#Synopsis

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

#Questions

Two questions will be answered

1)Across the United States, which types of events are most harmful with respect to population health? 2)Across the United States, which types of events have the greatest economic consequences?

library(ggplot2)
library("data.table")
library("dplyr")
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
## 
##     between, first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
library("lubridate")
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
## 
##     hour, isoweek, mday, minute, month, quarter, second, wday, week,
##     yday, year
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union

#Reading csv Data into Data.Table

stormDRaw <- data.table::fread(input = "/home/sarfraz/repdata_data_StormData.csv")

Show the structure of the dataset

str(stormDRaw)
## Classes 'data.table' and 'data.frame':   902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : chr  "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" ...
##  $ BGN_TIME  : chr  "0130" "0145" "1600" "0900" ...
##  $ TIME_ZONE : chr  "CST" "CST" "CST" "CST" ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: chr  "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
##  $ STATE     : chr  "AL" "AL" "AL" "AL" ...
##  $ EVTYPE    : chr  "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : chr  "" "" "" "" ...
##  $ BGN_LOCATI: chr  "" "" "" "" ...
##  $ END_DATE  : chr  "" "" "" "" ...
##  $ END_TIME  : chr  "" "" "" "" ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : chr  "" "" "" "" ...
##  $ END_LOCATI: chr  "" "" "" "" ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: chr  "K" "K" "K" "K" ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: chr  "" "" "" "" ...
##  $ WFO       : chr  "" "" "" "" ...
##  $ STATEOFFIC: chr  "" "" "" "" ...
##  $ ZONENAMES : chr  "" "" "" "" ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : chr  "" "" "" "" ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
##  - attr(*, ".internal.selfref")=<externalptr>

#Create a subset for relevant data

The relevant elements for the analysis are the date (BGN_DATE), the type of event (EVTYPE), the health impact counter (FATALITIES and INJURIES), the monetary impact on crops and goods (PROPDMG and CROPDMG) as well as their corresponding exponents (PROPDMGEXP and CROPDMGEXP).

seltData <- c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")
stormDTsubset <- stormDRaw[,seltData, with = FALSE]
names(stormDTsubset)
## [1] "EVTYPE"     "FATALITIES" "INJURIES"   "PROPDMG"    "PROPDMGEXP"
## [6] "CROPDMG"    "CROPDMGEXP"
str(stormDTsubset)
## Classes 'data.table' and 'data.frame':   902297 obs. of  7 variables:
##  $ EVTYPE    : chr  "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: chr  "K" "K" "K" "K" ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: chr  "" "" "" "" ...
##  - attr(*, ".internal.selfref")=<externalptr>

#Checking for missing values

Missing values are a common problem with environmental data and so we check to se what proportion of the observations are missing.

sum(is.na(stormDTsubset$EVTYPE))
## [1] 0
sum(is.na(stormDTsubset$FATALITIES))
## [1] 0
sum(is.na(stormDTsubset$INJURIES))
## [1] 0
sum(is.na(stormDTsubset$PROPDMG))
## [1] 0
sum(is.na(stormDTsubset$PROPDMGEXP))
## [1] 0
sum(is.na(stormDTsubset$CROPDMG))
## [1] 0
sum(is.na(stormDTsubset$CROPDMGEXP))
## [1] 0

In each analysis, we need to check the number of missing values in the variables. Total for Property Damage

The economical damages and Property provided in the storm dataset require some adjustments.

We’re going to convert the exponents into corresponding factors: “”, “?”, “+”, “-”: 1 “0”: 1 “1”: 10 “2”: 100 “3”: 1.000 “4”: 10.000 “5”: 100.000 “6”: 1.000.000 “7”: 10.000.000 “8”: 100.000.000 “9”: 1.000.000.000 “H”: 100 “K”: 1.000 “M”: 1.000.000 *“B”: 1.000.000.000

unique(stormDTsubset$PROPDMGEXP)
##  [1] "K" "M" ""  "B" "m" "+" "0" "5" "6" "?" "4" "2" "3" "h" "7" "H" "-" "1" "8"
stormDTsubset$PROPDMGEXP <- mapvalues(stormDTsubset$PROPDMGEXP, from = c("K", "M","", "B", "m", "+", "0", "5", "6", "?", "4", "2", "3", "h", "7", "H", "-", "1", "8"), to = c(10^3, 10^6, 1, 10^9, 10^6, 0,1,10^5, 10^6, 0, 10^4, 10^2, 10^3, 10^2, 10^7, 10^2, 0, 10, 10^8))
stormDTsubset$PROPDMGEXP <- as.numeric(as.character(stormDTsubset$PROPDMGEXP))
stormDTsubset$PROPDMGTOTAL <- (stormDTsubset$PROPDMG * stormDTsubset$PROPDMGEXP)/1000000000
unique(stormDTsubset$CROPDMGEXP)
## [1] ""  "M" "K" "m" "B" "?" "0" "k" "2"
stormDTsubset$CROPDMGEXP <- mapvalues(stormDTsubset$CROPDMGEXP, from = c("","M", "K", "m", "B", "?", "0", "k","2"), to = c(1,10^6, 10^3, 10^6, 10^9, 0, 1, 10^3, 10^2))
stormDTsubset$CROPDMGEXP <- as.numeric(as.character(stormDTsubset$CROPDMGEXP))
stormDTsubset$CROPDMGTOTAL <- (stormDTsubset$CROPDMG * stormDTsubset$CROPDMGEXP)/1000000000

#Processing the data for analysis Events for public health variables #Fatalities

aggFatalites <- aggregate(FATALITIES ~ EVTYPE, data = stormDTsubset,  FUN="sum")
dim(aggFatalites) 
## [1] 985   2

#Screen the top 10 Weather events of fatalities

evFatalities <- aggFatalites[order(-aggFatalites$FATALITIES), ][1:10, ]
evFatalities
##             EVTYPE FATALITIES
## 834        TORNADO       5633
## 130 EXCESSIVE HEAT       1903
## 153    FLASH FLOOD        978
## 275           HEAT        937
## 464      LIGHTNING        816
## 856      TSTM WIND        504
## 170          FLOOD        470
## 585    RIP CURRENT        368
## 359      HIGH WIND        248
## 19       AVALANCHE        224

#Plot the histogram

fatalitiesPlot <- ggplot(data=evFatalities,aes(x=reorder(EVTYPE,FATALITIES),y=FATALITIES, color=EVTYPE)) + geom_bar(stat="identity",fill="white") + xlab("Event Type")+ylab("Total number of fatalities") +  ggtitle("10 Fatalities Highest Events") 
fatalitiesPlot + coord_flip()

#Injuries

aggInjuries <- aggregate(INJURIES ~ EVTYPE, data = stormDTsubset,  FUN="sum")
dim(aggInjuries) 
## [1] 985   2

#Screen the top 10 Weather events of fatalities

evInjuries <- aggInjuries[order(-aggInjuries$INJURIES), ][1:10, ]
evInjuries
##                EVTYPE INJURIES
## 834           TORNADO    91346
## 856         TSTM WIND     6957
## 170             FLOOD     6789
## 130    EXCESSIVE HEAT     6525
## 464         LIGHTNING     5230
## 275              HEAT     2100
## 427         ICE STORM     1975
## 153       FLASH FLOOD     1777
## 760 THUNDERSTORM WIND     1488
## 244              HAIL     1361

#Plot the histogram

injuriesPlot <- ggplot(data=evInjuries,aes(x=reorder(EVTYPE,INJURIES),y=INJURIES, color=EVTYPE)) + geom_bar(stat="identity",fill="white") + xlab("Event Type") +  ylab("Total number of injuries") +  ggtitle("10 Injuries Highest Events") 
injuriesPlot + coord_flip()

#Property Damage

aggPdamage <- aggregate(PROPDMGTOTAL ~ EVTYPE, data = stormDTsubset,  FUN="sum")
dim(aggPdamage) 
## [1] 985   2

#Screen the top 10 Property damage Events

evPdamage <- aggPdamage[order(-aggPdamage$PROPDMGTOTAL), ][1:10, ]
evPdamage
##                EVTYPE PROPDMGTOTAL
## 170             FLOOD   144.657710
## 411 HURRICANE/TYPHOON    69.305840
## 834           TORNADO    56.947381
## 670       STORM SURGE    43.323536
## 153       FLASH FLOOD    16.822674
## 244              HAIL    15.735268
## 402         HURRICANE    11.868319
## 848    TROPICAL STORM     7.703891
## 972      WINTER STORM     6.688497
## 359         HIGH WIND     5.270046

#Plot the histogram

pdamagePlot <- ggplot(data=evPdamage, aes(x=reorder(EVTYPE, PROPDMGTOTAL), y=PROPDMGTOTAL, color=EVTYPE)) + geom_bar(stat="identity",fill="white") + xlab("Event Type") +  ylab("Total damage in dollars") +  ggtitle("10 Highest Property Damages Events") 
pdamagePlot + coord_flip()

#Crop Damage

aggCdamage <- aggregate(CROPDMGTOTAL ~ EVTYPE, data = stormDTsubset,  FUN="sum")
dim(aggCdamage) 
## [1] 985   2

#Screen the top 10 Property damage Events

evCdamage <- aggCdamage[order(-aggCdamage$CROPDMGTOTAL), ][1:10, ]
evCdamage
##                EVTYPE CROPDMGTOTAL
## 95            DROUGHT    13.972566
## 170             FLOOD     5.661968
## 590       RIVER FLOOD     5.029459
## 427         ICE STORM     5.022113
## 244              HAIL     3.025954
## 402         HURRICANE     2.741910
## 411 HURRICANE/TYPHOON     2.607873
## 153       FLASH FLOOD     1.421317
## 140      EXTREME COLD     1.292973
## 212      FROST/FREEZE     1.094086

#Plot the histogram

cdamagePlot <- ggplot(data=evCdamage, aes(x=reorder(EVTYPE, CROPDMGTOTAL),y=CROPDMGTOTAL, color=EVTYPE)) + geom_bar(stat="identity",fill="white") + xlab("Event Type") +  ylab("Total crop in dollars") +  ggtitle("10 Highest Crop Damages Events") 
cdamagePlot + coord_flip()

#Results Question 1 The histogram shows that Tornados are the most harmful weather events for people’s health. Question 2 The histogram shows that Floods cause the biggest Property damages. The histogram shows that DROUGHT cause the biggest Crop damages.