Manipulasi data dengan library dplyr

Saat melakukan manipulasi data pada R kita dapat menggunakan package dplyr. Package ini dibuat oleh Handley Wickham dan Roman Francois yang berisi kumpulan fungsi yang memudahkan manipulasi data yaitu antara lain: sample() untuk mengambil sampel secara acak dari tabel, mutate() untuk menambah kolom, select() untuk mengambil data atau variabel yang dibutuhkan, arrange() untuk mengurutkan data, filter() untuk menyaring data, groupby() untuk mengelompokkan data dan lain lain.

Data outflow pada pulau bali

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
manipulasioutflow <- read_excel(path = "outflow tahunan.xlsx")
manipulasioutflow 
## # A tibble: 4 x 12
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 34160. 37260. 38680. 31224.
## 2 Bali      8912. 10782.  7248. 13104. 14471. 18140. 17822. 20434. 20654. 14323.
## 3 Nusa Te~  3819.  4379. 10628.  5620.  6728.  8149.  8770.  9271. 10288.  8546.
## 4 Nusa Te~  3693.  4260. 11524.  4668.  5530.  5652.  7569.  7555.  7738.  8356.
## # ... with 1 more variable: 2021 <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.4     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Menghapus Beberapa Variabel yang Tidak Ingin Digunakan

bali2011 <- select(manipulasioutflow, '2011')
bali2011
## # A tibble: 4 x 1
##   `2011`
##    <dbl>
## 1 16424.
## 2  8912.
## 3  3819.
## 4  3693.
bali2 <- select(manipulasioutflow, `2012`, `2014`, `2016`, `2018`, `2020`)
bali2
## # A tibble: 4 x 5
##   `2012` `2014` `2016` `2018` `2020`
##    <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 19421. 23391. 31941. 37260. 31224.
## 2 10782. 13104. 18140. 20434. 14323.
## 3  4379.  5620.  8149.  9271.  8546.
## 4  4260.  4668.  5652.  7555.  8356.

Memilih Variabel yang Ingin Digunakan

balimin2011 <- select(manipulasioutflow, -'2017')
balimin2011
## # A tibble: 4 x 11
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2018` `2019` `2020` `2021`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 37260. 38680. 31224. 15224.
## 2 Bali      8912. 10782.  7248. 13104. 14471. 18140. 20434. 20654. 14323.  6531.
## 3 Nusa Te~  3819.  4379. 10628.  5620.  6728.  8149.  9271. 10288.  8546.  5222.
## 4 Nusa Te~  3693.  4260. 11524.  4668.  5530.  5652.  7555.  7738.  8356.  3472.

Sintaks ini menggunakan fungsi select, dan select ini tidak hanya untuk memilih kolom dalam jumlah banyak, melainkan juga bisa untuk mengganti nama kolomnya. misalnya :

balimin1 <- manipulasioutflow %>%
  select(tahun = `2014`, `2018`, `2019`)
balimin1
## # A tibble: 4 x 3
##    tahun `2018` `2019`
##    <dbl>  <dbl>  <dbl>
## 1 23391. 37260. 38680.
## 2 13104. 20434. 20654.
## 3  5620.  9271. 10288.
## 4  4668.  7555.  7738.

Mengganti Tabel Tahun

library(dplyr)
balitahun2 <- manipulasioutflow %>% rename('2010' = '2011')
head(balitahun2)
## # A tibble: 4 x 12
##   Provinsi `2010` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 34160. 37260. 38680. 31224.
## 2 Bali      8912. 10782.  7248. 13104. 14471. 18140. 17822. 20434. 20654. 14323.
## 3 Nusa Te~  3819.  4379. 10628.  5620.  6728.  8149.  8770.  9271. 10288.  8546.
## 4 Nusa Te~  3693.  4260. 11524.  4668.  5530.  5652.  7569.  7555.  7738.  8356.
## # ... with 1 more variable: 2021 <dbl>

Mengambil Nilai yang Tidak Duplikasi dari Variabel

Dari Sebuah Variabel

bali4 <- distinct(manipulasioutflow, `2015`)
bali4
## # A tibble: 4 x 1
##   `2015`
##    <dbl>
## 1 26728.
## 2 14471.
## 3  6728.
## 4  5530.

Di Semua Variabel

bali5 <- distinct(manipulasioutflow, `2015`, .keep_all = TRUE)
bali5
## # A tibble: 4 x 12
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 34160. 37260. 38680. 31224.
## 2 Bali      8912. 10782.  7248. 13104. 14471. 18140. 17822. 20434. 20654. 14323.
## 3 Nusa Te~  3819.  4379. 10628.  5620.  6728.  8149.  8770.  9271. 10288.  8546.
## 4 Nusa Te~  3693.  4260. 11524.  4668.  5530.  5652.  7569.  7555.  7738.  8356.
## # ... with 1 more variable: 2021 <dbl>

Menyeleksi Baris pada Tabel

Baris tabel diseleksi dengan menggunakan fungsi filter().

bali6 <- manipulasioutflow %>%
  filter(Provinsi <= 'bali Barat') %>%
    select(`2018`,`2019`)
bali6
## # A tibble: 1 x 2
##   `2018` `2019`
##    <dbl>  <dbl>
## 1 20434. 20654.
bali7 <- manipulasioutflow %>%
  filter(Provinsi == 'bali Barat', Provinsi == 'bali Tengah') %>%
    select( -`2020`)
bali7
## # A tibble: 0 x 11
## # ... with 11 variables: Provinsi <chr>, 2011 <dbl>, 2012 <dbl>, 2013 <dbl>,
## #   2014 <dbl>, 2015 <dbl>, 2016 <dbl>, 2017 <dbl>, 2018 <dbl>, 2019 <dbl>,
## #   2021 <dbl>
str(manipulasioutflow)
## tibble [4 x 12] (S3: tbl_df/tbl/data.frame)
##  $ Provinsi: chr [1:4] "Bali Nusra" "Bali" "Nusa Tenggara Barat" "Nusa Tenggara Timur"
##  $ 2011    : num [1:4] 16424 8912 3819 3693
##  $ 2012    : num [1:4] 19421 10782 4379 4260
##  $ 2013    : num [1:4] 29399 7248 10628 11524
##  $ 2014    : num [1:4] 23391 13104 5620 4668
##  $ 2015    : num [1:4] 26728 14471 6728 5530
##  $ 2016    : num [1:4] 31941 18140 8149 5652
##  $ 2017    : num [1:4] 34160 17822 8770 7569
##  $ 2018    : num [1:4] 37260 20434 9271 7555
##  $ 2019    : num [1:4] 38680 20654 10288 7738
##  $ 2020    : num [1:4] 31224 14323 8546 8356
##  $ 2021    : num [1:4] 15224 6531 5222 3472
str(manipulasioutflow %>% group_by(Provinsi))
## grouped_df [4 x 12] (S3: grouped_df/tbl_df/tbl/data.frame)
##  $ Provinsi: chr [1:4] "Bali Nusra" "Bali" "Nusa Tenggara Barat" "Nusa Tenggara Timur"
##  $ 2011    : num [1:4] 16424 8912 3819 3693
##  $ 2012    : num [1:4] 19421 10782 4379 4260
##  $ 2013    : num [1:4] 29399 7248 10628 11524
##  $ 2014    : num [1:4] 23391 13104 5620 4668
##  $ 2015    : num [1:4] 26728 14471 6728 5530
##  $ 2016    : num [1:4] 31941 18140 8149 5652
##  $ 2017    : num [1:4] 34160 17822 8770 7569
##  $ 2018    : num [1:4] 37260 20434 9271 7555
##  $ 2019    : num [1:4] 38680 20654 10288 7738
##  $ 2020    : num [1:4] 31224 14323 8546 8356
##  $ 2021    : num [1:4] 15224 6531 5222 3472
##  - attr(*, "groups")= tibble [4 x 2] (S3: tbl_df/tbl/data.frame)
##   ..$ Provinsi: chr [1:4] "Bali" "Bali Nusra" "Nusa Tenggara Barat" "Nusa Tenggara Timur"
##   ..$ .rows   : list<int> [1:4] 
##   .. ..$ : int 2
##   .. ..$ : int 1
##   .. ..$ : int 3
##   .. ..$ : int 4
##   .. ..@ ptype: int(0) 
##   ..- attr(*, ".drop")= logi TRUE

Pengelompokkan dan Pengurutkan Data

Pengelompokkan Data

baliup <- manipulasioutflow %>%
    group_by(Provinsi)
baliup
## # A tibble: 4 x 12
## # Groups:   Provinsi [4]
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 34160. 37260. 38680. 31224.
## 2 Bali      8912. 10782.  7248. 13104. 14471. 18140. 17822. 20434. 20654. 14323.
## 3 Nusa Te~  3819.  4379. 10628.  5620.  6728.  8149.  8770.  9271. 10288.  8546.
## 4 Nusa Te~  3693.  4260. 11524.  4668.  5530.  5652.  7569.  7555.  7738.  8356.
## # ... with 1 more variable: 2021 <dbl>

Pengurutan data

baliubah <- arrange(manipulasioutflow, `2012`)
baliubah
## # A tibble: 4 x 12
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Nusa Te~  3693.  4260. 11524.  4668.  5530.  5652.  7569.  7555.  7738.  8356.
## 2 Nusa Te~  3819.  4379. 10628.  5620.  6728.  8149.  8770.  9271. 10288.  8546.
## 3 Bali      8912. 10782.  7248. 13104. 14471. 18140. 17822. 20434. 20654. 14323.
## 4 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 34160. 37260. 38680. 31224.
## # ... with 1 more variable: 2021 <dbl>

Menambahkan kolom pda tabel

baliup1 <- manipulasioutflow %>%
    mutate(`2021` = manipulasioutflow$`2020`/2)
baliup1
## # A tibble: 4 x 12
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Bali Nu~ 16424. 19421. 29399. 23391. 26728. 31941. 34160. 37260. 38680. 31224.
## 2 Bali      8912. 10782.  7248. 13104. 14471. 18140. 17822. 20434. 20654. 14323.
## 3 Nusa Te~  3819.  4379. 10628.  5620.  6728.  8149.  8770.  9271. 10288.  8546.
## 4 Nusa Te~  3693.  4260. 11524.  4668.  5530.  5652.  7569.  7555.  7738.  8356.
## # ... with 1 more variable: 2021 <dbl>

Visualisasi Data Tabel dengan ggplot

ggplot dengan Grafik Titik

ggplot(data = manipulasioutflow, mapping = aes(x = Provinsi, y = `2011`)) +
  geom_point()

ggplot(data = manipulasioutflow, mapping = aes(x = Provinsi, y = `2012`)) +
  geom_point()