library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5     ✓ purrr   0.3.4
## ✓ tibble  3.1.6     ✓ dplyr   1.0.7
## ✓ tidyr   1.1.4     ✓ stringr 1.4.0
## ✓ readr   2.1.0     ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ggplot2)
library(csv)
#1. Import the data
stock <- read.csv('/Users/macbookair/Downloads/m-fac9003.csv')
head(stock)
##       AA    AGE    CAT     F    FDX    GM   HPQ    KMB    MEL    NYT    PG
## 1 -16.40 -12.17  -4.44 -0.06  -2.28 -2.12 -6.19 -11.01 -10.77  -6.30 -8.89
## 2   4.04   4.95   8.84  6.02  10.47  8.97 -4.01  -5.20   0.34  -4.62 -0.84
## 3   0.12  13.08   0.17  2.06  10.84  1.57  5.67   3.21  -0.17  -0.66  5.41
## 4  -4.28 -11.06   0.25 -5.67  -2.44 -4.19 -5.29  -0.65  -2.20 -10.60  4.26
## 5   5.81  19.70   8.52  3.89 -16.17 10.94  8.81   8.83  11.85  11.59 16.35
## 6  -4.05  -1.44 -22.10 -5.79  -2.81 -2.70 -1.47   1.55  -7.76  -0.12  4.80
##      TRB   TXN SP500
## 1 -13.04 -7.61 -7.52
## 2  -0.37  4.97  0.21
## 3   2.36  2.69  1.77
## 4  -7.98 -6.85 -3.34
## 5   8.82 22.88  8.55
## 6  -0.64 -5.87 -1.53
#2. Calculate the number of periods that is collected
num = dim(stock)[1]
num
## [1] 168
#3. Choose and Remove S&P500 market index monthly return from the data
market = stock[,14]
stock13 = stock[,c(-14)]
head(stock13)
##       AA    AGE    CAT     F    FDX    GM   HPQ    KMB    MEL    NYT    PG
## 1 -16.40 -12.17  -4.44 -0.06  -2.28 -2.12 -6.19 -11.01 -10.77  -6.30 -8.89
## 2   4.04   4.95   8.84  6.02  10.47  8.97 -4.01  -5.20   0.34  -4.62 -0.84
## 3   0.12  13.08   0.17  2.06  10.84  1.57  5.67   3.21  -0.17  -0.66  5.41
## 4  -4.28 -11.06   0.25 -5.67  -2.44 -4.19 -5.29  -0.65  -2.20 -10.60  4.26
## 5   5.81  19.70   8.52  3.89 -16.17 10.94  8.81   8.83  11.85  11.59 16.35
## 6  -4.05  -1.44 -22.10 -5.79  -2.81 -2.70 -1.47   1.55  -7.76  -0.12  4.80
##      TRB   TXN
## 1 -13.04 -7.61
## 2  -0.37  4.97
## 3   2.36  2.69
## 4  -7.98 -6.85
## 5   8.82 22.88
## 6  -0.64 -5.87
#4. Convert data into martrix
stock13 = as.matrix(stock13)
#5: Find beta, e, D and R-square
n = dim(stock13)[2]
n
## [1] 13
cal = rep(1,num)
head(cal)
## [1] 1 1 1 1 1 1
X = cbind(cal, market)
head(X)
##      cal market
## [1,]   1  -7.52
## [2,]   1   0.21
## [3,]   1   1.77
## [4,]   1  -3.34
## [5,]   1   8.55
## [6,]   1  -1.53
betta_hat = solve(t(X)%*%X)%*%t(X)%*%stock13
betta_hat
##              AA       AGE       CAT         F       FDX        GM       HPQ
## cal    0.549124 0.7218061 0.8393521 0.4543643 0.7995790 0.1982025 0.6835681
## market 1.291591 1.5141359 0.9406928 1.2192453 0.8051166 1.0457019 1.6279512
##              KMB       MEL       NYT        PG       TRB      TXN
## cal    0.5463020 0.8849263 0.4904120 0.8880914 0.6512465 1.438887
## market 0.5498052 1.1228708 0.7706495 0.4688034 0.7178808 1.796412
E_hat = stock13 - X%*%betta_hat
head(E_hat)
##              AA        AGE         CAT          F         FDX         GM
## [1,] -7.2363588 -1.5055042   1.7946575  8.6543606   2.9748981  5.5454755
## [2,]  3.2196419  3.9102254   7.8031024  5.3095942   9.5013465  8.5522001
## [3,] -2.7152402  9.6781734  -2.3343784 -0.5524285   8.6153645 -0.4790948
## [4,] -0.5152096 -6.7245922   2.5525617 -2.0520849  -0.5504894 -0.8955583
## [5,] -5.7822280  6.0323321  -0.3622754 -6.9889119 -23.8533263  1.8010466
## [6,] -2.6229896  0.1548218 -21.5000922 -4.3789190  -2.3777506 -1.2982786
##             HPQ        KMB        MEL        NYT        PG        TRB       TXN
## [1,]  5.3686247 -7.4217666 -3.2109382 -0.9951281 -6.252690 -8.2927829  4.460129
## [2,] -5.0354379 -5.8617611 -0.7807291 -5.2722484 -1.826540 -1.1720014  3.153867
## [3,]  2.1049583  1.6905428 -3.0424075 -2.5144615  3.692127  0.4381045 -1.928535
## [4,] -0.5362112  0.6400475  0.6654621 -8.5164428  4.937712 -6.2335246 -2.288872
## [5,] -5.7925506  3.5828633  1.3645288  4.5105352 11.453640  2.0308727  6.081793
## [6,]  0.3371972  1.8449000 -6.9269340  0.5686817  4.629178 -0.1928888 -4.560377
diagD_hat = diag(t(E_hat)%*%E_hat)/(num-2)
stockvar = apply(stock13, 2, var)
r_square = 1- diag(t(E_hat)%*%E_hat)/((num-1)*stockvar)
res_std = sqrt(diagD_hat)
cov_factor = var(market)*t(betta_hat)%*%betta_hat + diag(diagD_hat) #omega
#compute global minimum varience portfolio weight
one.vec = rep(1,13)
a = solve(cov_factor)%*%one.vec
b = t(one.vec)%*%a
mvpw = a / as.numeric(b)
mvpw
##            [,1]
## AA   0.03501615
## AGE -0.03373670
## CAT  0.05314427
## F    0.05576422
## FDX  0.06451069
## GM   0.12369835
## HPQ -0.03290554
## KMB  0.28022778
## MEL  0.01901912
## NYT  0.19373120
## PG   0.19019732
## TRB  0.14314200
## TXN -0.09180887
#Plot the weight for each MVP
barplot(t(mvpw), horiz=F, main="Weight for each MVP", col="yellow", cex.names = 0.70, las=2)