Latihan Praktikum

Ananda Shafira/G1501211012

library("epitools")
library("DescTools")
library("lawstat")

SOAL 1

Input Data

##=====================##
# INPUT DATA
##=====================##
z.fund<-factor(rep(c("1fund","2mod","3lib"),each=4))
x.sex<-factor(rep(c("1M","2F"),each=2,times=3))
y.fav<-factor(rep(c("1fav","2opp"),times=6)) 
counts<-c(128,32,123,73,182,56,168,105,119,49,111,70)
data.frame(z.fund,x.sex,y.fav,counts) 
##    z.fund x.sex y.fav counts
## 1   1fund    1M  1fav    128
## 2   1fund    1M  2opp     32
## 3   1fund    2F  1fav    123
## 4   1fund    2F  2opp     73
## 5    2mod    1M  1fav    182
## 6    2mod    1M  2opp     56
## 7    2mod    2F  1fav    168
## 8    2mod    2F  2opp    105
## 9    3lib    1M  1fav    119
## 10   3lib    1M  2opp     49
## 11   3lib    2F  1fav    111
## 12   3lib    2F  2opp     70

A.UJI MODEL INTERAKSI TIGA ARAH (SATURATED VS HOMOGENOUS)

Penentuan Kategori Referensi

##=============================## 
# Penentuan kategori reference
##=============================##
x.sex<-relevel(x.sex,ref="2F") 
y.fav<-relevel(y.fav,ref="2opp")
z.fund<-relevel(z.fund,ref="3lib")

Model Saturated

#saturated
model<- glm(counts~ x.sex+ y.fav+ z.fund+
x.sex*y.fav+ x.sex*z.fund+ y.fav*z.fund+
x.sex*y.fav*z.fund, family=poisson("link"=log)) 
summary(model) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.fav + z.fund + x.sex * y.fav + 
##     x.sex * z.fund + y.fav * z.fund + x.sex * y.fav * z.fund, 
##     family = poisson(link = log))
## 
## Deviance Residuals: 
##  [1]  0  0  0  0  0  0  0  0  0  0  0  0
## 
## Coefficients:
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    4.248495   0.119523  35.545  < 2e-16 ***
## x.sex1M                       -0.356675   0.186263  -1.915  0.05551 .  
## y.fav1fav                      0.461035   0.152626   3.021  0.00252 ** 
## z.fund1fund                    0.041964   0.167285   0.251  0.80193    
## z.fund2mod                     0.405465   0.154303   2.628  0.00860 ** 
## x.sex1M:y.fav1fav              0.426268   0.228268   1.867  0.06185 .  
## x.sex1M:z.fund1fund           -0.468049   0.282210  -1.659  0.09721 .  
## x.sex1M:z.fund2mod            -0.271934   0.249148  -1.091  0.27507    
## y.fav1fav:z.fund1fund          0.060690   0.212423   0.286  0.77511    
## y.fav1fav:z.fund2mod           0.008969   0.196903   0.046  0.96367    
## x.sex1M:y.fav1fav:z.fund1fund  0.438301   0.336151   1.304  0.19227    
## x.sex1M:y.fav1fav:z.fund2mod   0.282383   0.301553   0.936  0.34905    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2.4536e+02  on 11  degrees of freedom
## Residual deviance: 1.4655e-14  on  0  degrees of freedom
## AIC: 100.14
## 
## Number of Fisher Scoring iterations: 3
exp(model$coefficients)
##                   (Intercept)                       x.sex1M 
##                    70.0000000                     0.7000000 
##                     y.fav1fav                   z.fund1fund 
##                     1.5857143                     1.0428571 
##                    z.fund2mod             x.sex1M:y.fav1fav 
##                     1.5000000                     1.5315315 
##           x.sex1M:z.fund1fund            x.sex1M:z.fund2mod 
##                     0.6262231                     0.7619048 
##         y.fav1fav:z.fund1fund          y.fav1fav:z.fund2mod 
##                     1.0625694                     1.0090090 
## x.sex1M:y.fav1fav:z.fund1fund  x.sex1M:y.fav1fav:z.fund2mod 
##                     1.5500717                     1.3262868

Model Homogenous

#Homogenous Model 
model2 <- glm(counts~x.sex+ y.fav+ z.fund+
x.sex*y.fav+ x.sex*z.fund+ y.fav*z.fund,             
family=poisson("link"=log))
summary(model2) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.fav + z.fund + x.sex * y.fav + 
##     x.sex * z.fund + y.fav * z.fund, family = poisson(link = log))
## 
## Deviance Residuals: 
##       1        2        3        4        5        6        7        8  
##  0.2996  -0.5744  -0.3002   0.3994   0.0856  -0.1530  -0.0887   0.1129  
##       9       10       11       12  
## -0.4085   0.6655   0.4342  -0.5281  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            4.31096    0.10522  40.972  < 2e-16 ***
## x.sex1M               -0.51575    0.13814  -3.733 0.000189 ***
## y.fav1fav              0.35707    0.12658   2.821 0.004788 ** 
## z.fund1fund           -0.06762    0.14452  -0.468 0.639854    
## z.fund2mod             0.33196    0.13142   2.526 0.011540 *  
## x.sex1M:y.fav1fav      0.66406    0.12728   5.217 1.81e-07 ***
## x.sex1M:z.fund1fund   -0.16201    0.15300  -1.059 0.289649    
## x.sex1M:z.fund2mod    -0.08146    0.14079  -0.579 0.562887    
## y.fav1fav:z.fund1fund  0.23873    0.16402   1.455 0.145551    
## y.fav1fav:z.fund2mod   0.13081    0.14951   0.875 0.381614    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 245.361  on 11  degrees of freedom
## Residual deviance:   1.798  on  2  degrees of freedom
## AIC: 97.934
## 
## Number of Fisher Scoring iterations: 3

Yang digunakan residual deviance

UJI HIPOTESIS UNTUK MENGETAHUI ADA/ TIDAK HUBUNGAN TIGA ARAH (SATURATED VS HOMOGENOUS)

#pengujian hipotesis

# Deviance of Model
Deviance.model<- model2$deviance -
model$deviance
Deviance.model
## [1] 1.797977
# Chi Square tabel dengan alpa = 0.05
derajat.bebas <- (2 - 0)
derajat.bebas
## [1] 2
chi.tabel <- qchisq((1-0.05), df=derajat.bebas) 
chi.tabel
## [1] 5.991465
Keputusan <- ifelse(Deviance.model <= chi.tabel,"Terima", "Tolak")
Keputusan
## [1] "Terima"

Pada taraf nyata 5%, belum cukup bukti untuk menolak 𝐻0 atau dapat dikatakan bahwa tidak ada interaksi tiga arah antara jenis kelamin, fundamentalisme, dan pendapat mengenai hukuman mati.

Ingat, dalam membuat selisih deviance, model yang menjadi pengurang adalah model yang lebih lengkap (parameter yang lebih banyak atau derajat bebasnya lebih kecil).Makin banyak parameter, makin kecil derajat bebas nya karena derajat bebas = banyaknya amatan atau perkalian dimensi tabel kontingensi (misal: 2x2x3 = 12) - banyaknya parameter atau koefisien (lihat di output R ada berapa banyak coefficients nya termasuk intercept) .

B. UJI MODEL INTERAKSI DUA ARAH (HOMOGENOUS VS CONDITIONAL ON X)

#Conditional Association on X
model3<-glm(counts~ x.sex+ y.fav+ z.fund+
x.sex*y.fav+ x.sex*z.fund,           
family=poisson("link"=log)) 
summary(model3) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.fav + z.fund + x.sex * y.fav + 
##     x.sex * z.fund, family = poisson(link = log))
## 
## Deviance Residuals: 
##        1         2         3         4         5         6         7         8  
##  0.60542  -1.11492   0.16142  -0.20684   0.11953  -0.21283  -0.06470   0.08220  
##        9        10        11        12  
## -0.74698   1.26595  -0.08912   0.11304  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          4.23495    0.08955  47.293  < 2e-16 ***
## x.sex1M             -0.52960    0.13966  -3.792 0.000149 ***
## y.fav1fav            0.48302    0.08075   5.982 2.20e-09 ***
## z.fund1fund          0.07962    0.10309   0.772 0.439916    
## z.fund2mod           0.41097    0.09585   4.288 1.81e-05 ***
## x.sex1M:y.fav1fav    0.65845    0.12708   5.181 2.20e-07 ***
## x.sex1M:z.fund1fund -0.12841    0.15109  -0.850 0.395405    
## x.sex1M:z.fund2mod  -0.06267    0.13908  -0.451 0.652274    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 245.3612  on 11  degrees of freedom
## Residual deviance:   3.9303  on  4  degrees of freedom
## AIC: 96.067
## 
## Number of Fisher Scoring iterations: 4

yang digunakan selanjutnya adalah Residual Deviance.

#pengujian hipotesis

# Deviance of Model
Deviance.model<- model3$deviance -
model2$deviance  #model3: conditional on X, model2: homogenous
Deviance.model
## [1] 2.132302
# Chi Square tabel dengan alpa = 0.05
derajat.bebas <- (4 - 2)
derajat.bebas
## [1] 2
chi.tabel <- qchisq((1-0.05), df=derajat.bebas) 
chi.tabel
## [1] 5.991465
Keputusan <- ifelse(Deviance.model <= chi.tabel,"Terima", "Tolak")
Keputusan
## [1] "Terima"

C. UJI MODEL INTERAKSI DUA ARAH (HOMOGENOUS VS CONDITIONAL ON Y)

#Conditional Association on Y
model4<-glm(counts~ x.sex+ y.fav+ z.fund+
x.sex*y.fav+ y.fav*z.fund,         
family=poisson("link"=log)) 
summary(model4)
## 
## Call:
## glm(formula = counts ~ x.sex + y.fav + z.fund + x.sex * y.fav + 
##     y.fav * z.fund, family = poisson(link = log))
## 
## Deviance Residuals: 
##        1         2         3         4         5         6         7         8  
## -0.13887  -0.89983   0.14286   0.64384   0.09764  -0.17120  -0.10112   0.12650  
##        9        10        11        12  
##  0.02418   0.99745  -0.02499  -0.77148  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            4.33931    0.09919  43.748  < 2e-16 ***
## x.sex1M               -0.59345    0.10645  -5.575 2.48e-08 ***
## y.fav1fav              0.37259    0.12438   2.996  0.00274 ** 
## z.fund1fund           -0.12516    0.13389  -0.935  0.34989    
## z.fund2mod             0.30228    0.12089   2.500  0.01240 *  
## x.sex1M:y.fav1fav      0.65845    0.12708   5.181 2.20e-07 ***
## y.fav1fav:z.fund1fund  0.21254    0.16205   1.312  0.18966    
## y.fav1fav:z.fund2mod   0.11757    0.14771   0.796  0.42606    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 245.3612  on 11  degrees of freedom
## Residual deviance:   2.9203  on  4  degrees of freedom
## AIC: 95.057
## 
## Number of Fisher Scoring iterations: 4

yang digunakan selanjutnya adalah Residual Deviance.

#pengujian hipotesis

# Deviance of Model
Deviance.model<- model4$deviance -
model2$deviance #model4: conditional on Y, model2: homogenous
Deviance.model
## [1] 1.122315
# Chi Square tabel dengan alpa = 0.05
derajat.bebas <- (4 - 2)
derajat.bebas
## [1] 2
chi.tabel <- qchisq((1-0.05), df=derajat.bebas) 
chi.tabel
## [1] 5.991465
Keputusan <- ifelse(Deviance.model <= chi.tabel,"Terima", "Tolak")
Keputusan
## [1] "Terima"

D. UJI MODEL INTERAKSI DUA ARAH (HOMOGENOUS VS CONDITIONAL ON Z)

#Conditional Association on Y
#Conditional Association on z
model5<-glm(counts~ x.sex+ y.fav+ z.fund+
x.sex*z.fund+ y.fav*z.fund,           
family=poisson("link"=log))
summary(model5) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.fav + z.fund + x.sex * z.fund + 
##     y.fav * z.fund, family = poisson(link = log))
## 
## Deviance Residuals: 
##       1        2        3        4        5        6        7        8  
##  1.3998  -2.3495  -1.3171   1.9188   1.4595  -2.2965  -1.4130   1.9781  
##       9       10       11       12  
##  0.7777  -1.1226  -0.7675   1.0321  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            4.12255    0.10518  39.195  < 2e-16 ***
## x.sex1M               -0.07453    0.10713  -0.696    0.487    
## y.fav1fav              0.65896    0.11292   5.836 5.36e-09 ***
## z.fund1fund           -0.06540    0.15126  -0.432    0.665    
## z.fund2mod             0.33196    0.13777   2.410    0.016 *  
## x.sex1M:z.fund1fund   -0.12841    0.15109  -0.850    0.395    
## x.sex1M:z.fund2mod    -0.06267    0.13908  -0.451    0.652    
## y.fav1fav:z.fund1fund  0.21254    0.16205   1.312    0.190    
## y.fav1fav:z.fund2mod   0.11757    0.14771   0.796    0.426    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 245.361  on 11  degrees of freedom
## Residual deviance:  29.729  on  3  degrees of freedom
## AIC: 123.87
## 
## Number of Fisher Scoring iterations: 4

yang digunakan selanjutnya adalah Residual Deviance.

#pengujian hipotesis

# Deviance of Model
Deviance.model<- model5$deviance -
model2$deviance ##model5: conditional on Z, model2: homogenous
Deviance.model
## [1] 27.93095
# Chi Square tabel dengan alpa = 0.05
derajat.bebas <- (3 - 2)
derajat.bebas
## [1] 1
chi.tabel <- qchisq((1-0.05), df=derajat.bebas) 
chi.tabel
## [1] 3.841459
Keputusan <- ifelse(Deviance.model <= chi.tabel,"Terima", "Tolak")
Keputusan
## [1] "Tolak"

E. PEMILIHAN MODEL TERBAIK

#Model Terbaik
#best model
bestmodel<-glm(counts~ x.sex+ y.fav+ z.fund+
x.sex*y.fav,family=poisson("link"=log))
summary(bestmodel) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.fav + z.fund + x.sex * y.fav, 
##     family = poisson(link = log))
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.32758  -0.24954  -0.01277   0.14946   1.48613  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        4.26518    0.07794  54.721  < 2e-16 ***
## x.sex1M           -0.59345    0.10645  -5.575 2.48e-08 ***
## y.fav1fav          0.48302    0.08075   5.982 2.20e-09 ***
## z.fund1fund        0.01986    0.07533   0.264    0.792    
## z.fund2mod         0.38130    0.06944   5.491 4.00e-08 ***
## x.sex1M:y.fav1fav  0.65845    0.12708   5.181 2.20e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 245.3612  on 11  degrees of freedom
## Residual deviance:   4.6532  on  6  degrees of freedom
## AIC: 92.79
## 
## Number of Fisher Scoring iterations: 4

Dari summary model diatas terlihat bahwa best model memiliki AIC yang lebih rendah dibandingkan saturated, homogeneous, dan conditional model

F. INTERPRETASI KOEFISIEN MODEL TERBAIK

#interpretasi
data.frame(koef=bestmodel$coefficients,
exp_koef=exp(bestmodel$coefficients))
##                          koef   exp_koef
## (Intercept)        4.26517861 71.1776316
## x.sex1M           -0.59344782  0.5524194
## y.fav1fav          0.48302334  1.6209677
## z.fund1fund        0.01985881  1.0200573
## z.fund2mod         0.38129767  1.4641834
## x.sex1M:y.fav1fav  0.65845265  1.9318008

G. NILAI DUGAAN MODEL TERBAIK

#fitted
data.frame(Fund=z.fund,sex=x.sex,favor=
y.fav,counts=counts, 
fitted=bestmodel$fitted.values)
##     Fund sex favor counts    fitted
## 1  1fund  1M  1fav    128 125.59539
## 2  1fund  1M  2opp     32  40.10855
## 3  1fund  2F  1fav    123 117.69079
## 4  1fund  2F  2opp     73  72.60526
## 5   2mod  1M  1fav    182 180.27878
## 6   2mod  1M  2opp     56  57.57155
## 7   2mod  2F  1fav    168 168.93257
## 8   2mod  2F  2opp    105 104.21711
## 9   3lib  1M  1fav    119 123.12582
## 10  3lib  1M  2opp     49  39.31990
## 11  3lib  2F  1fav    111 115.37664
## 12  3lib  2F  2opp     70  71.17763

Keterangan: nilai miyu_ijk akan sama apapun referensi dari kategori peubahnya yang kita gunakan.

SOAL 2

Input Data

##=====================##
# INPUT DATA
##=====================##
z.fav<-factor(rep(c("1s_agr","2agr","3dis","4s_dis"),each=6))
x.sex<-factor(rep(c("1M","2F"),each=3,times=4))
y.race<-factor(rep(c("1white","2black","3other"),times=8)) 
counts<-c(96,16,3,71,30,6,172,17,23,174,34,13,59,1,13,96,3,10,
          15,2,1,35,2,5)
data.frame(z.fav,x.sex,y.race,counts) 
##     z.fav x.sex y.race counts
## 1  1s_agr    1M 1white     96
## 2  1s_agr    1M 2black     16
## 3  1s_agr    1M 3other      3
## 4  1s_agr    2F 1white     71
## 5  1s_agr    2F 2black     30
## 6  1s_agr    2F 3other      6
## 7    2agr    1M 1white    172
## 8    2agr    1M 2black     17
## 9    2agr    1M 3other     23
## 10   2agr    2F 1white    174
## 11   2agr    2F 2black     34
## 12   2agr    2F 3other     13
## 13   3dis    1M 1white     59
## 14   3dis    1M 2black      1
## 15   3dis    1M 3other     13
## 16   3dis    2F 1white     96
## 17   3dis    2F 2black      3
## 18   3dis    2F 3other     10
## 19 4s_dis    1M 1white     15
## 20 4s_dis    1M 2black      2
## 21 4s_dis    1M 3other      1
## 22 4s_dis    2F 1white     35
## 23 4s_dis    2F 2black      2
## 24 4s_dis    2F 3other      5

A.UJI MODEL INTERAKSI TIGA ARAH (SATURATED VS HOMOGENOUS)

Penentuan Kategori Referensi

##=============================## 
# Penentuan kategori reference
##=============================##
x.sex<-relevel(x.sex,ref="2F") 
y.race<-relevel(y.race,ref="3other")
z.fav<-relevel(z.fav,ref="4s_dis")

Model Saturated

#saturated
model<- glm(counts~ x.sex+ y.race+ z.fav+
x.sex*y.race+ x.sex*z.fav+ y.race*z.fav+
x.sex*y.race*z.fav, family=poisson("link"=log)) 
summary(model) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.race + z.fav + x.sex * y.race + 
##     x.sex * z.fav + y.race * z.fav + x.sex * y.race * z.fav, 
##     family = poisson(link = log))
## 
## Deviance Residuals: 
##  [1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        1.6094     0.4472   3.599  0.00032 ***
## x.sex1M                           -1.6094     1.0954  -1.469  0.14177    
## y.race1white                       1.9459     0.4781   4.070  4.7e-05 ***
## y.race2black                      -0.9163     0.8367  -1.095  0.27344    
## z.fav1s_agr                        0.1823     0.6055   0.301  0.76334    
## z.fav2agr                          0.9555     0.5262   1.816  0.06941 .  
## z.fav3dis                          0.6931     0.5477   1.266  0.20569    
## x.sex1M:y.race1white               0.7621     1.1381   0.670  0.50307    
## x.sex1M:y.race2black               1.6094     1.4832   1.085  0.27788    
## x.sex1M:z.fav1s_agr                0.9163     1.3038   0.703  0.48220    
## x.sex1M:z.fav2agr                  2.1800     1.1491   1.897  0.05781 .  
## x.sex1M:z.fav3dis                  1.8718     1.1734   1.595  0.11067    
## y.race1white:z.fav1s_agr           0.5250     0.6398   0.821  0.41187    
## y.race2black:z.fav1s_agr           2.5257     0.9487   2.662  0.00776 ** 
## y.race1white:z.fav2agr             0.6482     0.5579   1.162  0.24529    
## y.race2black:z.fav2agr             1.8777     0.8980   2.091  0.03652 *  
## y.race1white:z.fav3dis             0.3159     0.5822   0.542  0.58748    
## y.race2black:z.fav3dis            -0.2877     1.0646  -0.270  0.78698    
## x.sex1M:y.race1white:z.fav1s_agr   0.2327     1.3490   0.172  0.86306    
## x.sex1M:y.race2black:z.fav1s_agr  -1.5449     1.6721  -0.924  0.35552    
## x.sex1M:y.race1white:z.fav2agr    -1.3442     1.1947  -1.125  0.26050    
## x.sex1M:y.race2black:z.fav2agr    -2.8731     1.5520  -1.851  0.06413 .  
## x.sex1M:y.race1white:z.fav3dis    -1.5113     1.2245  -1.234  0.21714    
## x.sex1M:y.race2black:z.fav3dis    -2.9704     1.9262  -1.542  0.12305    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1.2482e+03  on 23  degrees of freedom
## Residual deviance: 3.7303e-14  on  0  degrees of freedom
## AIC: 157
## 
## Number of Fisher Scoring iterations: 3
exp(model$coefficients)
##                      (Intercept)                          x.sex1M 
##                       5.00000000                       0.20000000 
##                     y.race1white                     y.race2black 
##                       7.00000000                       0.40000000 
##                      z.fav1s_agr                        z.fav2agr 
##                       1.20000000                       2.60000000 
##                        z.fav3dis             x.sex1M:y.race1white 
##                       2.00000000                       2.14285714 
##             x.sex1M:y.race2black              x.sex1M:z.fav1s_agr 
##                       5.00000000                       2.50000000 
##                x.sex1M:z.fav2agr                x.sex1M:z.fav3dis 
##                       8.84615385                       6.50000000 
##         y.race1white:z.fav1s_agr         y.race2black:z.fav1s_agr 
##                       1.69047619                      12.50000000 
##           y.race1white:z.fav2agr           y.race2black:z.fav2agr 
##                       1.91208791                       6.53846154 
##           y.race1white:z.fav3dis           y.race2black:z.fav3dis 
##                       1.37142857                       0.75000000 
## x.sex1M:y.race1white:z.fav1s_agr x.sex1M:y.race2black:z.fav1s_agr 
##                       1.26197183                       0.21333333 
##   x.sex1M:y.race1white:z.fav2agr   x.sex1M:y.race2black:z.fav2agr 
##                       0.26073630                       0.05652174 
##   x.sex1M:y.race1white:z.fav3dis   x.sex1M:y.race2black:z.fav3dis 
##                       0.22061966                       0.05128205

Model Homogenous

#Homogenous Model 
model2 <- glm(counts~ x.sex+ y.race+ z.fav+
x.sex*y.race+ x.sex*z.fav+ y.race*z.fav,             
family=poisson("link"=log))
summary(model2) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.race + z.fav + x.sex * y.race + 
##     x.sex * z.fav + y.race * z.fav, family = poisson(link = log))
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.23956  -0.36301   0.00067   0.28922   1.32392  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                1.3201     0.4299   3.071 0.002136 ** 
## x.sex1M                   -0.5064     0.3584  -1.413 0.157676    
## y.race1white               2.2340     0.4421   5.053 4.35e-07 ***
## y.race2black              -0.1265     0.6548  -0.193 0.846783    
## z.fav1s_agr               -0.1222     0.5490  -0.223 0.823806    
## z.fav2agr                  1.3815     0.4600   3.003 0.002669 ** 
## z.fav3dis                  1.1680     0.4765   2.451 0.014241 *  
## x.sex1M:y.race1white      -0.3368     0.2489  -1.353 0.175958    
## x.sex1M:y.race2black      -1.0423     0.3207  -3.250 0.001154 ** 
## x.sex1M:z.fav1s_agr        1.0467     0.3160   3.313 0.000924 ***
## x.sex1M:z.fav2agr          0.8539     0.2993   2.853 0.004332 ** 
## x.sex1M:z.fav3dis          0.4126     0.3210   1.285 0.198645    
## y.race1white:z.fav1s_agr   0.8860     0.5555   1.595 0.110685    
## y.race2black:z.fav1s_agr   2.2840     0.7488   3.050 0.002289 ** 
## y.race1white:z.fav2agr     0.2123     0.4697   0.452 0.651277    
## y.race2black:z.fav2agr     0.9518     0.6869   1.386 0.165863    
## y.race1white:z.fav3dis    -0.1796     0.4877  -0.368 0.712663    
## y.race2black:z.fav3dis    -1.2538     0.8457  -1.482 0.138218    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1248.1895  on 23  degrees of freedom
## Residual deviance:    8.6165  on  6  degrees of freedom
## AIC: 153.62
## 
## Number of Fisher Scoring iterations: 5

Yang digunakan residual deviance

UJI HIPOTESIS UNTUK MENGETAHUI ADA/ TIDAK HUBUNGAN TIGA ARAH (SATURATED VS HOMOGENOUS)

Ho : Tidak ada interaksi 3 arah

H1 : Ada interaksi 3 arah

#pengujian hipotesis

# Deviance of Model
Deviance.model<- model2$deviance - model$deviance
Deviance.model
## [1] 8.616541
model2$df.residual
## [1] 6
# Chi Square tabel dengan alpa = 0.05
derajat.bebas <- (model2$df.residual - model$df.residual)
derajat.bebas
## [1] 6
chi.tabel <- qchisq((1-0.05), df=derajat.bebas) 
chi.tabel
## [1] 12.59159
Keputusan <- ifelse(Deviance.model <= chi.tabel,"Terima", "Tolak")
Keputusan
## [1] "Terima"

Pada taraf nyata 5%, belum cukup bukti untuk menolak 𝐻0 atau dapat dikatakan bahwa tidak ada interaksi tiga arah antara jenis kelamin, ras, dan pendapat/mendukung untuk memukul sebagai pendisiplinan anak.

B. UJI MODEL INTERAKSI DUA ARAH (HOMOGENOUS VS CONDITIONAL ON X)

Ho : Tidak ada interaksi antara Y dan Z

H1 : Ada interaksi Y dan Z

#Conditional Association on X
model3<-glm(counts~ x.sex+ y.race+ z.fav+
x.sex*y.race+ x.sex*z.fav,           
family=poisson("link"=log)) 
summary(model3) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.race + z.fav + x.sex * y.race + 
##     x.sex * z.fav, family = poisson(link = log))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.9335  -0.6256   0.0552   0.6367   3.2840  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            1.0923     0.2261   4.831 1.36e-06 ***
## x.sex1M               -0.5486     0.3596  -1.526 0.127119    
## y.race1white           2.4032     0.1791  13.420  < 2e-16 ***
## y.race2black           0.7077     0.2095   3.378 0.000731 ***
## z.fav1s_agr            0.9352     0.1821   5.136 2.81e-07 ***
## z.fav2agr              1.6605     0.1683   9.865  < 2e-16 ***
## z.fav3dis              0.9537     0.1816   5.251 1.51e-07 ***
## x.sex1M:y.race1white  -0.2573     0.2449  -1.050 0.293510    
## x.sex1M:y.race2black  -0.8131     0.3109  -2.615 0.008922 ** 
## x.sex1M:z.fav1s_agr    0.9194     0.3121   2.946 0.003221 ** 
## x.sex1M:z.fav2agr      0.8057     0.2977   2.707 0.006794 ** 
## x.sex1M:z.fav3dis      0.4464     0.3197   1.396 0.162674    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1248.190  on 23  degrees of freedom
## Residual deviance:   59.495  on 12  degrees of freedom
## AIC: 192.5
## 
## Number of Fisher Scoring iterations: 5

yang digunakan selanjutnya adalah residual deviance

#pengujian hipotesis

# Deviance of Model
Deviance.model<- model3$deviance - model2$deviance  
#model3: conditional on X, model2: homogenous
Deviance.model
## [1] 50.87895
# Chi Square tabel dengan alpa = 0.05
derajat.bebas <- (model3$df.residual - model2$df.residual)
derajat.bebas
## [1] 6
chi.tabel <- qchisq((1-0.05), df=derajat.bebas) 
chi.tabel
## [1] 12.59159
Keputusan <- ifelse(Deviance.model <= chi.tabel,"Terima", "Tolak")
Keputusan
## [1] "Tolak"

Pada taraf nyata 5%, cukup bukti untuk menolak 𝐻0 atau dapat dikatakan bahwa interaksi YZ signifikan (ada interaksi dua arah antara ras dengan pendapat/mendukung untuk memukul sebagai pendisiplinan anak.

C. UJI MODEL INTERAKSI DUA ARAH (HOMOGENOUS VS CONDITIONAL ON Y)

Ho : Tidak ada interaksi antara X dan Z

H1 : Ada interaksi X dan Z

#Conditional Association on Y
model4<-glm(counts~ x.sex+ y.race+ z.fav+
x.sex*y.race+ y.race*z.fav,         
family=poisson("link"=log)) 
summary(model4)
## 
## Call:
## glm(formula = counts ~ x.sex + y.race + z.fav + x.sex * y.race + 
##     y.race * z.fav, family = poisson(link = log))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.9398  -0.6296   0.0079   0.6122   1.7862  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               1.01405    0.42728   2.373  0.01763 *  
## x.sex1M                   0.16252    0.23326   0.697  0.48598    
## y.race1white              2.25109    0.45148   4.986 6.16e-07 ***
## y.race2black             -0.04761    0.66146  -0.072  0.94262    
## z.fav1s_agr               0.40547    0.52705   0.769  0.44171    
## z.fav2agr                 1.79176    0.44096   4.063 4.84e-05 ***
## z.fav3dis                 1.34373    0.45842   2.931  0.00338 ** 
## x.sex1M:y.race1white     -0.25730    0.24494  -1.050  0.29351    
## x.sex1M:y.race2black     -0.81311    0.31094  -2.615  0.00892 ** 
## y.race1white:z.fav1s_agr  0.80051    0.55115   1.452  0.14638    
## y.race2black:z.fav1s_agr  2.03688    0.74129   2.748  0.00600 ** 
## y.race1white:z.fav2agr    0.14266    0.46619   0.306  0.75960    
## y.race2black:z.fav2agr    0.75377    0.68121   1.107  0.26850    
## y.race1white:z.fav3dis   -0.21233    0.48641  -0.437  0.66245    
## y.race2black:z.fav3dis   -1.34373    0.84270  -1.595  0.11081    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1248.190  on 23  degrees of freedom
## Residual deviance:   26.557  on  9  degrees of freedom
## AIC: 165.56
## 
## Number of Fisher Scoring iterations: 5
#pengujian hipotesis

# Deviance of Model
Deviance.model<- model4$deviance - model2$deviance 
#model4: conditional on Y, model2: homogenous
Deviance.model
## [1] 17.94087
# Chi Square tabel dengan alpa = 0.05
derajat.bebas <- (model4$df.residual - model2$df.residual)
derajat.bebas
## [1] 3
chi.tabel <- qchisq((1-0.05), df=derajat.bebas) 
chi.tabel
## [1] 7.814728
Keputusan <- ifelse(Deviance.model <= chi.tabel,"Terima", "Tolak")
Keputusan
## [1] "Tolak"

Pada taraf nyata 5%, cukup bukti untuk menolak 𝐻0 atau dapat dikatakan bahwa interaksi XZ signifikan (ada interaksi dua arah antara jenis kelamin dengan pendapat/mendukung untuk memukul sebagai pendisiplinan anak).

D. UJI MODEL INTERAKSI DUA ARAH (HOMOGENOUS VS CONDITIONAL ON Z)

Ho : Tidak ada interaksi antara X dan Y

H1 : Ada interaksi X dan Y

#Conditional Association on z
model5<-glm(counts~ x.sex+ y.race+ z.fav+
x.sex*z.fav+ y.race*z.fav,           
family=poisson("link"=log))
summary(model5) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.race + z.fav + x.sex * z.fav + 
##     y.race * z.fav, family = poisson(link = log))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7064  -0.6946   0.0000   0.6878   1.5769  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               1.43508    0.41690   3.442 0.000577 ***
## x.sex1M                  -0.84730    0.28172  -3.008 0.002633 ** 
## y.race1white              2.12026    0.43205   4.907 9.23e-07 ***
## y.race2black             -0.40547    0.64550  -0.628 0.529909    
## z.fav1s_agr               0.03229    0.53830   0.060 0.952165    
## z.fav2agr                 1.47586    0.45145   3.269 0.001079 ** 
## z.fav3dis                 1.18775    0.47007   2.527 0.011513 *  
## x.sex1M:z.fav1s_agr       0.91940    0.31210   2.946 0.003221 ** 
## x.sex1M:z.fav2agr         0.80572    0.29767   2.707 0.006794 ** 
## x.sex1M:z.fav3dis         0.44641    0.31975   1.396 0.162674    
## y.race1white:z.fav1s_agr  0.80051    0.55115   1.452 0.146382    
## y.race2black:z.fav1s_agr  2.03688    0.74129   2.748 0.006001 ** 
## y.race1white:z.fav2agr    0.14266    0.46619   0.306 0.759602    
## y.race2black:z.fav2agr    0.75377    0.68121   1.107 0.268504    
## y.race1white:z.fav3dis   -0.21233    0.48641  -0.437 0.662453    
## y.race2black:z.fav3dis   -1.34373    0.84270  -1.595 0.110811    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1248.190  on 23  degrees of freedom
## Residual deviance:   21.687  on  8  degrees of freedom
## AIC: 162.69
## 
## Number of Fisher Scoring iterations: 4
#pengujian hipotesis

# Deviance of Model
Deviance.model<- model5$deviance - model2$deviance 
#model5: conditional on Z, model2: homogenous
Deviance.model
## [1] 13.07038
# Chi Square tabel dengan alpa = 0.05
derajat.bebas <- (model5$df.residual - model2$df.residual)
derajat.bebas
## [1] 2
chi.tabel <- qchisq((1-0.05), df=derajat.bebas) 
chi.tabel
## [1] 5.991465
Keputusan <- ifelse(Deviance.model <= chi.tabel,"Terima", "Tolak")
Keputusan
## [1] "Tolak"

Pada taraf nyata 5%, cukup bukti untuk menolak 𝐻0 atau dapat dikatakan bahwa interaksi XY signifikan (ada interaksi dua arah antara jenis kelamin dengan ras).

E. PEMILIHAN MODEL TERBAIK

Karena terdapat interaksi YZ, XZ, dan XY maka model terbaiknya adalah model homogenous.

#Model Terbaik adalah model homogenous
#best model
bestmodel<-glm(counts~ x.sex+ y.race+ z.fav+ x.sex*y.race+ x.sex*z.fav+ y.race*z.fav,
               family=poisson("link"=log))
summary(bestmodel) 
## 
## Call:
## glm(formula = counts ~ x.sex + y.race + z.fav + x.sex * y.race + 
##     x.sex * z.fav + y.race * z.fav, family = poisson(link = log))
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.23956  -0.36301   0.00067   0.28922   1.32392  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                1.3201     0.4299   3.071 0.002136 ** 
## x.sex1M                   -0.5064     0.3584  -1.413 0.157676    
## y.race1white               2.2340     0.4421   5.053 4.35e-07 ***
## y.race2black              -0.1265     0.6548  -0.193 0.846783    
## z.fav1s_agr               -0.1222     0.5490  -0.223 0.823806    
## z.fav2agr                  1.3815     0.4600   3.003 0.002669 ** 
## z.fav3dis                  1.1680     0.4765   2.451 0.014241 *  
## x.sex1M:y.race1white      -0.3368     0.2489  -1.353 0.175958    
## x.sex1M:y.race2black      -1.0423     0.3207  -3.250 0.001154 ** 
## x.sex1M:z.fav1s_agr        1.0467     0.3160   3.313 0.000924 ***
## x.sex1M:z.fav2agr          0.8539     0.2993   2.853 0.004332 ** 
## x.sex1M:z.fav3dis          0.4126     0.3210   1.285 0.198645    
## y.race1white:z.fav1s_agr   0.8860     0.5555   1.595 0.110685    
## y.race2black:z.fav1s_agr   2.2840     0.7488   3.050 0.002289 ** 
## y.race1white:z.fav2agr     0.2123     0.4697   0.452 0.651277    
## y.race2black:z.fav2agr     0.9518     0.6869   1.386 0.165863    
## y.race1white:z.fav3dis    -0.1796     0.4877  -0.368 0.712663    
## y.race2black:z.fav3dis    -1.2538     0.8457  -1.482 0.138218    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 1248.1895  on 23  degrees of freedom
## Residual deviance:    8.6165  on  6  degrees of freedom
## AIC: 153.62
## 
## Number of Fisher Scoring iterations: 5

Dari summary model diatas terlihat bahwa best model memiliki AIC yang lebih rendah dibandingkan saturated dan conditional model

F. INTERPRETASI KOEFISIEN MODEL TERBAIK

#interpretasi
data.frame(koef=bestmodel$coefficients,
exp_koef=exp(bestmodel$coefficients))
##                                koef  exp_koef
## (Intercept)               1.3201108 3.7438360
## x.sex1M                  -0.5064447 0.6026343
## y.race1white              2.2340153 9.3372825
## y.race2black             -0.1265188 0.8811576
## z.fav1s_agr              -0.1222374 0.8849383
## z.fav2agr                 1.3815186 3.9809424
## z.fav3dis                 1.1680493 3.2157136
## x.sex1M:y.race1white     -0.3367854 0.7140620
## x.sex1M:y.race2black     -1.0422655 0.3526548
## x.sex1M:z.fav1s_agr       1.0467430 2.8483588
## x.sex1M:z.fav2agr         0.8538990 2.3487871
## x.sex1M:z.fav3dis         0.4126187 1.5107688
## y.race1white:z.fav1s_agr  0.8860333 2.4254893
## y.race2black:z.fav1s_agr  2.2839521 9.8153952
## y.race1white:z.fav2agr    0.2122983 1.2365167
## y.race2black:z.fav2agr    0.9518044 2.5903794
## y.race1white:z.fav3dis   -0.1795930 0.8356102
## y.race2black:z.fav3dis   -1.2537900 0.2854210

G. NILAI DUGAAN MODEL TERBAIK

#fitted
data.frame(favor=z.fav,sex=x.sex,race=y.race,counts=counts,
           fitted=bestmodel$fitted.values)
##     favor sex   race counts      fitted
## 1  1s_agr  1M 1white     96  91.9674549
## 2  1s_agr  1M 2black     16  17.3456089
## 3  1s_agr  1M 3other      3   5.6869361
## 4  1s_agr  2F 1white     71  75.0325451
## 5  1s_agr  2F 2black     30  28.6543911
## 6  1s_agr  2F 3other      6   3.3130639
## 7    2agr  1M 1white    172 173.9228497
## 8    2agr  1M 2black     17  16.9811459
## 9    2agr  1M 3other     23  21.0960043
## 10   2agr  2F 1white    174 172.0771503
## 11   2agr  2F 2black     34  34.0188541
## 12   2agr  2F 3other     13  14.9039957
## 13   3dis  1M 1white     59  61.0669498
## 14   3dis  1M 2black      1   0.9721547
## 15   3dis  1M 3other     13  10.9608955
## 16   3dis  2F 1white     96  93.9330502
## 17   3dis  2F 2black      3   3.0278453
## 18   3dis  2F 3other     10  12.0391045
## 19 4s_dis  1M 1white     15  15.0427455
## 20 4s_dis  1M 2black      2   0.7010905
## 21 4s_dis  1M 3other      1   2.2561640
## 22 4s_dis  2F 1white     35  34.9572545
## 23 4s_dis  2F 2black      2   3.2989095
## 24 4s_dis  2F 3other      5   3.7438360

Keterangan: nilai miyu_ijk akan sama apapun referensi dari kategori peubahnya yang kita gunakan.