Universitas Islam Negeri Maulana Malik Ibrahim Malang
Program Studi Teknik Informatika
Banyaknya uang yang beredar di masyarakat akan berpengaruh pada kondisi perekonomian suatu negara. Bank Indonesia memiliki tujuan tunggal untuk mencapai dan menjaga kestabilan nilai rupiah. Oleh karena itu, BI sebagai bank sentral menyusun perencanaan untuk memenuhi kebutuhan uang rupiah. Perencanaan tersebut dapat dilakukan dengan melakukan peramalan untuk inflow dan outflow uang kartal. Inflow merupakan uang yang masuk ke BI melalui kegiatan penyetoran, sedangkan outflow merupakan uang yang keluar dari BI melalui kegiatan penarikan.
library(readxl)
datainflow <- read_excel(path = "inflowpertahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 11 x 13
## tahun ...2 Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dbl> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 NA 57900. 2308. 23238. 9385. 3012.
## 2 2012 NA 65911. 2620. 25981. 11192. 4447.
## 3 2013 NA 98369. 36337. 18120. 14056. 8933.
## 4 2014 NA 86024. 4567. 30503. 14103. 6358.
## 5 2015 NA 86549. 4710. 30254. 13309. 7156.
## 6 2016 NA 97764. 5775. 34427. 14078. 8211.
## 7 2017 NA 103748. 5514. 35617. 15312. 8553.
## 8 2018 NA 117495. 5799. 41769. 15058. 10730.
## 9 2019 NA 133762. 7509. 47112. 14750. 10915.
## 10 2020 NA 109345. 6641. 36609. 10696. 9148.
## 11 2021 NA 89270. 3702. 31840. 10748. 7769.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path = "outflow.xlsx")
dataoutflow
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 80092. 6338. 22176. 5300. 12434. 5819.
## 2 2012 85235. 6378. 22495. 6434. 13014. 6966.
## 3 2013 103288. 23278. 19235. 6511. 15460. 8747.
## 4 2014 102338. 8630. 26391. 7060. 15158. 10122.
## 5 2015 109186. 9637. 27877. 7471. 15789. 9803.
## 6 2016 121992. 11311. 31959. 9198. 17645. 10068.
## 7 2017 133606. 11760. 35243. 10754. 18128. 10749.
## 8 2018 135676. 11450. 36908. 8447. 17926. 12597.
## 9 2019 153484. 13087. 44051. 9465. 19277. 12644.
## 10 2020 140589. 12874. 39758. 8763. 19139. 8461.
## 11 2021 86627. 5770. 23453. 5941. 12631. 5128.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
plot(datainflow$Jambi, type = "l", col = "red")
plot(dataoutflow$Jambi, type = "l", col = "blue")
plot(datainflow$Jambi, type = "l", col = "red")
lines(dataoutflow$Jambi, type = "l", col = "blue")
library(readxl)
datainflowperbulan <- read_excel(path = "Inflowperbulan.xlsx")
datainflowperbulan
## # A tibble: 12 x 12
## Bulan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 4164. 124. 2068. 545. 94.2
## 2 2011-02-01 00:00:00 3338. 115. 1826. 450. 96.4
## 3 2011-03-01 00:00:00 4878. 154. 2028. 849. 288.
## 4 2011-04-01 00:00:00 3157. 122. 1429. 539. 160.
## 5 2011-05-01 00:00:00 3821. 123. 1539. 692. 195.
## 6 2011-06-01 00:00:00 3686. 151. 1637. 592. 101.
## 7 2011-07-01 00:00:00 4370. 107. 1791. 800. 143.
## 8 2011-08-01 00:00:00 3668. 184. 1256. 586. 134.
## 9 2011-09-01 00:00:00 12875. 606. 4172. 2176. 1014.
## 10 2011-10-01 00:00:00 4777. 158. 1941. 787. 341.
## 11 2011-11-01 00:00:00 5670. 287. 1943. 854. 285.
## 12 2011-12-01 00:00:00 3496. 176. 1608. 513. 161.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflowperbulan <- read_excel(path = "DataOutflowBulanan.xlsx")
dataoutflowperbulan
## # A tibble: 12 x 12
## Bulan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 3442. 350. 941. 307. 478.
## 2 2011-02-01 00:00:00 3989. 193. 990. 228. 400.
## 3 2011-03-01 00:00:00 4229. 230. 1209. 347. 621.
## 4 2011-04-01 00:00:00 6721. 529. 1653. 336. 1006.
## 5 2011-05-01 00:00:00 5787. 523. 1465. 328. 1000.
## 6 2011-06-01 00:00:00 7395. 406. 2167. 399. 1366.
## 7 2011-07-01 00:00:00 7154. 958. 1695. 449. 815.
## 8 2011-08-01 00:00:00 16043. 1046. 4104. 1376. 2729.
## 9 2011-09-01 00:00:00 1915. 124. 824. 148. 154.
## 10 2011-10-01 00:00:00 5174. 634. 1392. 299. 830.
## 11 2011-11-01 00:00:00 5610. 595. 1598. 350. 874.
## 12 2011-12-01 00:00:00 12634. 750. 4140. 734. 2160.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$Jambi, type = "l", col = "orange")
lines(dataoutflowperbulan$Jambi,col="purple")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))
KepulauanRiautimeseries <- datainflowperbulan$Jambi
plot.ts(KepulauanRiautimeseries , type = "l", col = "red")
logJambi <- log(datainflowperbulan$Jambi)
plot.ts(logJambi)
library(TTR)
JambiSMA3 <- SMA(datainflowperbulan$Jambi,n=3)
plot.ts(JambiSMA3 )
library(readxl)
JambiSMA3 <- SMA(datainflowperbulan$Jambi,n=8)
plot.ts(JambiSMA3 )
library(TTR)
KepulauanRiauSMA3 <- SMA(datainflowperbulan$Jambi,n=3)
plot.ts(JambiSMA3 )
Jambiinflowtimeseries <- ts(datainflowperbulan$Jambi, frequency=12, start=c(2011,1))
Jambiinflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 48.21238 39.91336 202.77581 76.36759 102.29337 80.38363 118.45074
## Aug Sep Oct Nov Dec
## 2011 91.88117 618.33464 137.23519 238.83742 112.93547
Jambioutflowtimeseries <- ts(dataoutflowperbulan$Jambi, frequency=12, start=c(2011,1))
Jambioutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 297.46348 280.08970 341.37188 474.26014 371.36905 540.43609
## Jul Aug Sep Oct Nov Dec
## 2011 428.10203 1056.05643 92.78528 295.39728 272.21261 767.15036