library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5     ✓ purrr   0.3.4
## ✓ tibble  3.1.6     ✓ dplyr   1.0.8
## ✓ tidyr   1.2.0     ✓ stringr 1.4.0
## ✓ readr   2.1.2     ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(tidyr)
library(dplyr)
library(readr)
fac <- read.csv("m-fac9003(3).csv")
head(fac)
##       AA    AGE    CAT     F    FDX    GM   HPQ    KMB    MEL    NYT    PG
## 1 -16.40 -12.17  -4.44 -0.06  -2.28 -2.12 -6.19 -11.01 -10.77  -6.30 -8.89
## 2   4.04   4.95   8.84  6.02  10.47  8.97 -4.01  -5.20   0.34  -4.62 -0.84
## 3   0.12  13.08   0.17  2.06  10.84  1.57  5.67   3.21  -0.17  -0.66  5.41
## 4  -4.28 -11.06   0.25 -5.67  -2.44 -4.19 -5.29  -0.65  -2.20 -10.60  4.26
## 5   5.81  19.70   8.52  3.89 -16.17 10.94  8.81   8.83  11.85  11.59 16.35
## 6  -4.05  -1.44 -22.10 -5.79  -2.81 -2.70 -1.47   1.55  -7.76  -0.12  4.80
##      TRB   TXN SP500
## 1 -13.04 -7.61 -7.52
## 2  -0.37  4.97  0.21
## 3   2.36  2.69  1.77
## 4  -7.98 -6.85 -3.34
## 5   8.82 22.88  8.55
## 6  -0.64 -5.87 -1.53
t = dim(fac)[1]
t
## [1] 168
market = fac[,14]
market
##   [1]  -7.52   0.21   1.77  -3.34   8.55  -1.53  -1.16 -10.05  -5.73  -1.27
##  [11]   5.40   1.92   3.63   6.23   1.73  -0.44   3.40  -5.25   4.02   1.52
##  [21]  -2.35   0.77  -4.77  10.82  -2.31   0.64  -2.52   2.48  -0.21  -2.04
##  [31]   3.67  -2.66   0.67  -0.03   2.77   0.74   0.46   0.80   1.62  -2.78
##  [41]   2.03  -0.18  -0.79   3.19  -1.24   1.69  -1.55   0.75   3.00  -3.28
##  [51]  -4.87   0.85   0.90  -3.03   2.79   3.39  -3.08   1.67  -4.39   0.76
##  [61]   1.95   3.13   2.26   2.33   3.16   1.67   2.73  -0.48   3.57  -0.94
##  [71]   3.66   1.32   2.85   0.29   0.38   0.93   1.87  -0.20  -5.00   1.46
##  [81]   4.99   2.20   6.92  -2.56   5.71   0.18  -4.69   5.41   5.44   3.93
##  [91]   7.39  -6.17   4.90  -3.86   4.03   1.14   0.60   6.62   4.58   0.50
## [101]  -2.30   3.53  -1.58 -14.99   5.86   7.70   5.55   5.27   3.74  -3.60
## [111]   3.51   3.44  -2.87   5.06  -3.58  -1.02  -3.24   5.85   1.48   5.35
## [121]  -5.53  -2.47   9.20  -3.55  -2.67   1.92  -2.13   5.56  -5.85  -1.00
## [131]  -8.52  -0.08   3.03  -9.64  -6.79   7.36   0.21  -2.79  -1.37  -6.69
## [141]  -8.39   1.63   7.36   0.62  -1.69  -2.22   3.52  -6.29  -1.05  -7.39
## [151]  -8.04   0.35 -11.14   8.51   5.60  -6.13  -2.84  -1.80   0.74   8.01
## [161]   5.00   1.06   1.55   1.71  -1.27   5.42   0.64   5.00
fac1 = fac[,c(-14)]
head(fac1)
##       AA    AGE    CAT     F    FDX    GM   HPQ    KMB    MEL    NYT    PG
## 1 -16.40 -12.17  -4.44 -0.06  -2.28 -2.12 -6.19 -11.01 -10.77  -6.30 -8.89
## 2   4.04   4.95   8.84  6.02  10.47  8.97 -4.01  -5.20   0.34  -4.62 -0.84
## 3   0.12  13.08   0.17  2.06  10.84  1.57  5.67   3.21  -0.17  -0.66  5.41
## 4  -4.28 -11.06   0.25 -5.67  -2.44 -4.19 -5.29  -0.65  -2.20 -10.60  4.26
## 5   5.81  19.70   8.52  3.89 -16.17 10.94  8.81   8.83  11.85  11.59 16.35
## 6  -4.05  -1.44 -22.10 -5.79  -2.81 -2.70 -1.47   1.55  -7.76  -0.12  4.80
##      TRB   TXN
## 1 -13.04 -7.61
## 2  -0.37  4.97
## 3   2.36  2.69
## 4  -7.98 -6.85
## 5   8.82 22.88
## 6  -0.64 -5.87
fac1 = as.matrix(fac1)
head(fac1)
##          AA    AGE    CAT     F    FDX    GM   HPQ    KMB    MEL    NYT    PG
## [1,] -16.40 -12.17  -4.44 -0.06  -2.28 -2.12 -6.19 -11.01 -10.77  -6.30 -8.89
## [2,]   4.04   4.95   8.84  6.02  10.47  8.97 -4.01  -5.20   0.34  -4.62 -0.84
## [3,]   0.12  13.08   0.17  2.06  10.84  1.57  5.67   3.21  -0.17  -0.66  5.41
## [4,]  -4.28 -11.06   0.25 -5.67  -2.44 -4.19 -5.29  -0.65  -2.20 -10.60  4.26
## [5,]   5.81  19.70   8.52  3.89 -16.17 10.94  8.81   8.83  11.85  11.59 16.35
## [6,]  -4.05  -1.44 -22.10 -5.79  -2.81 -2.70 -1.47   1.55  -7.76  -0.12  4.80
##         TRB   TXN
## [1,] -13.04 -7.61
## [2,]  -0.37  4.97
## [3,]   2.36  2.69
## [4,]  -7.98 -6.85
## [5,]   8.82 22.88
## [6,]  -0.64 -5.87
num = rep(1,t)
num
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xmat = cbind(num, market)
head(xmat)
##      num market
## [1,]   1  -7.52
## [2,]   1   0.21
## [3,]   1   1.77
## [4,]   1  -3.34
## [5,]   1   8.55
## [6,]   1  -1.53
betta_hat = solve(t(xmat)%*%
                    xmat)%*%
  t(xmat)%*%
  fac1
betta_hat
##              AA       AGE       CAT         F       FDX        GM       HPQ
## num    0.549124 0.7218061 0.8393521 0.4543643 0.7995790 0.1982025 0.6835681
## market 1.291591 1.5141359 0.9406928 1.2192453 0.8051166 1.0457019 1.6279512
##              KMB       MEL       NYT        PG       TRB      TXN
## num    0.5463020 0.8849263 0.4904120 0.8880914 0.6512465 1.438887
## market 0.5498052 1.1228708 0.7706495 0.4688034 0.7178808 1.796412
E_hat = fac1 - xmat%*%
  betta_hat
head(E_hat)
##              AA        AGE         CAT          F         FDX         GM
## [1,] -7.2363588 -1.5055042   1.7946575  8.6543606   2.9748981  5.5454755
## [2,]  3.2196419  3.9102254   7.8031024  5.3095942   9.5013465  8.5522001
## [3,] -2.7152402  9.6781734  -2.3343784 -0.5524285   8.6153645 -0.4790948
## [4,] -0.5152096 -6.7245922   2.5525617 -2.0520849  -0.5504894 -0.8955583
## [5,] -5.7822280  6.0323321  -0.3622754 -6.9889119 -23.8533263  1.8010466
## [6,] -2.6229896  0.1548218 -21.5000922 -4.3789190  -2.3777506 -1.2982786
##             HPQ        KMB        MEL        NYT        PG        TRB       TXN
## [1,]  5.3686247 -7.4217666 -3.2109382 -0.9951281 -6.252690 -8.2927829  4.460129
## [2,] -5.0354379 -5.8617611 -0.7807291 -5.2722484 -1.826540 -1.1720014  3.153867
## [3,]  2.1049583  1.6905428 -3.0424075 -2.5144615  3.692127  0.4381045 -1.928535
## [4,] -0.5362112  0.6400475  0.6654621 -8.5164428  4.937712 -6.2335246 -2.288872
## [5,] -5.7925506  3.5828633  1.3645288  4.5105352 11.453640  2.0308727  6.081793
## [6,]  0.3371972  1.8449000 -6.9269340  0.5686817  4.629178 -0.1928888 -4.560377
diagD_hat = diag(t(E_hat)%*%
                   E_hat)/(t-2)
ret = apply(fac1, 2, var)
r2 = 1- diag(t(E_hat)%*%
                E_hat)/((t-1)*ret)
rsq = sqrt(diagD_hat)
cov_factor = var(market)*t(betta_hat)%*%betta_hat + diag(diagD_hat)
one.vec = rep(1,13)
a = solve(cov_factor)%*%one.vec
b = t(one.vec)%*%a
gmv = a / as.numeric(b)
gmv
##            [,1]
## AA   0.03501615
## AGE -0.03373670
## CAT  0.05314427
## F    0.05576422
## FDX  0.06451069
## GM   0.12369835
## HPQ -0.03290554
## KMB  0.28022778
## MEL  0.01901912
## NYT  0.19373120
## PG   0.19019732
## TRB  0.14314200
## TXN -0.09180887