  3828  3829  3830  3831  3832  3833  3834
## [169]  3835  3836  3837  3838  3839  3840  3841  3842  3843  3844  3845  3846
## [181]  3847  3848  3849  3851  3852  3853  3854  3855  3856  3857  3858  3859
## [193]  6139  6140  6340 11193 11206 11209 11212 11215 11216 11221 11222 11223
## [205] 11225 11227 11232 11233 11234 11238 11239 11241 11242 11244 11250 11253
## [217] 11255 11257 11266 11267 11269 11270 11272 11274 11278 11280 11281 11284
## [229] 11288 11297 11300 11308 11310 11312 11313 11314 11317 11319 11321 11322
## [241] 11324 11328 11329 11331 11341 11344 11346 11349 11352 11355 11356 11358
## [253] 11364 11379 11384 11390 11399 11410 11411 11418 11423 11431 11435 11442
## [265] 11446 11447 11450 11452 11454 11458 11459 11468 11472 11480 11487 11491
## [277] 11498 11499 11504 11507 11514 11520 11523 11526 11532 11537 11544 11548
## [289] 11555 11567 11569 11570 11573 11578 11584 11600 11615 11618 11623 11625
## [301] 11626 11627 11635 11636 11637 11639 11641 11642 11656 11659 11664 11666
## [313] 11668 11685 11686 11689 11690 11694 11699 11700 11705 11711 11712 11715
## [325] 11716 11724 11737 11744 11750 11766 11769 11770 11773 11774 11781 11783
## [337] 11803 11804 11806 11815 11823 11827 11831 11833 11846 11851 11852 11853
## [349] 11857 11860 11871 11873 11877 11880 11887 11888 11897 11899 11905 11912
## [361] 11919 11929 11935 11948 11951 11953 11958 11966 11969 11972 11993 12003
## [373] 12007 12009 12019 12023 12024 12029 12033 12045 12049 12056 12057 12069
## [385] 12084 12085 12086 12089 12090 12092 12094 12096 12100 12102 12103 12105
## [397] 12107 12118 12124 12134 12141 12145 12151 12162 12164 12169 12170 12173
## [409] 12174 12175 12183 12184 12190 12209 12217 12241 12252 12262 12263 12264
## [421] 12269 12270 12271 12276 12283 12284 12286 12288 12289 12297 12299 12307
## [433] 12314 12315 12316 12319 12324 12325 12329 12345 12348 12351 12353 12357
## [445] 12371 12373 12387 12390 12394 12400 12401 12422 12424 12434 12437 12441
## [457] 12459 12462 12463 12478 12483 12491 12508 12521 12539 12544 12546 12550
## [469] 12553 12562 12566 12571 12572 12586 12591 12592 12596 12597 12599 12601
## [481] 12626 12641 12645 12653 12654 12657 12668 12670 12672 12673 12674 12684
## [493] 12690 12699 12711 12720 12723 15460 17646 25394
# Approximately 500 Sentence Dates are considered outliers because the variable is skewed left.

#Plot
stripchart(FinalProjectData[,17], method = "stack")

Class 1

#Mean
mean_class_one <- mean(FinalProjectData[,18])
mean_class_one
## [1] 0.1230836
#Standard Deviation
sd_class_one <- sd(FinalProjectData[,18])
sd_class_one
## [1] 0.328539
#Sample Variance
var_class_one  <- var(FinalProjectData[,18])
var_class_one
## [1] 0.1079379
#Skewness
skew_class_one <- skewness(FinalProjectData[,18])
skew_class_one
## [1] 2.294542
#Kurtosis
kurt_class_one <- kurtosis(FinalProjectData[,18])
kurt_class_one
## [1] 6.264922
#1D Outliers
which(abs(scale(FinalProjectData[,18]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,18], method = "stack")

Class 2

#Mean
mean_class_two <- mean(FinalProjectData[,19])
mean_class_two
## [1] 0.1722739
#Standard Deviation
sd_class_two <- sd(FinalProjectData[,19])
sd_class_two
## [1] 0.3776251
#Sample Variance
var_class_two  <- var(FinalProjectData[,19])
var_class_two
## [1] 0.1426007
#Skewness
skew_class_two <- skewness(FinalProjectData[,19])
skew_class_two
## [1] 1.735753
#Kurtosis
kurt_class_two <- kurtosis(FinalProjectData[,19])
kurt_class_two
## [1] 4.012839
#1D Outliers
which(abs(scale(FinalProjectData[,19]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,19], method = "stack")

Class 3

#Mean
mean_class_three <- mean(FinalProjectData[,20])
mean_class_three 
## [1] 0.07339054
#Standard Deviation
sd_class_three <- sd(FinalProjectData[,20])
sd_class_three
## [1] 0.2607812
#Sample Variance
var_class_three <- var(FinalProjectData[,20])
var_class_three 
## [1] 0.06800681
#Skewness
skew_class_three <- skewness(FinalProjectData[,20])
skew_class_three 
## [1] 3.27184
#Kurtosis
kurt_class_three <- kurtosis(FinalProjectData[,20])
kurt_class_three 
## [1] 11.70494
#1D Outliers
which(abs(scale(FinalProjectData[,20]))>3)
##    [1]    35    50    74    91   215   234   288   328   366   370   388   399
##   [13]   417   445   463   468   475   476   477   506   538   562   592   657
##   [25]   658   681   721   793   833   846   851   945   954   960   988  1009
##   [37]  1010  1011  1017  1018  1033  1062  1064  1077  1079  1089  1101  1128
##   [49]  1135  1136  1144  1147  1174  1175  1177  1189  1195  1212  1221  1228
##   [61]  1233  1236  1242  1260  1273  1280  1285  1290  1322  1326  1331  1332
##   [73]  1335  1366  1380  1388  1415  1443  1453  1496  1501  1528  1550  1571
##   [85]  1607  1617  1621  1644  1649  1655  1669  1706  1742  1787  1798  1841
##   [97]  1851  1854  1861  1870  1882  1912  1913  1923  1962  2003  2007  2010
##  [109]  2071  2075  2107  2115  2174  2213  2226  2256  2322  2331  2391  2428
##  [121]  2430  2468  2469  2512  2524  2529  2534  2578  2585  2586  2602  2606
##  [133]  2623  2632  2653  2673  2678  2679  2692  2705  2786  2806  2832  2842
##  [145]  2853  2867  2891  2905  2927  2941  2944  2950  2963  2980  2981  2984
##  [157]  2987  2988  3006  3007  3010  3033  3045  3060  3065  3070  3075  3082
##  [169]  3089  3101  3116  3131  3148  3150  3152  3163  3172  3174  3178  3180
##  [181]  3186  3193  3198  3200  3210  3228  3243  3260  3279  3285  3292  3294
##  [193]  3305  3317  3322  3323  3346  3349  3361  3376  3378  3389  3406  3414
##  [205]  3418  3440  3441  3452  3460  3469  3496  3500  3513  3514  3525  3535
##  [217]  3541  3574  3581  3617  3624  3627  3628  3652  3690  3694  3700  3708
##  [229]  3710  3719  3725  3729  3732  3738  3743  3753  3773  3777  3784  3786
##  [241]  3797  3804  3808  3812  3815  3863  3865  3870  3875  3897  3907  3908
##  [253]  3919  3934  3937  3941  3958  3960  3972  3974  3993  4049  4124  4130
##  [265]  4175  4192  4232  4273  4281  4360  4365  4408  4462  4490  4495  4509
##  [277]  4529  4531  4536  4542  4545  4547  4601  4607  4701  4767  4777  4802
##  [289]  4834  4873  4957  4988  5004  5033  5039  5083  5158  5188  5209  5264
##  [301]  5272  5283  5291  5305  5348  5489  5512  5558  5560  5562  5564  5577
##  [313]  5585  5597  5603  5622  5626  5643  5649  5650  5659  5668  5707  5714
##  [325]  5736  5738  5751  5765  5766  5767  5803  5825  5828  5842  5852  5853
##  [337]  5899  5912  5916  5923  5928  5968  5976  5989  5992  6004  6005  6007
##  [349]  6019  6026  6035  6041  6049  6065  6069  6070  6074  6076  6093  6102
##  [361]  6119  6122  6128  6148  6152  6178  6193  6198  6229  6275  6297  6305
##  [373]  6307  6315  6359  6370  6399  6406  6410  6412  6417  6520  6532  6556
##  [385]  6589  6626  6636  6669  6676  6698  6709  6713  6720  6721  6722  6863
##  [397]  6915  6917  6919  6920  6924  6982  6990  7011  7066  7109  7118  7175
##  [409]  7188  7192  7238  7248  7254  7258  7282  7298  7307  7320  7343  7372
##  [421]  7389  7391  7436  7496  7508  7527  7549  7557  7580  7597  7628  7678
##  [433]  7696  7719  7753  7767  7782  7829  7876  7882  7913  7936  7938  7960
##  [445]  8005  8062  8072  8081  8084  8100  8127  8135  8170  8192  8240  8274
##  [457]  8276  8277  8278  8283  8296  8317  8336  8341  8354  8372  8396  8413
##  [469]  8415  8416  8420  8423  8481  8506  8535  8545  8626  8682  8689  8695
##  [481]  8697  8726  8729  8781  8840  8898  8930  8939  8959  8964  9004  9029
##  [493]  9046  9057  9066  9088  9102  9128  9144  9158  9164  9188  9197  9212
##  [505]  9213  9236  9256  9273  9275  9313  9318  9332  9359  9365  9368  9400
##  [517]  9401  9405  9428  9429  9440  9454  9496  9497  9499  9515  9531  9548
##  [529]  9585  9620  9623  9634  9649  9697  9714  9726  9730  9781  9826  9883
##  [541]  9890  9899  9904  9974  9978  9999 10008 10027 10101 10127 10156 10172
##  [553] 10203 10222 10247 10256 10266 10277 10281 10300 10313 10356 10358 10363
##  [565] 10431 10434 10509 10514 10537 10569 10590 10626 10645 10646 10649 10657
##  [577] 10664 10669 10691 10709 10750 10765 10788 10822 10861 10864 10872 10896
##  [589] 10959 10973 10986 11006 11044 11050 11087 11090 11145 11165 11170 11175
##  [601] 11203 11260 11303 11326 11371 11380 11403 11415 11443 11451 11473 11488
##  [613] 11534 11547 11576 11580 11638 11647 11654 11660 11683 11695 11696 11707
##  [625] 11721 11722 11755 11778 11782 11787 11792 11801 11808 11810 11842 11845
##  [637] 11849 11858 11896 11913 11940 11942 11947 11956 11984 11999 12106 12109
##  [649] 12115 12120 12158 12165 12274 12285 12294 12322 12360 12363 12383 12386
##  [661] 12409 12415 12416 12456 12474 12475 12484 12485 12498 12531 12548 12580
##  [673] 12624 12660 12691 12703 12705 12747 12754 12829 12848 12853 12886 12899
##  [685] 12969 12996 13050 13082 13087 13119 13123 13133 13170 13174 13201 13237
##  [697] 13238 13240 13241 13243 13250 13254 13332 13339 13357 13370 13391 13405
##  [709] 13426 13444 13462 13489 13492 13496 13512 13532 13578 13593 13599 13606
##  [721] 13620 13626 13646 13695 13697 13752 13773 13792 13804 13851 13863 13884
##  [733] 13944 13950 13978 14033 14081 14096 14112 14113 14149 14214 14223 14243
##  [745] 14246 14314 14328 14329 14332 14350 14384 14411 14443 14452 14461 14462
##  [757] 14474 14476 14484 14485 14517 14531 14584 14587 14606 14645 14646 14690
##  [769] 14716 14718 14723 14726 14741 14751 14767 14780 14787 14789 14795 14797
##  [781] 14841 14846 14871 14877 14884 14904 14917 14918 14978 15002 15015 15052
##  [793] 15064 15128 15129 15144 15154 15157 15164 15170 15172 15174 15217 15224
##  [805] 15294 15379 15384 15395 15515 15529 15555 15663 15666 15677 15685 15689
##  [817] 15691 15734 15747 15759 15803 15829 15873 15889 15940 15957 15969 15983
##  [829] 16015 16062 16068 16070 16092 16119 16144 16172 16176 16202 16220 16233
##  [841] 16266 16279 16292 16293 16331 16340 16341 16343 16372 16377 16389 16423
##  [853] 16425 16440 16448 16458 16477 16495 16521 16577 16588 16591 16592 16616
##  [865] 16636 16637 16654 16660 16694 16707 16734 16735 16773 16792 16815 16816
##  [877] 16854 16868 16874 16896 16899 16911 16914 16934 16948 17006 17011 17033
##  [889] 17072 17080 17088 17089 17096 17101 17105 17109 17116 17123 17140 17143
##  [901] 17172 17238 17262 17266 17278 17287 17294 17298 17310 17314 17329 17338
##  [913] 17344 17390 17398 17403 17423 17436 17441 17449 17460 17462 17468 17470
##  [925] 17475 17479 17482 17485 17486 17487 17490 17491 17495 17500 17504 17511
##  [937] 17514 17518 17520 17529 17539 17540 17543 17545 17549 17550 17562 17566
##  [949] 17567 17571 17574 17575 17576 17577 17583 17588 17599 17622 17641 17648
##  [961] 17651 17658 17667 17670 17671 17674 17696 17704 17710 17723 17739 17746
##  [973] 17751 17755 17757 17758 17764 17773 17793 17794 17795 17796 17798 17812
##  [985] 17813 17828 17829 17863 17868 17885 17886 17891 17911 17914 17929 17933
##  [997] 17944 17959 17966 17970 17972 17975 17983 18005 18006 18007 18010 18018
## [1009] 18021 18024 18043 18053 18058 18061 18079 18091 18103 18114 18124 18133
## [1021] 18138 18139 18143 18144 18148 18159 18162 18169 18178 18180 18187 18211
## [1033] 18215 18232 18238 18239 18245 18253 18259 18262 18266 18274 18290 18297
## [1045] 18303 18310 18325 18342 18356 18360 18366 18368 18394 18395 18435 18445
## [1057] 18458 18462 18464 18470 18474 18479 18482 18483 18500 18512 18515 18521
## [1069] 18526 18542 18543 18546 18547 18566 18568 18575 18581 18592 18603 18611
## [1081] 18612 18630 18633 18647 18650 18675 18679 18682 18689 18719 18721 18724
## [1093] 18751 18753 18758 18763 18769 18773 18776 18784 18786 18807 18820 18822
## [1105] 18827 18831 18835 18838 18848 18862 18866 18875 18880 18882 18886 18888
## [1117] 18895 18922 18924 18939 18945 18947 18950 18966 18970 18971 18983 18986
## [1129] 18988 18989 19005 19015 19016 19020 19047 19049 19069 19072 19078 19079
## [1141] 19109 19130 19162 19166 19170 19179 19199 19252 19253 19268 19289 19291
## [1153] 19296 19309 19319 19339 19368 19382 19386 19402 19409 19415 19463 19487
## [1165] 19491 19527 19535 19564 19567 19569 19575 19587 19602 19629 19652 19664
## [1177] 19665 19669 19684 19700 19701 19710 19726 19749 19763 19768 19775 19793
## [1189] 19794 19809 19820 19823 19827 19837 19845 19849 19880 19881 19894 19914
## [1201] 19939 19942 19945 19950 19952 19957 19960 20000 20027 20031 20034 20038
## [1213] 20054 20064 20068 20071 20075 20076 20078 20083 20092 20108 20124 20135
## [1225] 20142 20190 20230 20276 20297 20304 20311 20324 20381 20405 20423 20428
## [1237] 20445 20447 20451 20462 20465 20504 20515 20533 20542 20546 20551 20555
## [1249] 20561 20569 20574 20584 20593 20648 20650 20658 20664 20669 20674 20696
## [1261] 20701 20710 20760 20766 20767 20783 20799 20862 20886 20907 20940 20946
## [1273] 20949 20994 21021 21024 21026 21039 21050 21064 21076 21097 21117 21119
## [1285] 21163 21170 21184 21204 21228 21241 21246 21255 21258 21269 21294 21344
## [1297] 21353 21357 21383 21422 21463 21466 21471 21479 21496 21497 21528 21569
## [1309] 21578 21590 21625 21631 21646 21652 21708 21713 21747 21816 21818 21822
## [1321] 21832 21837 21838 21839 21854 21864 21880 21909 21911 21979 21986 22009
## [1333] 22085 22100 22105 22122 22126 22157 22193 22206 22221 22284 22326 22392
## [1345] 22406 22422 22432 22456 22483 22494 22503 22514 22532 22533 22539 22550
## [1357] 22612 22613 22631 22662 22699 22712 22721 22734 22797 22833 22844 22868
## [1369] 22909 22945 22953 22957 23012 23020 23033 23060 23091 23092 23106 23113
## [1381] 23138 23141 23158 23163 23177 23184 23188 23242 23266 23270 23272 23285
## [1393] 23311 23332 23382 23389 23435 23500 23505 23506 23517 23518 23565 23570
## [1405] 23591 23653 23665 23672 23709 23725 23727 23748 23758 23759 23772 23790
## [1417] 23807 23824 23831 23838 23843 23848 23854 23913 23923 23931 23936 23993
## [1429] 23999 24001 24002 24010 24012 24017 24024 24029 24033 24036 24069 24070
## [1441] 24072 24086 24102 24152 24165 24196 24211 24222 24235 24241 24251 24253
## [1453] 24275 24279 24297 24298 24302 24310 24325 24333 24339 24351 24359 24379
## [1465] 24382 24384 24397 24434 24436 24458 24488 24515 24516 24521 24548 24553
## [1477] 24557 24562 24563 24567 24568 24569 24592 24595 24598 24605 24612 24643
## [1489] 24668 24675 24680 24709 24723 24725 24727 24734 24748 24752 24756 24760
## [1501] 24765 24773 24795 24799 24806 24812 24830 24855 24860 24861 24872 24875
## [1513] 24876 24883 24886 24902 24911 24921 24943 24944 24945 24946 24947 24956
## [1525] 24988 24989 24991 24994 25010 25020 25031 25032 25038 25040 25046 25061
## [1537] 25072 25090 25096 25098 25109 25112 25130 25131 25133 25136 25144 25148
## [1549] 25153 25156 25161 25167 25175 25200 25206 25213 25222 25231 25233 25236
## [1561] 25240 25245 25255 25259 25265 25271 25297 25301 25307 25312 25314 25315
## [1573] 25318 25322 25326 25334 25337 25343 25348 25380 25390 25398 25399 25413
## [1585] 25419 25420 25430 25433 25437 25442 25444 25447 25451 25458 25461 25463
## [1597] 25465 25471 25477 25479 25485 25501 25505 25506 25512 25520 25533 25535
## [1609] 25542 25545 25546 25549 25557 25561 25591 25592 25597 25598 25602 25606
## [1621] 25607 25612 25615 25620 25623 25626 25628 25630 25631 25632 25633 25635
## [1633] 25639 25649 25660 25684 25689 25690 25691 25695 25699 25702 25703 25719
## [1645] 25726 25736 25740 25744 25747 25756 25766 25767 25770 25776 25779 25782
## [1657] 25787 25795 25796 25802 25803 25805 25813 25818 25822 25823 25824 25825
## [1669] 25836 25841 25854 25855 25871 25873 25875 25905 25916 25917 25925 25926
## [1681] 25929 25940 25942 25944 25947 25962 25963 25966 25978 25979 25980 25983
## [1693] 25989 25994 26011 26026 26036 26042 26076 26093 26096 26109 26112 26117
## [1705] 26118 26128 26139 26151 26152 26157 26159 26167 26169 26171 26173 26180
## [1717] 26181 26197 26201 26202 26203 26216 26220 26221 26222 26224 26226 26236
## [1729] 26240 26242 26246 26254 26267 26274 26278 26282 26287 26299 26312 26346
## [1741] 26347 26352 26358 26372 26377 26384 26392 26407 26408 26413 26432 26434
## [1753] 26445 26447 26449 26450 26453 26462 26467 26470 26479 26485 26486 26488
## [1765] 26492 26494 26495 26497 26499 26507 26514 26525 26526 26528 26531 26542
## [1777] 26545 26547 26553 26564 26570 26571 26584 26591 26593 26598 26603 26606
## [1789] 26609 26624 26628 26629 26639 26643 26644 26645 26649 26650 26652 26655
## [1801] 26663 26668 26674 26676 26679 26680 26682 26683 26686 26689 26692 26695
## [1813] 26699 26705 26711 26712 26715 26718 26731 26735 26736 26737 26739 26755
## [1825] 26756 26763 26773 26779 26783 26793 26794 26795 26796 26799 26804 26811
## [1837] 26816 26821 26823 26827 26828 26831 26832 26833 26842 26849 26854 26862
## [1849] 26863 26865 26868 26869 26887 26889 26898 26901 26905 26922 26926 26931
## [1861] 26938 26941 26942 26945 26962 26964 26970 26971 26975 26978 26981 26984
## [1873] 26985 26987 26995 26996 27005 27007 27014 27022 27027 27030 27034 27041
## [1885] 27043 27044 27047 27051 27055 27061 27064 27076 27082 27083 27097 27099
## [1897] 27100 27102 27106 27108 27110 27111 27122 27124 27128 27129 27131 27132
## [1909] 27134 27150 27162 27170 27174 27178 27181 27186 27198 27202 27203 27212
## [1921] 27215 27218 27230 27235 27236 27240 27256 27258 27266 27271 27276 27278
## [1933] 27285 27286 27287 27289 27290 27293 27303 27308 27310 27311 27312 27314
## [1945] 27324 27333 27353 27372 27376 27386 27388 27389 27393 27397 27399 27403
## [1957] 27416 27429 27448 27451 27453 27454 27457 27466 27468 27472 27479 27483
## [1969] 27484 27486 27487 27491 27505 27509 27510 27513 27518 27523 27526 27532
## [1981] 27533 27536 27541 27542 27562 27567 27569 27579 27581 27583 27593 27597
## [1993] 27603 27610 27617 27628 27631 27642 27652 27656 27661 27662 27667 27668
## [2005] 27680 27686 27687 27691 27694 27703 27706 27711 27714 27718 27719 27720
## [2017] 27721 27727 27743 27744 27745 27749 27761 27762 27766 27768 27769 27773
## [2029] 27774 27775 27776 27779 27783 27787 27788 27796 27797 27798 27812 27813
## [2041] 27816 27817 27840 27848
# All 2044 Class 3 prisoners are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,20], method = "stack")

Class 4

#Mean
mean_class_four <- mean(FinalProjectData[,21])
mean_class_four 
## [1] 0.05256544
#Standard Deviation
sd_class_four <- sd(FinalProjectData[,21])
sd_class_four
## [1] 0.2231683
#Sample Variance
var_class_four <- var(FinalProjectData[,21])
var_class_four 
## [1] 0.0498041
#Skewness
skew_class_four <- skewness(FinalProjectData[,21])
skew_class_four
## [1] 4.009911
#Kurtosis
kurt_class_four <- kurtosis(FinalProjectData[,21])
kurt_class_four 
## [1] 17.07939
#1D Outliers
which(abs(scale(FinalProjectData[,21]))>3)
##    [1]   138   286   321   351   369   375   387   441   457   517   546   551
##   [13]   572   574   584   598   662   671   677   682   683   684   693   708
##   [25]   730   738   740   759   761   773   831   880   885   890   917   942
##   [37]   949   952   981   993   994  1014  1056  1093  1139  1246  1249  1283
##   [49]  1284  1300  1351  1374  1385  1407  1413  1416  1419  1436  1445  1467
##   [61]  1483  1484  1490  1567  1588  1618  1705  1719  1725  1755  1842  1917
##   [73]  1926  1957  1961  1978  2009  2029  2031  2047  2082  2101  2152  2168
##   [85]  2178  2210  2224  2237  2277  2285  2302  2323  2327  2342  2363  2368
##   [97]  2383  2410  2489  2570  2581  2670  2688  2693  2719  2720  2742  2746
##  [109]  2788  2803  2846  2879  2935  2999  3021  3041  3047  3055  3071  3108
##  [121]  3128  3133  3137  3190  3192  3214  3236  3246  3249  3261  3315  3319
##  [133]  3326  3328  3347  3363  3390  3392  3399  3431  3454  3458  3462  3479
##  [145]  3482  3506  3556  3560  3609  3632  3664  3665  3668  3688  3713  3733
##  [157]  3742  3763  3780  3789  3873  3876  3965  3973  4044  4112  4127  4148
##  [169]  4200  4207  4262  4266  4314  4348  4352  4364  4420  4428  4489  4535
##  [181]  4592  4598  4623  4632  4652  4655  4662  4667  4714  4760  4765  4826
##  [193]  4881  4884  4899  4963  4986  5029  5059  5061  5081  5095  5111  5125
##  [205]  5161  5189  5198  5200  5201  5215  5221  5237  5243  5288  5295  5297
##  [217]  5359  5380  5390  5403  5425  5485  5488  5592  5612  5624  5658  5675
##  [229]  5693  5703  5704  5718  5727  5733  5744  5746  5747  5750  5758  5770
##  [241]  5781  5787  5838  5862  5939  5944  5959  5961  5963  5999  6047  6056
##  [253]  6081  6101  6111  6120  6127  6129  6161  6199  6212  6217  6231  6242
##  [265]  6259  6281  6288  6311  6337  6351  6354  6366  6367  6408  6436  6485
##  [277]  6488  6515  6521  6568  6570  6571  6577  6590  6703  6711  6751  6761
##  [289]  6790  6798  6807  6828  6847  6993  7018  7034  7085  7096  7100  7145
##  [301]  7149  7151  7156  7189  7227  7242  7257  7318  7325  7327  7330  7399
##  [313]  7448  7465  7486  7517  7579  7581  7670  7682  7685  7697  7750  7790
##  [325]  7811  7817  7825  7862  7874  7880  7899  7900  7963  7981  7991  8026
##  [337]  8039  8053  8120  8129  8141  8166  8183  8223  8261  8272  8327  8388
##  [349]  8406  8421  8475  8503  8525  8555  8559  8587  8633  8679  8711  8725
##  [361]  8762  8767  8805  8825  8870  8875  8884  8928  8934  8976  8981  8985
##  [373]  8990  9026  9051  9070  9096  9108  9109  9143  9149  9214  9222  9225
##  [385]  9249  9291  9312  9321  9337  9382  9383  9399  9455  9562  9566  9651
##  [397]  9705  9724  9741  9750  9753  9798  9817  9829  9841  9867 10022 10046
##  [409] 10058 10083 10100 10134 10142 10144 10193 10272 10295 10312 10316 10396
##  [421] 10401 10439 10486 10515 10528 10548 10553 10593 10616 10618 10627 10632
##  [433] 10684 10851 10855 10879 10888 10897 10954 10968 10978 10988 11032 11053
##  [445] 11072 11085 11115 11135 11146 11169 11188 11271 11283 11309 11330 11370
##  [457] 11417 11464 11564 11599 11602 11616 11697 11704 11728 11834 11875 11885
##  [469] 11910 11959 11962 12032 12066 12082 12172 12196 12213 12278 12279 12352
##  [481] 12375 12419 12420 12423 12439 12454 12465 12466 12467 12496 12513 12528
##  [493] 12535 12549 12554 12564 12574 12671 12681 12692 12698 12706 12727 12741
##  [505] 12787 12792 12901 12906 12907 12947 12954 12960 12966 12982 12985 13036
##  [517] 13048 13063 13153 13169 13199 13270 13282 13302 13337 13369 13403 13418
##  [529] 13464 13480 13506 13521 13563 13605 13671 13677 13678 13681 13717 13751
##  [541] 13787 13850 13856 13881 13905 14000 14011 14021 14032 14199 14200 14250
##  [553] 14257 14258 14285 14303 14323 14352 14355 14362 14383 14416 14418 14426
##  [565] 14467 14469 14506 14518 14540 14547 14548 14589 14647 14649 14664 14675
##  [577] 14700 14711 14761 14811 14820 14858 14899 14951 14977 14998 15062 15078
##  [589] 15127 15196 15209 15239 15261 15264 15272 15273 15329 15333 15339 15380
##  [601] 15392 15400 15414 15444 15456 15473 15489 15514 15530 15532 15547 15562
##  [613] 15583 15597 15643 15661 15664 15682 15687 15715 15719 15723 15725 15752
##  [625] 15755 15765 15779 15826 15888 15902 15913 15929 15930 15953 15982 15985
##  [637] 16004 16007 16027 16046 16060 16095 16111 16116 16120 16143 16147 16173
##  [649] 16178 16215 16222 16226 16236 16249 16267 16284 16310 16330 16350 16380
##  [661] 16382 16402 16407 16409 16422 16431 16485 16531 16538 16579 16590 16601
##  [673] 16615 16647 16706 16736 16759 16784 16859 16876 16886 16902 16912 16995
##  [685] 16999 17029 17068 17075 17093 17153 17163 17174 17212 17213 17216 17217
##  [697] 17221 17223 17225 17265 17267 17312 17332 17355 17360 17365 17372 17383
##  [709] 17386 17389 17415 17416 17455 17456 17457 17459 17488 17489 17505 17507
##  [721] 17519 17536 17541 17557 17608 17610 17615 17634 17638 17653 17692 17700
##  [733] 17720 17725 17726 17737 17756 17790 17804 17810 17814 17820 17823 17833
##  [745] 17842 17844 17846 17896 17902 17938 17958 17978 17998 18008 18015 18034
##  [757] 18051 18056 18068 18087 18093 18098 18104 18129 18134 18141 18152 18164
##  [769] 18168 18185 18198 18226 18230 18233 18258 18277 18291 18316 18337 18346
##  [781] 18347 18348 18355 18374 18400 18418 18427 18430 18449 18456 18484 18485
##  [793] 18492 18496 18497 18503 18505 18530 18533 18535 18545 18559 18563 18577
##  [805] 18586 18594 18596 18609 18610 18614 18629 18643 18678 18703 18714 18717
##  [817] 18718 18720 18756 18768 18790 18791 18794 18800 18802 18816 18858 18897
##  [829] 18915 18927 18932 18936 18944 18958 18981 18998 19008 19011 19024 19029
##  [841] 19033 19060 19087 19207 19221 19276 19320 19338 19379 19408 19445 19448
##  [853] 19453 19498 19502 19505 19517 19531 19546 19577 19633 19644 19730 19734
##  [865] 19737 19778 19804 19847 19850 19868 19882 19912 19955 20015 20021 20070
##  [877] 20104 20105 20130 20131 20148 20222 20224 20271 20296 20314 20316 20364
##  [889] 20379 20404 20411 20416 20419 20536 20557 20572 20596 20603 20608 20610
##  [901] 20612 20618 20676 20689 20702 20714 20756 20776 20789 20844 20858 20865
##  [913] 20883 20891 20921 21012 21032 21086 21110 21128 21138 21157 21162 21171
##  [925] 21197 21249 21284 21296 21354 21356 21379 21415 21478 21493 21498 21518
##  [937] 21551 21570 21598 21603 21612 21621 21628 21671 21679 21684 21686 21687
##  [949] 21724 21725 21764 21783 21785 21835 21989 21996 22012 22013 22028 22052
##  [961] 22104 22114 22136 22214 22300 22303 22321 22349 22388 22420 22484 22504
##  [973] 22528 22531 22574 22606 22611 22636 22637 22644 22651 22656 22698 22705
##  [985] 22749 22793 22845 22890 22920 22925 22997 23069 23101 23117 23120 23150
##  [997] 23208 23231 23259 23336 23365 23373 23438 23458 23461 23492 23510 23513
## [1009] 23526 23527 23532 23585 23600 23642 23694 23699 23728 23752 23754 23766
## [1021] 23776 23813 23855 23875 23930 23943 23945 23963 23977 24040 24046 24063
## [1033] 24066 24113 24133 24158 24161 24175 24189 24200 24213 24226 24230 24240
## [1045] 24252 24263 24269 24277 24289 24300 24304 24305 24344 24356 24381 24396
## [1057] 24410 24415 24418 24419 24420 24422 24448 24492 24494 24503 24513 24524
## [1069] 24536 24542 24573 24664 24665 24691 24703 24706 24711 24729 24730 24751
## [1081] 24767 24768 24772 24785 24796 24828 24846 24847 24858 24864 24869 24882
## [1093] 24891 24895 24915 24924 24961 24964 24995 25023 25064 25116 25132 25146
## [1105] 25169 25176 25178 25181 25182 25210 25242 25263 25267 25273 25292 25296
## [1117] 25330 25331 25346 25353 25363 25378 25448 25452 25492 25515 25517 25526
## [1129] 25573 25580 25594 25596 25619 25637 25640 25655 25665 25675 25718 25753
## [1141] 25755 25785 25792 25804 25837 25840 25846 25888 25891 25908 25914 25919
## [1153] 25922 25928 25930 25933 25938 25957 25968 25982 25990 25995 26015 26037
## [1165] 26041 26044 26073 26074 26077 26081 26089 26097 26113 26114 26122 26141
## [1177] 26162 26174 26177 26179 26184 26190 26195 26199 26208 26209 26218 26219
## [1189] 26223 26229 26239 26253 26256 26268 26271 26283 26290 26298 26305 26316
## [1201] 26323 26330 26332 26333 26335 26338 26359 26361 26371 26376 26379 26380
## [1213] 26387 26389 26396 26398 26405 26409 26419 26420 26423 26427 26437 26443
## [1225] 26444 26448 26451 26475 26481 26504 26506 26508 26512 26517 26523 26527
## [1237] 26532 26543 26554 26557 26561 26568 26569 26572 26575 26578 26583 26594
## [1249] 26595 26599 26602 26633 26637 26638 26646 26677 26684 26690 26693 26696
## [1261] 26700 26701 26707 26709 26714 26727 26729 26732 26733 26738 26741 26754
## [1273] 26762 26775 26776 26780 26782 26784 26785 26792 26797 26803 26814 26840
## [1285] 26843 26855 26856 26867 26870 26884 26886 26888 26916 26917 26923 26932
## [1297] 26933 26943 26952 26955 26960 26968 26969 26974 26979 26989 26991 26994
## [1309] 26997 27003 27015 27016 27017 27031 27046 27060 27063 27065 27067 27077
## [1321] 27078 27079 27080 27086 27090 27091 27119 27126 27127 27137 27152 27164
## [1333] 27167 27173 27177 27185 27187 27193 27196 27200 27204 27205 27224 27228
## [1345] 27229 27239 27245 27252 27260 27263 27274 27292 27300 27304 27306 27315
## [1357] 27317 27325 27326 27327 27328 27329 27330 27339 27352 27354 27375 27385
## [1369] 27392 27395 27401 27410 27418 27420 27423 27424 27425 27430 27432 27435
## [1381] 27438 27449 27458 27460 27461 27462 27490 27495 27496 27498 27512 27522
## [1393] 27530 27543 27546 27548 27550 27553 27554 27559 27563 27565 27571 27574
## [1405] 27576 27585 27586 27591 27596 27599 27602 27606 27611 27613 27621 27633
## [1417] 27635 27636 27638 27639 27643 27653 27655 27658 27659 27671 27673 27674
## [1429] 27676 27681 27682 27690 27698 27702 27704 27707 27710 27713 27716 27724
## [1441] 27726 27728 27731 27737 27738 27750 27753 27754 27757 27758 27763 27765
## [1453] 27767 27792 27801 27805 27807 27821 27828 27833 27834 27839 27845 27851
# All 1464 Class 4 prisoners are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,21], method = "stack")

Class X

#Mean
mean_class_X <- mean(FinalProjectData[,22])
mean_class_X
## [1] 0.3501849
#Standard Deviation
sd_class_X <- sd(FinalProjectData[,22])
sd_class_X
## [1] 0.4770363
#Sample Variance
var_class_X <- var(FinalProjectData[,22])
var_class_X
## [1] 0.2275636
#Skewness
skew_class_X <- skewness(FinalProjectData[,22])
skew_class_X
## [1] 0.628119
#Kurtosis
kurt_class_X <- kurtosis(FinalProjectData[,22])
kurt_class_X
## [1] 1.394533
#1D Outliers
which(abs(scale(FinalProjectData[,22]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,22], method = "stack")

Murder

#Mean
mean_murder <- mean(FinalProjectData[,23])
mean_murder
## [1] 0.2230082
#Standard Deviation
sd_murder <- sd(FinalProjectData[,23])
sd_murder
## [1] 0.4162712
#Sample Variance
var_murder <- var(FinalProjectData[,23])
var_murder 
## [1] 0.1732817
#Skewness
skew_murder <- skewness(FinalProjectData[,23])
skew_murder
## [1] 1.330848
#Kurtosis
kurt_murder <- kurtosis(FinalProjectData[,23])
kurt_murder 
## [1] 2.771156
#1D Outliers
which(abs(scale(FinalProjectData[,23]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,23], method = "stack")

Person Crimes

#Mean
meanpersoncrimes <- mean(FinalProjectData[,24])
meanpersoncrimes
## [1] 0.6104987
#Standard Deviation
sdpersoncrimes <- sd(FinalProjectData[,24])
sdpersoncrimes
## [1] 0.4876459
#Sample Variance
varpersoncrimes  <- var(FinalProjectData[,24])
varpersoncrimes
## [1] 0.2377986
#Skewness
skewpersoncrimes <- skewness(FinalProjectData[,24])
skewpersoncrimes
## [1] -0.4532006
#Kurtosis
kurtpersoncrimes <- kurtosis(FinalProjectData[,24])
kurtpersoncrimes
## [1] 1.205391
#1D Outliers
which(abs(scale(FinalProjectData[,24]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,24], method = "stack")

Sex Crimes

#Mean
meansexcrimes <- mean(FinalProjectData[,25])
meansexcrimes
## [1] 0.1804962
#Standard Deviation
sdsexcrimes <- sd(FinalProjectData[,25])
sdsexcrimes
## [1] 0.3846071
#Sample Variance
varsexcrimes  <- var(FinalProjectData[,25])
varsexcrimes
## [1] 0.1479226
#Skewness
skewsexcrimes <- skewness(FinalProjectData[,25])
skewsexcrimes
## [1] 1.661485
#Kurtosis
kurtsexcrimes <- kurtosis(FinalProjectData[,25])
kurtsexcrimes
## [1] 3.760533
#1D Outliers
which(abs(scale(FinalProjectData[,25]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,25], method = "stack")

Drug Crimes

#Mean
meandrugcrimes <- mean(FinalProjectData[,26])
meandrugcrimes
## [1] 0.112671
#Standard Deviation
sddrugcrimes <- sd(FinalProjectData[,26])
sddrugcrimes
## [1] 0.3161959
#Sample Variance
vardrugcrimes  <- var(FinalProjectData[,26])
vardrugcrimes
## [1] 0.09997983
#Skewness
skewdrugcrimes <- skewness(FinalProjectData[,26])
skewdrugcrimes
## [1] 2.449975
#Kurtosis
kurtdrugcrimes <- kurtosis(FinalProjectData[,26])
kurtdrugcrimes
## [1] 7.002376
#1D Outliers
which(abs(scale(FinalProjectData[,26]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,26], method = "stack")

Property Crimes

#Mean
meanpropcrimes <- mean(FinalProjectData[,27])
meanpropcrimes
## [1] 0.09019425
#Standard Deviation
sdpropcrimes <- sd(FinalProjectData[,27])
sdpropcrimes
## [1] 0.286465
#Sample Variance
varpropcrimes  <- var(FinalProjectData[,27])
varpropcrimes
## [1] 0.08206219
#Skewness
skewpropcrimes <- skewness(FinalProjectData[,27])
skewpropcrimes
## [1] 2.861174
#Kurtosis
kurtpropcrimes <- kurtosis(FinalProjectData[,27])
kurtpropcrimes
## [1] 9.186317
#1D Outliers
which(abs(scale(FinalProjectData[,27]))>3)
##    [1]    30    70    93    94   130   138   144   165   166   177   207   208
##   [13]   211   222   242   260   286   288   306   328   360   367   369   370
##   [25]   382   384   387   389   392   393   435   441   451   452   468   476
##   [37]   478   501   511   512   513   516   529   536   541   546   554   562
##   [49]   579   583   589   592   605   608   622   629   637   655   657   658
##   [61]   671   672   682   695   702   705   710   712   715   721   727   750
##   [73]   753   761   791   807   822   831   833   846   859   872   885   912
##   [85]   928   941   947   954   972   978   980   982   988   993   999  1002
##   [97]  1008  1019  1028  1037  1058  1059  1076  1079  1082  1089  1093  1113
##  [109]  1128  1139  1160  1161  1169  1208  1218  1221  1225  1227  1232  1243
##  [121]  1255  1259  1283  1298  1303  1304  1307  1309  1321  1328  1330  1332
##  [133]  1351  1361  1372  1375  1377  1405  1406  1410  1413  1414  1415  1416
##  [145]  1423  1461  1462  1474  1482  1493  1494  1497  1519  1528  1534  1536
##  [157]  1537  1555  1556  1559  1571  1588  1607  1618  1619  1630  1642  1645
##  [169]  1649  1650  1669  1696  1698  1754  1771  1784  1789  1811  1824  1826
##  [181]  1827  1833  1858  1861  1865  1867  1868  1878  1880  1912  1913  1914
##  [193]  1922  1923  1924  1925  1928  1962  1977  1981  2010  2015  2024  2052
##  [205]  2064  2069  2070  2082  2104  2107  2116  2141  2152  2171  2174  2178
##  [217]  2217  2233  2247  2254  2256  2270  2275  2285  2298  2318  2322  2355
##  [229]  2369  2397  2400  2409  2453  2456  2472  2473  2478  2489  2529  2578
##  [241]  2589  2600  2609  2632  2653  2675  2680  2682  2684  2692  2693  2704
##  [253]  2719  2735  2750  2757  2760  2766  2783  2788  2790  2803  2826  2828
##  [265]  2883  2884  2891  2918  2941  2943  2978  2980  2981  2984  2986  2987
##  [277]  2990  2996  2997  3010  3015  3035  3036  3038  3040  3041  3048  3050
##  [289]  3061  3065  3066  3067  3070  3078  3080  3092  3108  3109  3111  3132
##  [301]  3133  3141  3159  3164  3165  3169  3172  3174  3182  3190  3192  3201
##  [313]  3230  3251  3256  3289  3296  3314  3318  3323  3325  3339  3352  3357
##  [325]  3370  3383  3392  3398  3399  3410  3417  3421  3427  3428  3429  3431
##  [337]  3439  3462  3475  3476  3485  3486  3489  3506  3515  3520  3529  3534
##  [349]  3540  3548  3559  3560  3561  3572  3574  3608  3609  3610  3614  3617
##  [361]  3644  3654  3684  3696  3708  3713  3717  3727  3729  3732  3740  3741
##  [373]  3746  3749  3763  3777  3786  3817  3865  3870  3876  3887  3890  3894
##  [385]  3898  3899  3900  3903  3939  3940  3944  3947  3948  3950  3955  3958
##  [397]  3963  3974  3988  4040  4044  4045  4055  4058  4068  4078  4084  4108
##  [409]  4124  4158  4179  4183  4194  4207  4254  4299  4314  4317  4325  4336
##  [421]  4349  4360  4365  4380  4402  4404  4407  4411  4414  4430  4442  4446
##  [433]  4466  4489  4490  4501  4512  4691  4712  4714  4719  4765  4767  4793
##  [445]  4802  4813  4817  4818  4834  4870  4874  4878  4911  4914  4920  4934
##  [457]  4940  4949  4961  4963  4988  4989  5104  5108  5111  5113  5125  5161
##  [469]  5194  5198  5200  5209  5218  5235  5241  5243  5249  5266  5271  5279
##  [481]  5291  5295  5304  5345  5355  5367  5420  5452  5461  5472  5492  5539
##  [493]  5546  5559  5570  5593  5596  5612  5620  5624  5626  5638  5642  5645
##  [505]  5661  5668  5683  5698  5704  5708  5717  5738  5747  5761  5765  5766
##  [517]  5773  5777  5781  5785  5787  5791  5817  5825  5831  5832  5838  5849
##  [529]  5854  5861  5870  5871  5874  5878  5887  5899  5900  5906  5910  5919
##  [541]  5939  5949  5953  5979  5981  5999  6017  6026  6035  6047  6065  6072
##  [553]  6079  6081  6085  6088  6114  6117  6120  6133  6134  6148  6149  6154
##  [565]  6161  6163  6164  6177  6178  6193  6199  6210  6231  6235  6242  6264
##  [577]  6267  6270  6275  6277  6288  6297  6298  6300  6303  6305  6336  6337
##  [589]  6364  6367  6368  6372  6377  6391  6408  6410  6449  6453  6485  6512
##  [601]  6532  6556  6570  6595  6607  6619  6632  6636  6646  6654  6685  6698
##  [613]  6708  6711  6720  6726  6751  6780  6819  6824  6844  6850  6854  6877
##  [625]  6878  6880  6882  6890  6894  6896  6898  6903  6918  6931  6938  6946
##  [637]  6953  6990  7045  7066  7074  7119  7146  7163  7174  7189  7191  7225
##  [649]  7244  7249  7281  7282  7292  7311  7318  7325  7354  7391  7440  7467
##  [661]  7474  7486  7496  7501  7546  7549  7579  7589  7601  7610  7629  7635
##  [673]  7640  7660  7663  7667  7670  7686  7687  7688  7692  7711  7720  7755
##  [685]  7764  7782  7805  7808  7819  7844  7856  7933  7937  7966  7978  8009
##  [697]  8027  8048  8072  8097  8106  8137  8147  8169  8203  8208  8216  8240
##  [709]  8268  8272  8275  8278  8283  8285  8288  8297  8302  8310  8328  8348
##  [721]  8354  8366  8370  8421  8459  8481  8482  8489  8491  8498  8520  8539
##  [733]  8557  8566  8587  8626  8638  8647  8653  8682  8689  8723  8744  8767
##  [745]  8779  8780  8789  8825  8840  8878  8913  8928  8933  8934  8945  8959
##  [757]  8964  8975  8976  8994  9004  9034  9041  9057  9069  9105  9109  9117
##  [769]  9128  9149  9181  9188  9198  9213  9219  9222  9234  9236  9246  9247
##  [781]  9249  9305  9327  9330  9361  9384  9385  9386  9418  9425  9455  9460
##  [793]  9469  9479  9485  9494  9496  9499  9515  9519  9531  9547  9548  9583
##  [805]  9585  9647  9691  9768  9781  9789  9798  9799  9805  9814  9822  9865
##  [817]  9936  9944  9991  9998 10037 10059 10074 10080 10115 10135 10142 10178
##  [829] 10188 10193 10203 10206 10216 10218 10222 10226 10245 10259 10272 10296
##  [841] 10310 10355 10363 10373 10392 10401 10406 10431 10450 10460 10467 10514
##  [853] 10515 10517 10519 10527 10528 10530 10540 10545 10558 10571 10593 10603
##  [865] 10632 10660 10672 10684 10686 10733 10736 10761 10829 10847 10864 10888
##  [877] 10892 10893 10906 10964 10975 11036 11053 11084 11085 11121 11123 11139
##  [889] 11162 11190 11194 11198 11207 11260 11262 11283 11291 11299 11303 11325
##  [901] 11326 11327 11330 11347 11369 11380 11400 11426 11436 11473 11495 11501
##  [913] 11517 11533 11534 11552 11564 11566 11576 11579 11580 11583 11593 11599
##  [925] 11603 11604 11616 11652 11653 11654 11670 11683 11696 11697 11704 11714
##  [937] 11718 11728 11746 11755 11757 11760 11782 11787 11789 11791 11799 11810
##  [949] 11842 11849 11858 11875 11878 11886 11910 11922 11932 11934 11955 11956
##  [961] 11965 11983 11985 11990 11999 12002 12008 12014 12028 12032 12053 12067
##  [973] 12077 12079 12088 12095 12097 12101 12116 12120 12121 12126 12131 12144
##  [985] 12172 12181 12196 12205 12219 12221 12222 12225 12229 12259 12294 12303
##  [997] 12321 12327 12352 12360 12366 12383 12392 12408 12409 12430 12454 12456
## [1009] 12467 12470 12471 12472 12474 12480 12481 12484 12487 12496 12533 12554
## [1021] 12557 12558 12574 12577 12587 12594 12615 12617 12631 12636 12658 12659
## [1033] 12671 12692 12693 12698 12708 12712 12734 12747 12751 12765 12769 12793
## [1045] 12829 12883 12907 12916 12926 12954 12968 12985 12986 12996 13008 13027
## [1057] 13037 13122 13128 13153 13181 13183 13217 13237 13238 13240 13241 13296
## [1069] 13307 13337 13346 13358 13373 13376 13377 13389 13392 13403 13444 13446
## [1081] 13456 13464 13476 13487 13506 13516 13543 13546 13552 13567 13578 13580
## [1093] 13597 13626 13632 13650 13653 13677 13697 13736 13773 13774 13780 13781
## [1105] 13795 13810 13850 13851 13868 13876 13881 13955 13956 13963 13969 13987
## [1117] 13990 14023 14033 14046 14064 14085 14087 14149 14160 14179 14200 14214
## [1129] 14223 14231 14235 14237 14245 14250 14251 14265 14269 14303 14322 14328
## [1141] 14333 14334 14339 14377 14386 14391 14397 14405 14411 14416 14418 14421
## [1153] 14426 14427 14438 14441 14462 14467 14474 14479 14484 14485 14513 14526
## [1165] 14540 14543 14553 14578 14587 14589 14607 14615 14624 14646 14711 14718
## [1177] 14723 14726 14761 14767 14770 14787 14789 14795 14797 14800 14820 14846
## [1189] 14877 14878 14884 14896 14897 14917 14930 14950 14951 14977 14987 14998
## [1201] 15015 15031 15056 15061 15064 15067 15069 15091 15100 15125 15127 15145
## [1213] 15151 15152 15172 15202 15213 15232 15261 15293 15296 15302 15316 15326
## [1225] 15374 15379 15380 15398 15400 15408 15422 15437 15457 15463 15478 15485
## [1237] 15532 15536 15562 15573 15597 15612 15628 15641 15670 15671 15678 15685
## [1249] 15691 15699 15701 15752 15760 15797 15801 15838 15863 15876 15895 15908
## [1261] 15913 15921 15930 15940 15972 15976 16006 16015 16026 16068 16070 16075
## [1273] 16120 16128 16144 16210 16251 16266 16272 16284 16309 16310 16326 16355
## [1285] 16374 16375 16379 16383 16403 16410 16423 16447 16521 16523 16531 16535
## [1297] 16542 16552 16569 16580 16587 16590 16609 16610 16625 16708 16743 16833
## [1309] 16846 16868 16874 16876 16877 16889 16894 16917 16918 16925 16934 16948
## [1321] 16967 16995 16999 17001 17022 17037 17072 17075 17080 17111 17116 17125
## [1333] 17126 17128 17134 17147 17153 17163 17167 17176 17179 17194 17206 17213
## [1345] 17217 17223 17238 17245 17262 17278 17287 17294 17298 17299 17316 17329
## [1357] 17331 17363 17368 17372 17383 17395 17398 17403 17411 17419 17421 17423
## [1369] 17432 17434 17436 17448 17449 17455 17457 17459 17483 17492 17512 17513
## [1381] 17514 17519 17522 17534 17555 17557 17563 17566 17567 17593 17608 17620
## [1393] 17636 17661 17674 17679 17687 17703 17705 17709 17711 17723 17753 17756
## [1405] 17758 17760 17774 17779 17781 17782 17799 17813 17819 17820 17825 17832
## [1417] 17837 17838 17844 17854 17855 17871 17884 17906 17909 17916 17918 17924
## [1429] 17941 17947 17969 17978 18003 18015 18018 18025 18032 18034 18035 18059
## [1441] 18061 18073 18078 18082 18095 18101 18104 18118 18121 18137 18150 18160
## [1453] 18163 18168 18191 18201 18209 18212 18224 18228 18229 18231 18240 18244
## [1465] 18253 18261 18264 18267 18270 18271 18278 18288 18296 18301 18305 18309
## [1477] 18311 18318 18336 18337 18339 18346 18348 18353 18356 18361 18362 18367
## [1489] 18373 18385 18387 18392 18397 18418 18422 18429 18448 18456 18460 18461
## [1501] 18465 18468 18476 18502 18525 18526 18530 18542 18543 18547 18559 18573
## [1513] 18575 18587 18594 18603 18604 18607 18610 18612 18614 18647 18662 18664
## [1525] 18666 18671 18678 18682 18683 18686 18691 18704 18709 18710 18714 18716
## [1537] 18724 18730 18734 18736 18741 18743 18748 18751 18752 18763 18766 18782
## [1549] 18816 18822 18823 18831 18833 18836 18837 18839 18841 18854 18870 18877
## [1561] 18881 18889 18893 18902 18917 18919 18927 18931 18938 18951 18962 18969
## [1573] 18970 18981 18982 18987 18996 19001 19029 19036 19084 19089 19109 19111
## [1585] 19116 19124 19125 19169 19200 19216 19218 19231 19237 19243 19251 19268
## [1597] 19276 19283 19288 19289 19309 19310 19325 19362 19374 19409 19422 19445
## [1609] 19462 19467 19500 19502 19508 19523 19537 19560 19574 19581 19584 19591
## [1621] 19595 19633 19638 19656 19664 19665 19668 19684 19691 19697 19710 19737
## [1633] 19764 19768 19782 19783 19786 19793 19798 19818 19822 19832 19845 19847
## [1645] 19849 19868 19885 19891 19894 19899 19905 19914 19945 19998 20025 20031
## [1657] 20035 20055 20061 20077 20081 20092 20097 20124 20136 20145 20146 20153
## [1669] 20165 20185 20194 20197 20217 20223 20269 20271 20297 20304 20311 20337
## [1681] 20380 20402 20409 20423 20428 20441 20462 20484 20523 20544 20550 20555
## [1693] 20583 20586 20618 20650 20660 20666 20680 20701 20747 20776 20782 20795
## [1705] 20803 20806 20808 20824 20825 20828 20845 20865 20871 20891 20907 20913
## [1717] 20920 20928 20982 21005 21012 21013 21036 21039 21042 21067 21077 21089
## [1729] 21093 21112 21113 21126 21129 21169 21179 21210 21218 21241 21247 21251
## [1741] 21255 21256 21263 21269 21296 21297 21332 21358 21360 21368 21379 21386
## [1753] 21395 21396 21427 21432 21491 21513 21519 21533 21534 21540 21553 21581
## [1765] 21590 21595 21600 21603 21653 21669 21680 21691 21697 21724 21735 21740
## [1777] 21800 21830 21847 21861 21872 21880 21888 21892 21906 21911 21915 21916
## [1789] 21917 21923 21924 21931 21932 21934 21945 21955 21977 21982 21986 22003
## [1801] 22019 22029 22035 22037 22043 22045 22056 22057 22065 22068 22078 22085
## [1813] 22092 22111 22124 22126 22178 22186 22220 22235 22236 22280 22289 22302
## [1825] 22347 22353 22362 22365 22377 22383 22394 22462 22465 22470 22495 22517
## [1837] 22523 22550 22564 22590 22600 22618 22633 22637 22639 22642 22648 22654
## [1849] 22655 22657 22661 22700 22706 22711 22721 22734 22736 22749 22760 22801
## [1861] 22840 22845 22848 22871 22878 22885 22888 22889 22900 22913 22918 22926
## [1873] 22931 22935 22945 22968 22974 22989 23036 23051 23061 23066 23084 23092
## [1885] 23112 23176 23188 23216 23229 23247 23258 23264 23306 23316 23322 23345
## [1897] 23370 23371 23373 23377 23413 23421 23440 23442 23502 23508 23511 23542
## [1909] 23544 23554 23555 23558 23561 23562 23580 23604 23610 23613 23620 23643
## [1921] 23666 23667 23673 23685 23687 23705 23708 23709 23711 23738 23741 23768
## [1933] 23794 23798 23826 23857 23862 23879 23886 23889 23899 23920 23926 23930
## [1945] 23952 23962 23970 23971 23981 23986 23992 23995 23998 24010 24011 24014
## [1957] 24035 24040 24046 24049 24058 24065 24069 24079 24090 24091 24095 24103
## [1969] 24104 24111 24119 24132 24135 24140 24198 24203 24207 24210 24211 24216
## [1981] 24218 24229 24232 24234 24236 24258 24264 24269 24272 24275 24291 24306
## [1993] 24311 24314 24328 24355 24360 24376 24379 24391 24396 24401 24415 24422
## [2005] 24434 24436 24449 24458 24469 24471 24474 24480 24482 24489 24494 24497
## [2017] 24511 24523 24526 24531 24535 24536 24541 24550 24551 24553 24558 24561
## [2029] 24562 24563 24565 24578 24588 24594 24602 24605 24611 24627 24630 24642
## [2041] 24655 24679 24683 24700 24703 24704 24720 24725 24730 24733 24762 24763
## [2053] 24764 24770 24771 24774 24777 24783 24788 24795 24797 24804 24839 24844
## [2065] 24845 24846 24848 24855 24858 24866 24870 24883 24889 24897 24900 24901
## [2077] 24914 24915 24916 24918 24922 24927 24928 24929 24937 24939 24949 24950
## [2089] 24951 24969 24970 24984 25000 25005 25028 25035 25042 25043 25044 25048
## [2101] 25057 25059 25060 25067 25070 25075 25077 25080 25088 25106 25107 25112
## [2113] 25114 25116 25122 25128 25138 25142 25143 25144 25155 25162 25169 25171
## [2125] 25174 25181 25182 25186 25190 25192 25200 25208 25221 25229 25257 25261
## [2137] 25262 25269 25271 25273 25279 25289 25290 25307 25309 25324 25333 25339
## [2149] 25344 25371 25391 25398 25402 25406 25413 25451 25458 25464 25466 25467
## [2161] 25485 25488 25501 25505 25512 25516 25518 25525 25533 25542 25545 25553
## [2173] 25557 25568 25574 25578 25591 25592 25595 25599 25600 25601 25613 25622
## [2185] 25624 25626 25637 25639 25643 25649 25661 25683 25691 25693 25705 25716
## [2197] 25723 25726 25731 25739 25740 25742 25744 25747 25750 25751 25764 25774
## [2209] 25784 25785 25795 25800 25811 25814 25818 25832 25836 25840 25844 25846
## [2221] 25854 25857 25858 25862 25864 25872 25877 25891 25899 25900 25902 25907
## [2233] 25910 25921 25923 25927 25928 25936 25938 25940 25949 25952 25959 25960
## [2245] 25961 25966 25970 25980 25989 25994 25998 26002 26029 26040 26049 26058
## [2257] 26067 26068 26070 26071 26081 26091 26098 26110 26115 26118 26142 26152
## [2269] 26158 26159 26163 26175 26177 26188 26191 26200 26203 26222 26223 26248
## [2281] 26250 26255 26263 26268 26286 26287 26290 26323 26325 26331 26334 26335
## [2293] 26345 26349 26352 26357 26358 26374 26378 26400 26403 26406 26412 26422
## [2305] 26426 26437 26439 26459 26468 26482 26483 26497 26503 26509 26514 26525
## [2317] 26526 26527 26530 26535 26551 26553 26556 26560 26565 26568 26570 26571
## [2329] 26602 26613 26615 26618 26624 26643 26655 26658 26673 26676 26677 26683
## [2341] 26685 26695 26698 26701 26718 26728 26735 26736 26737 26738 26739 26745
## [2353] 26752 26761 26765 26773 26786 26788 26790 26797 26799 26806 26808 26810
## [2365] 26824 26831 26838 26842 26850 26863 26866 26881 26883 26884 26901 26917
## [2377] 26923 26931 26935 26944 26947 26956 26960 26965 26968 26969 26973 26986
## [2389] 26994 27011 27027 27032 27035 27036 27046 27050 27077 27079 27080 27085
## [2401] 27094 27100 27114 27117 27129 27130 27138 27153 27158 27164 27173 27177
## [2413] 27182 27183 27204 27223 27229 27230 27238 27249 27250 27279 27280 27281
## [2425] 27284 27287 27289 27290 27293 27301 27304 27305 27314 27326 27333 27334
## [2437] 27337 27352 27358 27359 27362 27363 27364 27391 27396 27418 27421 27425
## [2449] 27427 27428 27432 27447 27450 27453 27469 27480 27481 27487 27489 27501
## [2461] 27503 27505 27508 27512 27523 27528 27530 27537 27556 27560 27561 27567
## [2473] 27568 27589 27598 27604 27618 27619 27628 27633 27653 27662 27673 27675
## [2485] 27677 27682 27708 27709 27720 27723 27736 27738 27740 27750 27751 27755
## [2497] 27760 27768 27772 27774 27778 27782 27787 27790 27792 27793 27798 27815
## [2509] 27816 27823 27844 27851
# All 2512 property crimes are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,27], method = "stack")

Life Sentence

#Mean
meanlifesentence <- mean(FinalProjectData[,28])
meanlifesentence
## [1] 0.05378622
#Standard Deviation
sdlifesentence <- sd(FinalProjectData[,28])
sdlifesentence
## [1] 0.2255994
#Sample Variance
varlifesentence  <- var(FinalProjectData[,28])
varlifesentence
## [1] 0.05089509
#Skewness
skewlifesentence <- skewness(FinalProjectData[,28])
skewlifesentence
## [1] 3.955877
#Kurtosis
kurtlifesentence <- kurtosis(FinalProjectData[,28])
kurtlifesentence
## [1] 16.64897
#1D Outliers
which(abs(scale(FinalProjectData[,28]))>3)
##    [1]     3     4     5     6     8    10    11    13    14    16    17    18
##   [13]    22    23    24    27    29    31    32    33    34    37    38    39
##   [25]    40    41    45    46    47    48    49    52    53    56    58    60
##   [37]    61    62    63    64    65    66    67    68    69    71    72    73
##   [49]    75    77    79    80    81    82    83    85    87    88    89    90
##   [61]    92    96    97    99   101   102   105   107   108   109   111   112
##   [73]   113   115   116   117   119   121   122   125   127   128   129   131
##   [85]   132   140   141   142   143   145   146   147   150   152   154   155
##   [97]   160   163   167   170   171   172   173   174   176   179   181   184
##  [109]   187   193   196   197   198   200   201   202   204   205   206   209
##  [121]   212   214   218   221   228   229   232   239   240   244   247   248
##  [133]   250   252   256   257   258   263   264   265   266   268   272   273
##  [145]   277   278   279   280   281   282   284   285   289   291   292   293
##  [157]   295   298   308   311   312   313   315   316   317   318   319   323
##  [169]   324   325   327   329   330   331   336   337   339   340   342   344
##  [181]   348   349   354   356   357   359   361   363   373   374   376   377
##  [193]   381   386   391   395   401   405   411   414   426   432   434   437
##  [205]   446   449   454   479   485   494   496   500   505   507   508   514
##  [217]   518   522   523   539   544   550   557   563   581   594   596   607
##  [229]   609   610   612   613   615   618   619   628   630   631   634   635
##  [241]   636   641   643   656   667   674   676   688   697   731   741   752
##  [253]   755   760   766   788   794   799   803   806   808   811   812   813
##  [265]   816   818   829   835   836   838   839   848   858   863   874   878
##  [277]   886   902   911   914   925   931   936   940   944   962   964   968
##  [289]   975   987   989  1013  1015  1021  1030  1036  1038  1042  1043  1049
##  [301]  1054  1055  1057  1069  1071  1072  1073  1106  1116  1117  1123  1138
##  [313]  1141  1143  1197  1199  1207  1211  1214  1216  1219  1220  1222  1224
##  [325]  1229  1237  1238  1252  1266  1268  1310  1347  1371  1373  1393  1397
##  [337]  1398  1400  1412  1420  1424  1432  1433  1440  1454  1464  1479  1480
##  [349]  1485  1489  1495  1503  1508  1517  1523  1529  1531  1544  1548  1561
##  [361]  1566  1575  1577  1579  1580  1585  1589  1596  1602  1604  1610  1615
##  [373]  1622  1624  1626  1639  1648  1663  1667  1668  1670  1684  1687  1694
##  [385]  1695  1707  1708  1716  1722  1728  1729  1732  1741  1743  1765  1776
##  [397]  1778  1788  1790  1794  1803  1814  1819  1821  1828  1832  1850  1852
##  [409]  1855  1856  1873  1883  1887  1889  1892  1893  1894  1906  1916  1920
##  [421]  1921  1930  1932  1934  1937  1947  1948  1949  1955  1960  1963  1964
##  [433]  1967  1970  1971  1972  1979  1990  1993  2001  2012  2016  2020  2022
##  [445]  2023  2035  2039  2043  2044  2048  2050  2077  2078  2088  2092  2095
##  [457]  2097  2129  2143  2147  2154  2166  2187  2190  2194  2203  2205  2223
##  [469]  2243  2258  2259  2260  2267  2268  2284  2290  2299  2308  2314  2315
##  [481]  2317  2319  2320  2329  2332  2338  2347  2352  2353  2364  2372  2386
##  [493]  2387  2388  2398  2405  2423  2429  2449  2463  2487  2500  2514  2517
##  [505]  2525  2526  2527  2528  2544  2551  2557  2562  2563  2564  2567  2577
##  [517]  2596  2598  2603  2604  2611  2612  2618  2621  2636  2674  2685  2709
##  [529]  2711  2714  2728  2731  2747  2754  2772  2780  2789  2793  2799  2805
##  [541]  2819  2822  2830  2836  2840  2854  2859  2860  2861  2888  2889  2902
##  [553]  2908  2921  2924  2925  2933  2946  2961  2962  2966  2976  2979  2983
##  [565]  2989  2994  3005  3016  3020  3043  3052  3073  3076  3077  3095  3097
##  [577]  3099  3103  3114  3143  3147  3177  3270  3275  3358  3367  3368  3369
##  [589]  3450  3526  3705  3787  3820  3832  3864  3869  3893  3917  3925  4008
##  [601]  4013  4017  4020  4038  4041  4048  4051  4059  4071  4119  4125  4131
##  [613]  4143  4147  4150  4160  4161  4168  4186  4202  4208  4214  4215  4225
##  [625]  4227  4228  4236  4248  4250  4263  4269  4279  4304  4315  4344  4355
##  [637]  4381  4386  4391  4433  4437  4439  4441  4465  4467  4471  4473  4483
##  [649]  4491  4493  4521  4522  4553  4555  4564  4577  4578  4585  4589  4600
##  [661]  4629  4635  4640  4653  4656  4672  4674  4675  4678  4698  4718  4722
##  [673]  4730  4733  4746  4766  4772  4773  4779  4781  4786  4792  4806  4808
##  [685]  4822  4823  4832  4835  4837  4840  4849  4857  4865  4890  4893  4926
##  [697]  4941  4950  4959  4967  4971  4977  5008  5022  5024  5048  5049  5063
##  [709]  5066  5082  5088  5089  5094  5099  5117  5122  5155  5156  5160  5162
##  [721]  5166  5167  5176  5185  5202  5205  5216  5261  5265  5287  5302  5303
##  [733]  5312  5322  5352  5353  5363  5369  5384  5404  5411  5432  5440  5442
##  [745]  5459  5478  5511  5553  5556  5561  5568  5573  5586  5606  5610  5630
##  [757]  5634  5640  5716  5731  5732  5743  5753  5841  5848  5877  5897  5935
##  [769]  5978  5985  6024  6029  6037  6151  6160  6165  6168  6186  6222  6340
##  [781]  6352  6495  6539  6578  6588  6597  6599  6659  6665  6806  6840  6947
##  [793]  6969  7023  7046  7121  7351  7363  7455  7480  7528  7673  7884  7896
##  [805]  7941  7948  7969  7987  8117  8173  8179  8461  8463  8515  8593  8625
##  [817]  8645  8719  8730  8750  8827  8837  8880  8916  8948  9045  9084  9177
##  [829]  9196  9293  9299  9328  9448  9640  9704  9713  9733  9916  9949 10007
##  [841] 10077 10094 10113 10131 10208 10289 10348 10409 10420 10589 10596 10743
##  [853] 10819 10842 10891 10916 11037 11192 11193 11201 11206 11209 11212 11214
##  [865] 11216 11220 11221 11223 11226 11227 11231 11232 11233 11235 11239 11241
##  [877] 11242 11244 11248 11250 11252 11255 11256 11258 11267 11269 11270 11272
##  [889] 11273 11274 11278 11280 11284 11287 11294 11297 11302 11308 11310 11312
##  [901] 11313 11314 11317 11322 11328 11329 11331 11332 11333 11334 11335 11336
##  [913] 11340 11341 11342 11343 11344 11346 11349 11351 11352 11356 11357 11358
##  [925] 11360 11361 11362 11364 11372 11373 11377 11378 11379 11381 11382 11384
##  [937] 11392 11397 11408 11410 11412 11418 11423 11424 11425 11429 11431 11432
##  [949] 11433 11434 11435 11440 11442 11446 11447 11452 11454 11455 11458 11460
##  [961] 11466 11468 11472 11475 11477 11479 11480 11481 11482 11490 11491 11496
##  [973] 11497 11499 11500 11510 11514 11518 11523 11526 11529 11532 11537 11540
##  [985] 11544 11545 11555 11567 11569 11570 11571 11573 11585 11587 11600 11607
##  [997] 11610 11611 11618 11623 11625 11627 11629 11632 11634 11635 11637 11642
## [1009] 11644 11658 11659 11661 11665 11668 11671 11673 11675 11676 11677 11679
## [1021] 11685 11686 11687 11692 11693 11694 11700 11701 11702 11703 11705 11709
## [1033] 11713 11715 11733 11736 11737 11738 11743 11745 11750 11751 11752 11759
## [1045] 11761 11770 11771 11773 11774 11781 11783 11784 11790 11796 11798 11803
## [1057] 11805 11806 11809 11813 11815 11816 11821 11822 11823 11824 11826 11830
## [1069] 11833 11835 11836 11837 11838 11847 11848 11853 11860 11862 11863 11866
## [1081] 11873 11877 11880 11884 11887 11888 11889 11890 11892 11894 11895 11897
## [1093] 11900 11905 11908 11915 11918 11920 11921 11925 11927 11928 11929 11935
## [1105] 11938 11950 11951 11953 11954 11961 11963 11967 11969 11972 11991 11992
## [1117] 12003 12007 12009 12017 12018 12021 12024 12033 12049 12051 12056 12057
## [1129] 12060 12063 12073 12084 12085 12086 12089 12090 12093 12094 12096 12100
## [1141] 12103 12104 12105 12107 12118 12119 12123 12124 12132 12141 12148 12155
## [1153] 12157 12159 12163 12164 12166 12169 12170 12171 12173 12174 12184 12188
## [1165] 12197 12198 12210 12217 12220 12234 12236 12241 12246 12247 12252 12260
## [1177] 12262 12269 12270 12271 12272 12283 12284 12286 12288 12289 12296 12306
## [1189] 12310 12314 12315 12316 12319 12325 12339 12343 12345 12348 12349 12351
## [1201] 12353 12359 12370 12371 12373 12377 12380 12381 12382 12390 12400 12401
## [1213] 12404 12411 12414 12422 12424 12425 12426 12427 12429 12431 12436 12441
## [1225] 12448 12458 12459 12461 12462 12476 12478 12483 12486 12488 12493 12501
## [1237] 12508 12514 12515 12521 12529 12537 12539 12544 12546 12552 12553 12560
## [1249] 12566 12567 12572 12581 12582 12583 12584 12593 12599 12602 12621 12626
## [1261] 12635 12637 12642 12644 12645 12646 12653 12654 12657 12665 12667 12670
## [1273] 12672 12684 12686 12697 12702 12710 12714 12721 12723 12758 12777 12851
## [1285] 12935 12972 13025 13038 13051 13073 13092 13142 13198 13204 13220 13234
## [1297] 13272 13274 13283 13284 13303 13305 13340 13450 13454 13472 13482 13486
## [1309] 13495 13520 13523 13545 13560 13581 13587 13590 13700 13753 13786 13801
## [1321] 13816 13846 13849 13853 13859 13878 13888 13891 13902 13931 13977 14025
## [1333] 14058 14078 14118 14151 14184 14189 14197 14254 14271 14284 14295 14395
## [1345] 14413 14450 14466 14512 14538 14571 14574 14602 14615 14719 14722 14756
## [1357] 14816 14902 14907 14921 14947 14954 14973 14992 15021 15040 15133 15162
## [1369] 15230 15236 15255 15336 15432 15434 15488 15496 15497 15508 15541 15551
## [1381] 15558 15593 15619 15646 15854 15859 15887 15994 16041 16047 16104 16184
## [1393] 16188 16237 16294 16295 16352 16368 16415 16465 16469 16487 16526 16617
## [1405] 16630 16669 16691 16702 16727 16730 16737 16749 16771 16893 17007 17110
## [1417] 17117 17169 17170 17189 17192 17280 17282 17293 17300 17393 17438 17695
## [1429] 17722 17741 17772 17835 17940 17954 17984 18116 18199 18280 18389 18469
## [1441] 18589 18657 18673 18762 18774 19007 19012 19052 19108 19145 19258 19327
## [1453] 19423 19430 19520 19703 19725 19757 19839 19872 19873 20200 20289 20299
## [1465] 20432 20449 20467 20563 20673 20717 20843 21167 21217 21428 21499 21618
## [1477] 21706 21707 21883 22018 22213 22223 22229 22368 22544 22791 22798 22967
## [1489] 23118 23367 23757 24172 24243 24747 24775 25529 27180 27663
# All 1498 life sentences are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,28], method = "stack")

Sexually Dengerous Person

#Mean
meansexdangper <- mean(FinalProjectData[,29])
meansexdangper
## [1] 0.005421708
#Standard Deviation
sdsexdangper <- sd(FinalProjectData[,29])
sdsexdangper
## [1] 0.07343369
#Sample Variance
varsexdangper  <- var(FinalProjectData[,29])
varsexdangper
## [1] 0.005392507
#Skewness
skewsexdangper <- skewness(FinalProjectData[,29])
skewsexdangper
## [1] 13.47031
#Kurtosis
kurtsexdangper <- kurtosis(FinalProjectData[,29])
kurtsexdangper
## [1] 182.4492
#1D Outliers
which(abs(scale(FinalProjectData[,29]))>3)
##   [1]    57   164   220   235   326   371   493   558   659   660   675   678
##  [13]   775   845   853   883  1110  1122  1131  1153  1157  1241  1245  1258
##  [25]  1281  1323  1343  1358  1399  1431  1656  1786  1839  1973  2146  2199
##  [37]  2218  2770  3254  3432  3884  3891  3914  3954  3968  3999  4100  4149
##  [49]  4353  4538  4562  4622  4991  5092  5196  5248  5493  5567  5584  5613
##  [61]  5618  5662  5674  5689  5749  5798  5816  5858  5892  5947  6003  6006
##  [73]  6012  6038  6086  6112  6116  7253  7866  8015  8909 11234 11275 11285
##  [85] 11289 11321 11359 11390 11399 11401 11405 11493 11542 11549 11724 11804
##  [97] 11807 11846 11852 11864 11899 11906 11919 11964 12029 12069 12098 12102
## [109] 12191 12275 12287 12300 12455 12490 12588 12639 12674 12676 12695 12756
## [121] 12780 12997 13180 13368 13694 14670 15601 15650 16182 16801 17494 17538
## [133] 17645 17649 17698 17786 17898 17950 17999 18049 18069 18287 18331 18343
## [145] 18447 18478 18755 18867 20573 20627 23731
# Approximately 150 sexually dangerous persons are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,29], method = "stack")

Sentence Years

#Mean
meansentenceyears <- mean(FinalProjectData[,30])
meansentenceyears
## [1] 24.19297
#Standard Deviation
sdsentenceyears <- sd(FinalProjectData[,30])
sdsentenceyears
## [1] 30.86298
#Sample Variance
varsentenceyears  <- var(FinalProjectData[,30])
varsentenceyears
## [1] 952.5234
#Skewness
skewsentenceyears <- skewness(FinalProjectData[,30])
skewsentenceyears
## [1] 2.836815
#Kurtosis
kurtsentenceyears <- kurtosis(FinalProjectData[,30])
kurtsentenceyears
## [1] 19.29029
#1D Outliers
sentenceyearsoutliers <- which(abs(scale(FinalProjectData[,30]))>3)
sentenceyearsoutliers
##    [1]     3     4     5     6     8    10    11    13    14    16    17    18
##   [13]    22    23    24    27    29    31    32    33    34    37    38    39
##   [25]    40    41    45    46    47    48    49    52    53    56    57    58
##   [37]    60    61    62    63    64    65    66    67    68    69    71    72
##   [49]    73    75    77    79    80    81    82    83    85    87    88    89
##   [61]    90    92    96    97    99   101   102   105   107   108   109   111
##   [73]   112   113   115   116   117   119   121   122   125   127   128   129
##   [85]   131   132   140   141   142   143   145   146   147   150   152   154
##   [97]   155   160   163   164   167   170   171   172   173   174   176   179
##  [109]   181   184   187   193   196   197   198   200   201   202   204   205
##  [121]   206   209   212   214   218   220   221   228   229   232   235   239
##  [133]   240   244   247   248   250   252   256   257   258   263   264   265
##  [145]   266   268   272   273   277   278   279   280   281   282   284   285
##  [157]   289   291   292   293   295   298   308   311   312   313   315   316
##  [169]   317   318   319   323   324   325   326   327   329   330   331   336
##  [181]   337   339   340   342   344   348   349   354   356   357   359   361
##  [193]   363   371   373   374   376   377   381   386   391   395   401   405
##  [205]   411   414   426   432   434   437   446   449   454   479   485   493
##  [217]   494   496   500   505   507   508   514   518   522   523   539   544
##  [229]   550   557   558   563   581   594   596   607   609   610   612   613
##  [241]   615   618   619   628   630   631   634   635   636   641   643   656
##  [253]   659   660   667   674   675   676   678   688   697   731   741   752
##  [265]   755   760   766   775   788   794   799   803   806   808   811   812
##  [277]   813   816   818   829   835   836   838   839   845   848   853   858
##  [289]   863   874   878   883   886   902   911   914   925   931   936   940
##  [301]   944   962   964   968   975   987   989  1013  1015  1021  1030  1036
##  [313]  1038  1042  1043  1049  1054  1055  1057  1069  1071  1072  1073  1106
##  [325]  1110  1116  1117  1122  1123  1131  1138  1141  1143  1153  1157  1197
##  [337]  1199  1207  1211  1214  1216  1219  1220  1222  1224  1229  1237  1238
##  [349]  1241  1245  1252  1258  1266  1268  1281  1310  1323  1343  1347  1358
##  [361]  1371  1373  1393  1397  1398  1399  1400  1412  1420  1424  1431  1432
##  [373]  1433  1440  1454  1464  1479  1480  1485  1489  1495  1503  1508  1517
##  [385]  1523  1529  1531  1544  1548  1561  1566  1575  1577  1579  1580  1585
##  [397]  1589  1596  1602  1604  1610  1615  1622  1624  1626  1639  1648  1656
##  [409]  1663  1667  1668  1670  1677  1684  1687  1694  1695  1707  1708  1716
##  [421]  1722  1728  1729  1732  1741  1743  1765  1776  1778  1786  1788  1790
##  [433]  1794  1803  1814  1819  1821  1828  1832  1839  1850  1852  1855  1856
##  [445]  1873  1883  1887  1889  1892  1893  1894  1906  1916  1920  1921  1930
##  [457]  1932  1934  1937  1947  1948  1949  1955  1960  1963  1964  1967  1970
##  [469]  1971  1972  1973  1979  1990  1993  2001  2012  2016  2020  2022  2023
##  [481]  2035  2039  2043  2044  2048  2050  2077  2078  2088  2092  2095  2097
##  [493]  2129  2143  2146  2147  2154  2166  2187  2190  2194  2199  2203  2205
##  [505]  2218  2223  2243  2258  2259  2260  2267  2268  2284  2290  2299  2308
##  [517]  2314  2315  2317  2319  2320  2329  2332  2338  2347  2352  2353  2364
##  [529]  2372  2386  2387  2388  2398  2405  2423  2429  2449  2463  2487  2500
##  [541]  2514  2517  2525  2526  2527  2528  2544  2551  2557  2562  2563  2564
##  [553]  2567  2577  2596  2598  2603  2604  2611  2612  2618  2621  2636  2674
##  [565]  2685  2709  2711  2714  2728  2731  2747  2754  2770  2772  2780  2789
##  [577]  2793  2799  2805  2819  2822  2830  2836  2840  2854  2859  2860  2861
##  [589]  2888  2889  2902  2908  2921  2924  2925  2933  2946  2961  2962  2966
##  [601]  2976  2979  2983  2989  2994  3005  3016  3020  3043  3052  3073  3076
##  [613]  3077  3095  3097  3099  3103  3114  3143  3147  3177  3254  3270  3275
##  [625]  3358  3367  3368  3369  3432  3450  3526  3705  3787  3819  3820  3821
##  [637]  3823  3824  3825  3826  3828  3829  3830  3831  3832  3833  3834  3835
##  [649]  3836  3837  3839  3840  3841  3842  3843  3844  3845  3846  3848  3849
##  [661]  3852  3853  3854  3855  3856  3857  3858  3859  3861  3864  3869  3884
##  [673]  3891  3893  3914  3917  3925  3954  3968  3999  4008  4013  4017  4020
##  [685]  4038  4041  4048  4051  4059  4071  4100  4119  4125  4131  4143  4147
##  [697]  4149  4150  4160  4161  4168  4186  4202  4208  4214  4215  4225  4227
##  [709]  4228  4236  4248  4250  4263  4269  4279  4304  4315  4344  4353  4355
##  [721]  4381  4386  4391  4433  4437  4439  4441  4465  4467  4471  4473  4483
##  [733]  4491  4493  4521  4522  4538  4553  4555  4562  4564  4577  4578  4585
##  [745]  4589  4600  4622  4629  4635  4640  4653  4656  4672  4674  4675  4678
##  [757]  4698  4718  4722  4730  4733  4746  4766  4772  4773  4779  4781  4786
##  [769]  4792  4806  4808  4822  4823  4832  4835  4837  4840  4849  4857  4865
##  [781]  4890  4893  4926  4941  4950  4959  4967  4971  4977  4991  5008  5022
##  [793]  5024  5048  5049  5063  5066  5082  5088  5089  5092  5094  5099  5117
##  [805]  5122  5155  5156  5160  5162  5166  5167  5176  5185  5196  5202  5205
##  [817]  5216  5248  5261  5265  5287  5302  5303  5312  5322  5352  5353  5363
##  [829]  5369  5384  5404  5411  5432  5440  5442  5459  5478  5493  5511  5553
##  [841]  5556  5561  5567  5568  5573  5584  5586  5606  5610  5613  5618  5630
##  [853]  5634  5640  5662  5674  5689  5716  5731  5732  5743  5749  5753  5798
##  [865]  5816  5841  5848  5858  5877  5892  5897  5935  5947  5978  5985  6003
##  [877]  6006  6012  6024  6029  6037  6038  6086  6112  6116  6139  6140  6151
##  [889]  6160  6165  6168  6186  6222  6340  6352  6495  6539  6578  6588  6597
##  [901]  6599  6659  6665  6806  6840  6947  6969  7023  7046  7121  7253  7351
##  [913]  7363  7455  7480  7528  7673  7866  7884  7896  7941  7948  7969  7987
##  [925]  8015  8117  8173  8179  8461  8463  8515  8593  8625  8645  8719  8730
##  [937]  8750  8827  8837  8880  8909  8916  8948  9045  9084  9177  9196  9293
##  [949]  9299  9328  9448  9640  9704  9713  9733  9916  9949 10007 10077 10094
##  [961] 10113 10131 10208 10289 10348 10409 10420 10589 10596 10743 10819 10842
##  [973] 10891 10916 11037 11192 11193 11201 11206 11209 11212 11214 11216 11220
##  [985] 11221 11223 11226 11227 11231 11232 11233 11234 11235 11239 11241 11242
##  [997] 11244 11248 11250 11252 11255 11256 11258 11267 11269 11270 11272 11273
## [1009] 11274 11275 11278 11280 11284 11285 11287 11289 11294 11297 11302 11308
## [1021] 11310 11312 11313 11314 11317 11321 11322 11328 11329 11331 11332 11333
## [1033] 11334 11335 11336 11340 11341 11342 11343 11344 11346 11349 11351 11352
## [1045] 11356 11357 11358 11359 11360 11361 11362 11364 11372 11373 11377 11378
## [1057] 11379 11381 11382 11384 11390 11392 11397 11399 11401 11405 11408 11410
## [1069] 11412 11418 11423 11424 11425 11429 11431 11432 11433 11434 11435 11440
## [1081] 11442 11446 11447 11452 11454 11455 11458 11460 11466 11468 11472 11475
## [1093] 11477 11479 11480 11481 11482 11490 11491 11493 11496 11497 11499 11500
## [1105] 11510 11514 11518 11523 11526 11529 11532 11537 11540 11542 11544 11545
## [1117] 11549 11555 11567 11569 11570 11571 11573 11585 11587 11600 11607 11610
## [1129] 11611 11618 11623 11625 11627 11629 11632 11634 11635 11637 11642 11644
## [1141] 11658 11659 11661 11665 11668 11671 11673 11675 11676 11677 11679 11685
## [1153] 11686 11687 11692 11693 11694 11700 11701 11702 11703 11705 11709 11713
## [1165] 11715 11724 11733 11736 11737 11738 11743 11745 11750 11751 11752 11759
## [1177] 11761 11770 11771 11773 11774 11781 11783 11784 11790 11796 11798 11803
## [1189] 11804 11805 11806 11807 11809 11813 11815 11816 11821 11822 11823 11824
## [1201] 11826 11830 11833 11835 11836 11837 11838 11846 11847 11848 11852 11853
## [1213] 11860 11862 11863 11864 11866 11873 11877 11880 11884 11887 11888 11889
## [1225] 11890 11892 11894 11895 11897 11899 11900 11905 11906 11908 11915 11918
## [1237] 11919 11920 11921 11925 11927 11928 11929 11935 11938 11950 11951 11953
## [1249] 11954 11961 11963 11964 11967 11969 11972 11991 11992 12003 12007 12009
## [1261] 12017 12018 12021 12024 12029 12033 12049 12051 12056 12057 12060 12063
## [1273] 12069 12073 12084 12085 12086 12089 12090 12093 12094 12096 12098 12100
## [1285] 12102 12103 12104 12105 12107 12118 12119 12123 12124 12132 12141 12148
## [1297] 12155 12157 12159 12163 12164 12166 12169 12170 12171 12173 12174 12184
## [1309] 12188 12191 12197 12198 12210 12217 12220 12234 12236 12241 12246 12247
## [1321] 12252 12260 12262 12269 12270 12271 12272 12275 12283 12284 12286 12287
## [1333] 12288 12289 12296 12300 12306 12310 12314 12315 12316 12319 12325 12339
## [1345] 12343 12345 12348 12349 12351 12353 12359 12370 12371 12373 12377 12380
## [1357] 12381 12382 12390 12400 12401 12404 12411 12414 12422 12424 12425 12426
## [1369] 12427 12429 12431 12436 12441 12448 12455 12458 12459 12461 12462 12476
## [1381] 12478 12483 12486 12488 12490 12493 12501 12508 12514 12515 12521 12529
## [1393] 12537 12539 12544 12546 12552 12553 12560 12566 12567 12572 12581 12582
## [1405] 12583 12584 12588 12593 12599 12602 12621 12626 12635 12637 12639 12642
## [1417] 12644 12645 12646 12653 12654 12657 12665 12667 12670 12672 12674 12676
## [1429] 12684 12686 12695 12697 12702 12710 12714 12721 12723 12756 12758 12777
## [1441] 12780 12851 12935 12972 12997 13025 13038 13051 13073 13092 13142 13180
## [1453] 13198 13204 13220 13234 13272 13274 13283 13284 13303 13305 13340 13368
## [1465] 13450 13454 13472 13482 13486 13495 13520 13523 13545 13560 13581 13587
## [1477] 13590 13694 13700 13753 13786 13801 13816 13846 13849 13853 13859 13878
## [1489] 13888 13891 13902 13931 13977 14025 14058 14078 14118 14151 14184 14189
## [1501] 14197 14254 14271 14284 14295 14395 14413 14450 14466 14512 14538 14571
## [1513] 14574 14602 14615 14670 14719 14722 14756 14816 14902 14907 14921 14947
## [1525] 14954 14973 14992 15021 15040 15133 15162 15230 15236 15255 15336 15432
## [1537] 15434 15488 15496 15497 15508 15541 15551 15558 15593 15601 15619 15646
## [1549] 15650 15854 15859 15887 15994 16041 16047 16104 16182 16184 16188 16237
## [1561] 16294 16295 16352 16368 16415 16465 16469 16487 16526 16617 16630 16669
## [1573] 16691 16702 16727 16730 16737 16749 16771 16801 16893 17007 17110 17117
## [1585] 17169 17170 17189 17192 17280 17282 17293 17300 17393 17438 17494 17538
## [1597] 17645 17649 17695 17698 17722 17741 17772 17786 17835 17898 17940 17950
## [1609] 17954 17984 17999 18049 18069 18116 18199 18280 18287 18331 18343 18389
## [1621] 18447 18469 18478 18589 18657 18673 18755 18762 18774 18867 18990 19007
## [1633] 19012 19052 19108 19145 19258 19327 19423 19430 19520 19703 19725 19757
## [1645] 19839 19872 19873 20200 20289 20299 20432 20449 20467 20563 20573 20627
## [1657] 20673 20717 20843 21167 21217 21428 21499 21618 21706 21707 21883 22018
## [1669] 22213 22223 22229 22368 22544 22791 22798 22967 23118 23367 23731 23757
## [1681] 24172 24243 24747 24775 25529 27180 27663
#Mean without Outliers
meansentenceyears <- mean(FinalProjectData[-sentenceyearsoutliers,30])
meansentenceyears
## [1] 17.84251
#Standard Deviation without Outliers
sdsentenceyears <- sd(FinalProjectData[-sentenceyearsoutliers,30])
sdsentenceyears
## [1] 17.58807
#Sample Variance without Outliers
varsentenceyears  <- var(FinalProjectData[-sentenceyearsoutliers,30])
varsentenceyears
## [1] 309.3401
#Skewness without Outliers
skewsentenceyears <- skewness(FinalProjectData[-sentenceyearsoutliers,30])
skewsentenceyears
## [1] 1.713896
#Kurtosis without Outliers
kurtsentenceyears <- kurtosis(FinalProjectData[-sentenceyearsoutliers,30])
kurtsentenceyears
## [1] 5.864075
#Plot without Outliers
stripchart(FinalProjectData[-sentenceyearsoutliers,30], method = "stack")

# The sentence years outliers seem to be influential in terms of changing the statistics and will be monitored when doing future analysis to determine the extent of their impact.

100%

#Mean
mean_100 <- mean(FinalProjectData[,31])
mean_100
## [1] 0.1624717
#Standard Deviation
sd_100 <- sd(FinalProjectData[,31])
sd_100
## [1] 0.3688896
#Sample Variance
var_100  <- var(FinalProjectData[,31])
var_100
## [1] 0.1360795
#Skewness
skew_100 <- skewness(FinalProjectData[,31])
skew_100
## [1] 1.830002
#Kurtosis
kurt_100 <- kurtosis(FinalProjectData[,31])
kurt_100
## [1] 4.348907
#1D Outliers
which(abs(scale(FinalProjectData[,31]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,31], method = "stack")

85%

#Mean
mean_85 <- mean(FinalProjectData[,32])
mean_85
## [1] 0.3031848
#Standard Deviation
sd_85 <- sd(FinalProjectData[,32])
sd_85
## [1] 0.4596426
#Sample Variance
var_85  <- var(FinalProjectData[,32])
var_85
## [1] 0.2112714
#Skewness
skew_85 <- skewness(FinalProjectData[,32])
skew_85
## [1] 0.8563989
#Kurtosis
kurt_85 <- kurtosis(FinalProjectData[,32])
kurt_85
## [1] 1.733419
#1D Outliers
which(abs(scale(FinalProjectData[,32]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,32], method = "stack")

75%

#Mean
mean_75 <- mean(FinalProjectData[,33])
mean_75
## [1] 0.01152562
#Standard Deviation
sd_75 <- sd(FinalProjectData[,33])
sd_75
## [1] 0.1067389
#Sample Variance
var_75  <- var(FinalProjectData[,33])
var_75
## [1] 0.01139319
#Skewness
skew_75<- skewness(FinalProjectData[,33])
skew_75
## [1] 9.152863
#Kurtosis
kurt_75 <- kurtosis(FinalProjectData[,33])
kurt_75
## [1] 84.7749
#1D Outliers
which(abs(scale(FinalProjectData[,33]))>3)
##   [1]   473   482   489  1091  1150  1171  1179  1187  1265  1278  1577  1695
##  [13]  2120  2134  2153  2215  2234  2324  2401  2457  2522  2843  2909  2970
##  [25]  2975  3220  3248  3311  3603  3655  3810  3879  3909  3910  4007  4012
##  [37]  4105  4210  4280  4392  4445  4617  4637  4739  4784  4938  5040  5313
##  [49]  5338  5423  5482  5508  5571  5678  5688  5720  5739  5768  5788  5845
##  [61]  5855  5996  6196  6203  6258  6428  6673  6710  6728  6777  6799  6933
##  [73]  6981  6996  7088  7131  7259  7596  7621  7726  7853  7854  8013  8014
##  [85]  8291  8521  8589  8636  8654  8756  8918  9035  9124  9223  9244  9752
##  [97]  9858  9909  9965  9966 10006 10153 10210 10251 10287 10319 10334 10365
## [109] 10522 10598 10612 10681 10729 10895 11001 11075 11104 11144 11404 11590
## [121] 11817 12256 12313 12995 13088 13158 13160 13281 13308 13429 13479 13831
## [133] 14226 14785 14807 15086 15690 15729 16087 16239 16311 16342 16394 16492
## [145] 16929 17085 17131 17156 17181 17207 17241 17330 17396 17552 17578 17597
## [157] 17752 17766 17872 17979 18002 18115 18241 18255 18268 18275 18292 18493
## [169] 18506 18534 18538 18602 18605 18622 18697 18754 18779 18826 18891 18942
## [181] 18961 18979 19038 19057 19361 19454 19471 19519 19525 19532 19614 19641
## [193] 19663 19889 19921 19934 19968 19976 20006 20012 20096 20120 20122 20129
## [205] 20159 20162 20273 20284 20301 20302 20336 20357 20382 20505 20609 20635
## [217] 20636 20656 20774 20780 20848 20864 20887 20903 20963 21131 21416 21452
## [229] 21531 21577 21695 21736 21781 21794 21896 21907 22015 22024 22097 22098
## [241] 22259 22373 22410 22424 22443 22472 22596 22616 22653 22690 22720 22750
## [253] 22780 22826 22827 22991 23034 23049 23057 23076 23077 23139 23170 23234
## [265] 23383 23537 23577 23644 23670 23935 23947 23958 24097 24204 24219 24224
## [277] 24233 24259 24290 24294 24318 24321 24424 24425 24439 24462 24467 24491
## [289] 24552 24591 24601 24618 24685 24789 24813 24923 25079 25086 25468 25497
## [301] 25847 25965 25977 26033 26062 26252 26431 26457 26864 26903 27075 27107
## [313] 27151 27191 27307 27345 27347 27670 27814 27846 27847
# Approximately 350 75% prisoners are considered outliers because there are so few of them. 

#Plot
stripchart(FinalProjectData[,33], method = "stack")

Age At Sentence

#Mean
meanage <- mean(FinalProjectData[,34], na.rm = TRUE)
meanage
## [1] 33.46836
#Standard Deviation
sdage <- sd(FinalProjectData[,34], na.rm = TRUE)
sdage
## [1] 10.92811
#Sample Variance
varage  <- var(FinalProjectData[,34], na.rm = TRUE)
varage
## [1] 119.4235
#Skewness
skewage <- skewness(FinalProjectData[,34], na.rm = TRUE)
skewage
## [1] 0.9067517
#Kurtosis
kurtage <- kurtosis(FinalProjectData[,34], na.rm = TRUE)
kurtage
## [1] 3.43644
#1D Outliers
ageoutliers <- which(abs(scale(FinalProjectData[,34]))>3)
ageoutliers
##   [1]    25    30    55    94   106   130   138   149   215   321   350   882
##  [13]  2327  2395  2952  2965  3301  3471  3492  3722  3772  3861  4561  5660
##  [25]  5704  5984  6236  6821  6917  7432  7875  7949  7979  8269  8912  9335
##  [37]  9457  9520  9657  9663 10546 10902 11107 11207 11277 11293 11311 11327
##  [49] 11359 11455 11617 11633 11647 11740 11749 12071 12352 12454 12465 12706
##  [61] 13189 13886 14846 15131 15163 16072 16318 16433 16483 17037 17259 17786
##  [73] 18551 18616 18780 18867 18933 19012 19074 19118 19329 19399 19405 19430
##  [85] 19446 19540 19549 19551 19666 19703 19985 19990 20102 20116 20182 20260
##  [97] 20313 20356 20388 20423 20629 20687 20741 20777 20993 21048 21182 21384
## [109] 21487 21678 21903 21928 21939 21966 22058 22072 22080 22159 22269 22322
## [121] 22400 22430 22521 22591 22802 22835 22906 22946 22955 23065 23199 23207
## [133] 23211 23282 23336 23359 23455 23488 23494 23553 23597 23615 23631 23637
## [145] 23677 23725 23759 23777 23836 23837 23845 23886 23966 23975 24013 24153
## [157] 24319 24375 24530 24603 24609 24697 24794 24879 25048 25357 25564 25581
## [169] 25648 25867 25892 25912 26019 26048 26062 26064 26138 26147 26477 26642
## [181] 26651 26653 26796 26885 26902 27088 27155 27222 27518 27545 27712 27751
#Mean without Outliers
meanage <- mean(FinalProjectData[-ageoutliers,34], na.rm = TRUE)
meanage
## [1] 33.20849
#Standard Deviation without Outliers
sdage <- sd(FinalProjectData[-ageoutliers,34], na.rm = TRUE)
sdage
## [1] 10.50487
#Sample Variance without Outliers
varage  <- var(FinalProjectData[-ageoutliers,34], na.rm = TRUE)
varage
## [1] 110.3523
#Skewness without Outliers
skewage <- skewness(FinalProjectData[-ageoutliers,34], na.rm = TRUE)
skewage
## [1] 0.7774994
#Kurtosis without Outliers
kurtage <- kurtosis(FinalProjectData[-ageoutliers,34], na.rm = TRUE)
kurtage
## [1] 2.928613
#Plot without Outliers
stripchart(FinalProjectData[-ageoutliers,34], method = "stack")

# The age outliers do not appear to be influential since the key statistics do not change very much.

Northwest

#Mean
meannw <- mean(FinalProjectData[,35])
meannw
## [1] 0.1314854
#Standard Deviation
sdnw <- sd(FinalProjectData[,35])
sdnw
## [1] 0.3379365
#Sample Variance
varnw  <- var(FinalProjectData[,35])
varnw
## [1] 0.1142011
#Skewness
skewnw <- skewness(FinalProjectData[,35])
skewnw
## [1] 2.181008
#Kurtosis
kurtnw <- kurtosis(FinalProjectData[,35])
kurtnw
## [1] 5.756798
#1D Outliers
which(abs(scale(FinalProjectData[,35]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,35], method = "stack")

Southwest

#Mean
meansw <- mean(FinalProjectData[,36])
meansw
## [1] 0.1123119
#Standard Deviation
sdsw <- sd(FinalProjectData[,36])
sdsw
## [1] 0.3157555
#Sample Variance
varsw  <- var(FinalProjectData[,36])
varsw
## [1] 0.09970155
#Skewness
skewsw <- skewness(FinalProjectData[,36])
skewsw
## [1] 2.455666
#Kurtosis
kurtsw <- kurtosis(FinalProjectData[,36])
kurtsw
## [1] 7.030294
#1D Outliers
which(abs(scale(FinalProjectData[,36]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,36], method = "stack")

Northeast

#Mean
meanne <- mean(FinalProjectData[,37])
meanne
## [1] 0.6520053
#Standard Deviation
sdne <- sd(FinalProjectData[,37])
sdne
## [1] 0.4763429
#Sample Variance
varne  <- var(FinalProjectData[,37])
varne
## [1] 0.2269025
#Skewness
skewne <- skewness(FinalProjectData[,37])
skewne
## [1] -0.6382295
#Kurtosis
kurtne <- kurtosis(FinalProjectData[,37])
kurtne
## [1] 1.407337
#1D Outliers
which(abs(scale(FinalProjectData[,37]))>3)
## integer(0)
#Plot
stripchart(FinalProjectData[,37], method = "stack")

Bivariate Analysis

frame <- as.data.frame(FinalProjectData)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
We looked at every plot between each dimension and sentence years, with sentence years as the predicted variable, since this is the variable we are interested in. Our more interesting observations are included below. 

Female vs Male Sentence Years

ggplot(frame, aes(x=frame[,1], y=frame[,30])) + xlab(colnames(frame)[1]) + ylab(colnames(frame)[30]) + geom_point() + geom_jitter()

men <- which(frame[,1] == 0)
women <- which(frame[,1] == 1)
mean(frame[men,30])
## [1] 24.49757
mean(frame[women,30])
## [1] 17.99176
sentenceYrs <- which(abs(scale(FinalProjectData[,30]))>3)
noMenOutliers <- intersect(sentenceYrs, men)
noWomenOutliers <- intersect(sentenceYrs, women)
mean(frame[-c(noMenOutliers,women),30])
## [1] 18.0265
mean(frame[-c(noWomenOutliers,men),30])
## [1] 14.20274
# Looking at sentence years for men versus women, women are more clustered at the bottom where men tend to spread up. The average mean sentence years for men is about 7.5 years higher than women. When we remove the outliers for sentence years, men's mean time served becomes 18 and women's becomes 14.2, so men still serve more time on average, but only by 4 years instead of 7.5.

Sentence Years vs Type of Crime

ggplot(frame, aes(x=frame[,"PropertyCrimes"], y=frame[,30])) + xlab("PropertyCrimes") + ylab(colnames(frame)[30]) + geom_point()+geom_jitter()

ggplot(frame, aes(x=frame[,"DrugCrimes"], y=frame[,30])) + xlab("DrugCrimes") + ylab(colnames(frame)[30]) + geom_point()+geom_jitter()

ggplot(frame, aes(x=frame[,"SexCrimes"], y=frame[,30])) + xlab("SexCrimes") + ylab(colnames(frame)[30]) + geom_point()+geom_jitter()

ggplot(frame, aes(x=frame[,"PersonCrimes"], y=frame[,30])) + xlab("PersonCrimes") + ylab(colnames(frame)[30]) + geom_point()+geom_jitter()

#Property and drug crimes have the lowest sentence years on average, while person, and sex crimes have the highest sentence years on average.

mean(FinalProjectData[which(FinalProjectData[,"PropertyCrimes"]==1), "SentenceYears"])
## [1] 6.964703
mean(FinalProjectData[which(FinalProjectData[,"DrugCrimes"]==1), "SentenceYears"])
## [1] 7.947445
mean(FinalProjectData[which(FinalProjectData[,"PersonCrimes"]==1), "SentenceYears"])
## [1] 30.79542
mean(FinalProjectData[which(FinalProjectData[,"SexCrimes"]==1), "SentenceYears"])
## [1] 21.14091

SentenceYears vs Crime Class

class1 <- which(frame[,18] == 1)
class2 <- which(frame[,19] == 1)
class3 <- which(frame[,20] == 1)
class4 <- which(frame[,21] == 1)
classx <- which(frame[,22] == 1)
murder <- which(frame[,23] == 1)
mean(frame[class1,30])
## [1] 10.31765
mean(frame[class2,30])
## [1] 6.388391
mean(frame[class3,30])
## [1] 3.796722
mean(frame[class4,30])
## [1] 2.581113
mean(frame[classx,30])
## [1] 21.12687
mean(frame[murder,30])
## [1] 59.902
sentenceYrs <- which(abs(scale(FinalProjectData[,30]))>3)
class1Outliers <- intersect(sentenceYrs, class1)
class2Outliers <- intersect(sentenceYrs, class2)
class3Outliers <- intersect(sentenceYrs, class3)
class4Outliers <- intersect(sentenceYrs, class4)
classxOutliers <- intersect(sentenceYrs, classx)
murderOutliers <- intersect(sentenceYrs, murder)
newC1 <- setdiff(class1, class1Outliers)
newC2 <- setdiff(class2, class2Outliers)
newC3 <- setdiff(class3, class3Outliers)
newC4 <- setdiff(class4, class4Outliers)
newCx <- setdiff(classx, classxOutliers)
newMurder <- setdiff(murder, murderOutliers)
mean(frame[newC1,30])
## [1] 9.996758
mean(frame[newC2,30])
## [1] 6.364707
mean(frame[newC3,30])
## [1] 3.796722
mean(frame[newC4,30])
## [1] 2.581113
mean(frame[newCx,30])
## [1] 18.0197
mean(frame[newMurder,30])
## [1] 44.20368
# With the outliers still included, the mean sentence years served based on crime class varied widely, with class 4 having the lowest at an average of 2.6 years and murder having the highest at almost 60 years. When we remove the outliers, most averages don't change, but the biggest difference is classx drops by 3 years and murder drops by 15 years. Since classx and murder are the most severe crime classes, this could be because they are more prone to having extreme high values for sentence years rather than the other crime classes.
#The graphs aren't included here because they don't add anything. The summary above covers it.

####Bivariate Outliers

# We ran this to grab all of our outliers for future use. This finds all of our outliers, for each column. We didn't do any additional analysis from this because there are so many outliers since if an individual is an outlier in one column, they get added. This can be helpful in the future if we split it out by each column. Nearly 67% of our rows include at least one outlier in one of the dimensions. 
library(stats)
newDataForOutliers <- FinalProjectData
multiOutlier <- function(j, outliers){
  for(i in j:37){
     if(i!=j){
      m <- mahalanobis(x = newDataForOutliers[,c(j,i)],center = c(mean(newDataForOutliers[,j]), mean(newDataForOutliers[,i])),cov = cov(newDataForOutliers[,c(j,i)]))
      indexes <- (m > 9.21034)
    indexes <- which(indexes == TRUE)
    outliers <- c(outliers, indexes)
    }
  }
  return(outliers)
}
  
outliers <- c()
 for(i in 1:37){
  if(i != 14 & i != 15 & i != 34){
    outliers <- c(outliers, multiOutlier(i, outliers))
    outliers<- unique(outliers)
  }
 } 
length(outliers)
## [1] 18675
length(outliers)/(length(newDataForOutliers)/37)
## [1] 0.6705325

Multivariate Analyis

Correlation Matrix

library(corrplot)
## corrplot 0.92 loaded
R <- cor(FinalProjectData, use = "pairwise.complete.obs")
## Warning in cor(FinalProjectData, use = "pairwise.complete.obs"): the standard
## deviation is zero
corrplot(R, method = "color", tl.pos = 'n')

Less Obvious Correlations
-It appears that there is a strong positive correlation with murder and sentence years
-Positive correlation with murder and 100P
-Stronger negative correlation when between black and hispanic than white and hispanic
-Only moderately strong correlation between sex crimes and sexually dangerous person
-Low but positive correlation of black and hispanic in the northeast, negative for white
-Weak but positive correlation with sexually dangerous person and sentence years
-Positive correlation for murder and person crimes for sentence years, but negative for drug crimes and property crime
-Negative correlation between custody date (also sentence date) and murder

More Obvious Correlations
-Negative correlation between custody date and sentence date with murder. 
-Negative correlations between Projected MSR date with life sentence and sentence years.

Pairs

pairs(FinalProjectData[1:10,1:10], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[1:10,10:20], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[1:10,20:30], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[1:10,30:37], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[10:20,10:20], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[10:20,20:30], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[10:20,30:37], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[20:30,20:30], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[20:30,30:37], pch = 16, lower.panel = NULL)

pairs(FinalProjectData[30:37,30:37], pch = 16, lower.panel = NULL)