Overview

Below are summaries of each of our models looking at the cross-lagged relationships between two and three variables. I got the code from this source. This code was put together by the authors of a great paper about CLPM vs RI-CLPM (Hamaker et al., 2015). This tutorial goes through how to turn this RI-CLPM code into CLPM code, which is what I’ve done below.

To make life easier, these models recycle a code chunk which defines variables in each model in terms of X, Y, and M. This is just so that we don’t need to change every single variable name in the code chunk in order to change the variables we’re looking at. The first two sections of each code chunk define which variables are labeled with which letter. Throughout, I define X as the theoretical predictor, Y as the theoretical outcome, and M as the theoretical mediator in situations where we’re looking at three variables. Also, the Ws in front of variable lables are just to denote “within,” since the model decomposes within-person and between-person effects (this is how the code from the source I linked did it).

Further, across all models, I’ve imposed equality constraints on all cross-lagged paths for the sake of parsimony.

Finally, all output now includes 95% CIs, allowing for the comparison of magnitudes of different coefficients.

2-variable models, CLPM

In this section, I set up 2-variable models with traditional single-order autoregressions (e.g. X at time t+1 is regressed on X at time t) and 2-variable models with additional second-order autoregressions (e.g. X at time t+1 is regressed on X at time t and at time t-1). As you’ll see, these second-order AR models always show better fit, confirmed by likelihood ratio tests.

LadderDif and Positive Emotions

White Participants

  1. Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.10, p < .001
  2. Positive emotions at time t predict lower perceived status difference at time t+1, b = -.09, p < .001
LadderPEmoCLPM <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*posEmo.1
  wy2 =~ 1*posEmo.2
  wy3 =~ 1*posEmo.3
  wy4 =~ 1*posEmo.4
  wy5 =~ 1*posEmo.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ a*wx1 + wy1 
  wy3 ~ a*wx2 + wy2 
  wy4 ~ a*wx3 + wy3 
  wy5 ~ a*wx4 + wy4 
  wx2 ~ wx1 + b*wy1 
  wx3 ~ wx2 + b*wy2 
  wx4 ~ wx3 + b*wy3 
  wx5 ~ wx4 + b*wy4 


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIx ~~ 0*RIy

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wx5 ~~ wx5
  wy5 ~~ wy5
'

LadderPEmoCLPM.fit <- lavaan(LadderPEmoCLPM, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderPEmoCLPM.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               316.572
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1454.814
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.797
##   Tucker-Lewis Index (TLI)                       0.695
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3844.445
##   Loglikelihood unrestricted model (H1)      -3686.159
##                                                       
##   Akaike (AIC)                                7758.890
##   Bayesian (BIC)                              7905.119
##   Sample-size adjusted Bayesian (BIC)         7794.032
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.141
##   90 Percent confidence interval - lower         0.127
##   90 Percent confidence interval - upper         0.155
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.132
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.995    1.000
##                   
##     1.005    1.000
##                   
##     1.006    1.000
##                   
##     1.003    1.000
##                   
##     0.994    1.000
##                   
##     1.003    1.000
##                   
##     0.994    1.000
##                   
##     0.995    1.000
##                   
##     0.984    1.000
##                   
##     0.996    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.104    0.022   -4.647    0.000   -0.149   -0.060
##     wy1               0.589    0.042   14.138    0.000    0.507    0.670
##   wy3 ~                                                                 
##     wx2        (a)   -0.104    0.022   -4.647    0.000   -0.149   -0.060
##     wy2               0.651    0.043   14.995    0.000    0.566    0.736
##   wy4 ~                                                                 
##     wx3        (a)   -0.104    0.022   -4.647    0.000   -0.149   -0.060
##     wy3               0.699    0.042   16.649    0.000    0.617    0.782
##   wy5 ~                                                                 
##     wx4        (a)   -0.104    0.022   -4.647    0.000   -0.149   -0.060
##     wy4               0.698    0.046   15.329    0.000    0.609    0.787
##   wx2 ~                                                                 
##     wx1               0.533    0.047   11.326    0.000    0.440    0.625
##     wy1        (b)   -0.089    0.025   -3.501    0.000   -0.138   -0.039
##   wx3 ~                                                                 
##     wx2               0.533    0.052   10.174    0.000    0.431    0.636
##     wy2        (b)   -0.089    0.025   -3.501    0.000   -0.138   -0.039
##   wx4 ~                                                                 
##     wx3               0.510    0.054    9.476    0.000    0.405    0.616
##     wy3        (b)   -0.089    0.025   -3.501    0.000   -0.138   -0.039
##   wx5 ~                                                                 
##     wx4               0.572    0.051   11.209    0.000    0.472    0.671
##     wy4        (b)   -0.089    0.025   -3.501    0.000   -0.138   -0.039
##    Std.lv  Std.all
##                   
##    -0.105   -0.105
##     0.594    0.594
##                   
##    -0.106   -0.106
##     0.650    0.650
##                   
##    -0.107   -0.107
##     0.707    0.707
##                   
##    -0.105   -0.105
##     0.689    0.689
##                   
##     0.527    0.527
##    -0.088   -0.088
##                   
##     0.533    0.533
##    -0.088   -0.088
##                   
##     0.512    0.512
##    -0.088   -0.088
##                   
##     0.577    0.577
##    -0.088   -0.088
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.245    0.049   -5.035    0.000   -0.341   -0.150
##  .wx2 ~~                                                                
##    .wy2              -0.053    0.036   -1.485    0.138   -0.124    0.017
##  .wx3 ~~                                                                
##    .wy3               0.024    0.036    0.647    0.517   -0.048    0.095
##  .wx4 ~~                                                                
##    .wy4              -0.003    0.036   -0.078    0.938   -0.073    0.068
##  .wx5 ~~                                                                
##    .wy5              -0.007    0.036   -0.187    0.852   -0.076    0.063
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.246   -0.246
##                   
##    -0.083   -0.083
##                   
##     0.039    0.039
##                   
##    -0.005   -0.005
##                   
##    -0.012   -0.012
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.001    0.047    0.028    0.978   -0.090    0.093
##    .LadderDif.2      -0.010    0.052   -0.194    0.846   -0.111    0.091
##    .LadderDif.3      -0.014    0.058   -0.238    0.812   -0.127    0.099
##    .LadderDif.4      -0.000    0.062   -0.005    0.996   -0.121    0.120
##    .LadderDif.5      -0.006    0.063   -0.092    0.926   -0.129    0.117
##    .posEmo.1         -0.003    0.047   -0.068    0.946   -0.095    0.089
##    .posEmo.2         -0.009    0.050   -0.185    0.853   -0.108    0.089
##    .posEmo.3         -0.001    0.055   -0.014    0.989   -0.110    0.108
##    .posEmo.4         -0.005    0.058   -0.078    0.938   -0.119    0.110
##    .posEmo.5          0.011    0.061    0.175    0.861   -0.110    0.131
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.001    0.001
##    -0.010   -0.010
##    -0.014   -0.014
##    -0.000   -0.000
##    -0.006   -0.006
##    -0.003   -0.003
##    -0.009   -0.009
##    -0.001   -0.001
##    -0.005   -0.005
##     0.011    0.011
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.990    0.066   14.960    0.000    0.860    1.119
##     wy1               1.006    0.068   14.831    0.000    0.873    1.139
##    .wx2               0.699    0.054   12.876    0.000    0.592    0.805
##    .wy2               0.598    0.048   12.557    0.000    0.505    0.691
##    .wx3               0.694    0.059   11.772    0.000    0.579    0.810
##    .wy3               0.528    0.045   11.778    0.000    0.440    0.616
##    .wx4               0.719    0.064   11.191    0.000    0.593    0.845
##    .wy4               0.448    0.040   11.196    0.000    0.370    0.527
##    .wx5               0.634    0.058   10.996    0.000    0.521    0.747
##    .wy5               0.483    0.044   10.998    0.000    0.397    0.569
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.691    0.691
##     0.605    0.605
##     0.686    0.686
##     0.533    0.533
##     0.715    0.715
##     0.463    0.463
##     0.641    0.641
##     0.487    0.487
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

  1. Perceived status difference at time t does not predict positive emotions at time t+1
  2. Positive emotions at time t do not predict perceived status difference at time t+1
# Same model as above code, but fit with d_black dataset this time
LadderPEmoCLPM_b.fit <- lavaan(LadderPEmoCLPM, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderPEmoCLPM_b.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               228.953
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1026.626
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.797
##   Tucker-Lewis Index (TLI)                       0.696
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3513.843
##   Loglikelihood unrestricted model (H1)      -3399.367
##                                                       
##   Akaike (AIC)                                7097.686
##   Bayesian (BIC)                              7243.914
##   Sample-size adjusted Bayesian (BIC)         7132.827
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.117
##   90 Percent confidence interval - lower         0.103
##   90 Percent confidence interval - upper         0.132
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.118
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.998    1.000
##                   
##     1.010    1.000
##                   
##     1.008    1.000
##                   
##     0.996    1.000
##                   
##     0.998    1.000
##                   
##     0.995    1.000
##                   
##     0.991    1.000
##                   
##     0.992    1.000
##                   
##     1.002    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.034    0.024   -1.388    0.165   -0.081    0.014
##     wy1               0.533    0.051   10.406    0.000    0.433    0.634
##   wy3 ~                                                                 
##     wx2        (a)   -0.034    0.024   -1.388    0.165   -0.081    0.014
##     wy2               0.717    0.045   15.964    0.000    0.629    0.806
##   wy4 ~                                                                 
##     wx3        (a)   -0.034    0.024   -1.388    0.165   -0.081    0.014
##     wy3               0.754    0.044   16.972    0.000    0.667    0.841
##   wy5 ~                                                                 
##     wx4        (a)   -0.034    0.024   -1.388    0.165   -0.081    0.014
##     wy4               0.741    0.048   15.400    0.000    0.647    0.836
##   wx2 ~                                                                 
##     wx1               0.255    0.061    4.151    0.000    0.134    0.375
##     wy1        (b)   -0.026    0.030   -0.858    0.391   -0.084    0.033
##   wx3 ~                                                                 
##     wx2               0.542    0.059    9.207    0.000    0.427    0.657
##     wy2        (b)   -0.026    0.030   -0.858    0.391   -0.084    0.033
##   wx4 ~                                                                 
##     wx3               0.466    0.063    7.383    0.000    0.343    0.590
##     wy3        (b)   -0.026    0.030   -0.858    0.391   -0.084    0.033
##   wx5 ~                                                                 
##     wx4               0.483    0.060    8.032    0.000    0.365    0.601
##     wy4        (b)   -0.026    0.030   -0.858    0.391   -0.084    0.033
##    Std.lv  Std.all
##                   
##    -0.034   -0.034
##     0.535    0.535
##                   
##    -0.034   -0.034
##     0.721    0.721
##                   
##    -0.034   -0.034
##     0.753    0.753
##                   
##    -0.034   -0.034
##     0.734    0.734
##                   
##     0.255    0.255
##    -0.025   -0.025
##                   
##     0.536    0.536
##    -0.025   -0.025
##                   
##     0.467    0.467
##    -0.025   -0.025
##                   
##     0.489    0.489
##    -0.025   -0.025
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.007    0.047   -0.157    0.876   -0.099    0.084
##  .wx2 ~~                                                                
##    .wy2              -0.012    0.049   -0.241    0.809   -0.108    0.084
##  .wx3 ~~                                                                
##    .wy3              -0.023    0.039   -0.598    0.550   -0.099    0.053
##  .wx4 ~~                                                                
##    .wy4               0.010    0.040    0.263    0.792   -0.067    0.088
##  .wx5 ~~                                                                
##    .wy5               0.018    0.041    0.442    0.659   -0.063    0.099
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.007   -0.007
##                   
##    -0.015   -0.015
##                   
##    -0.040   -0.040
##                   
##     0.018    0.018
##                   
##     0.031    0.031
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.007    0.047   -0.154    0.877   -0.099    0.085
##    .LadderDif.2       0.005    0.059    0.078    0.938   -0.110    0.119
##    .LadderDif.3       0.002    0.065    0.036    0.971   -0.124    0.129
##    .LadderDif.4       0.019    0.068    0.277    0.782   -0.115    0.152
##    .LadderDif.5       0.008    0.069    0.110    0.912   -0.128    0.143
##    .posEmo.1         -0.001    0.047   -0.017    0.986   -0.092    0.090
##    .posEmo.2         -0.007    0.056   -0.125    0.901   -0.116    0.102
##    .posEmo.3         -0.003    0.060   -0.056    0.956   -0.122    0.115
##    .posEmo.4         -0.007    0.064   -0.115    0.909   -0.132    0.118
##    .posEmo.5         -0.010    0.067   -0.142    0.887   -0.141    0.122
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.007   -0.007
##     0.005    0.005
##     0.002    0.002
##     0.019    0.019
##     0.008    0.008
##    -0.001   -0.001
##    -0.007   -0.007
##    -0.003   -0.003
##    -0.007   -0.007
##    -0.010   -0.010
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.998    0.066   15.021    0.000    0.867    1.128
##     wy1               0.995    0.066   15.095    0.000    0.866    1.125
##    .wx2               0.931    0.079   11.803    0.000    0.777    1.086
##    .wy2               0.705    0.061   11.588    0.000    0.586    0.825
##    .wx3               0.725    0.068   10.698    0.000    0.592    0.858
##    .wy3               0.469    0.044   10.697    0.000    0.383    0.555
##    .wx4               0.791    0.077   10.326    0.000    0.641    0.942
##    .wy4               0.422    0.041   10.329    0.000    0.342    0.502
##    .wx5               0.753    0.075   10.091    0.000    0.606    0.899
##    .wy5               0.459    0.045   10.093    0.000    0.370    0.548
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.934    0.934
##     0.713    0.713
##     0.711    0.711
##     0.478    0.478
##     0.779    0.779
##     0.429    0.429
##     0.759    0.759
##     0.457    0.457
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif and Positive Emotions, 2nd order AR

White Participants

  1. Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.09, p < .001
  2. Positive emotions at time t predict lower perceived status difference at time t+1, b = -.05, p = .045
LadderPEmoCLPM_2AR <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*posEmo.1
  wy2 =~ 1*posEmo.2
  wy3 =~ 1*posEmo.3
  wy4 =~ 1*posEmo.4
  wy5 =~ 1*posEmo.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ a*wx1 + wy1
  wy3 ~ a*wx2 + wy2 + wy1 
  wy4 ~ a*wx3 + wy3 + wy2
  wy5 ~ a*wx4 + wy4 + wy3
  wx2 ~ wx1 + b*wy1 
  wx3 ~ wx2 + b*wy2 + wx1
  wx4 ~ wx3 + b*wy3 + wx2
  wx5 ~ wx4 + b*wy4 + wx3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIx ~~ 0*RIy

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wx5 ~~ wx5
  wy5 ~~ wy5
'

LadderPEmoCLPM_2AR.fit <- lavaan(LadderPEmoCLPM_2AR, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderPEmoCLPM_2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 38 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                77.846
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1454.814
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.962
##   Tucker-Lewis Index (TLI)                       0.928
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3725.082
##   Loglikelihood unrestricted model (H1)      -3686.159
##                                                       
##   Akaike (AIC)                                7532.164
##   Bayesian (BIC)                              7703.460
##   Sample-size adjusted Bayesian (BIC)         7573.330
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.068
##   90 Percent confidence interval - lower         0.052
##   90 Percent confidence interval - upper         0.085
##   P-value RMSEA <= 0.05                          0.036
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.046
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.997    1.000
##                   
##     1.000    1.000
##                   
##     0.997    1.000
##                   
##     1.008    1.000
##                   
##     0.994    1.000
##                   
##     1.001    1.000
##                   
##     0.991    1.000
##                   
##     0.988    1.000
##                   
##     0.982    1.000
##                   
##     0.995    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.093    0.021   -4.303    0.000   -0.135   -0.050
##     wy1               0.585    0.042   13.910    0.000    0.502    0.667
##   wy3 ~                                                                 
##     wx2        (a)   -0.093    0.021   -4.303    0.000   -0.135   -0.050
##     wy2               0.517    0.056    9.188    0.000    0.407    0.627
##     wy1               0.211    0.059    3.577    0.000    0.095    0.326
##   wy4 ~                                                                 
##     wx3        (a)   -0.093    0.021   -4.303    0.000   -0.135   -0.050
##     wy3               0.523    0.055    9.532    0.000    0.416    0.631
##     wy2               0.262    0.055    4.715    0.000    0.153    0.370
##   wy5 ~                                                                 
##     wx4        (a)   -0.093    0.021   -4.303    0.000   -0.135   -0.050
##     wy4               0.350    0.057    6.103    0.000    0.237    0.462
##     wy3               0.481    0.056    8.511    0.000    0.370    0.591
##   wx2 ~                                                                 
##     wx1               0.540    0.047   11.608    0.000    0.449    0.632
##     wy1        (b)   -0.048    0.024   -2.005    0.045   -0.095   -0.001
##   wx3 ~                                                                 
##     wx2               0.294    0.058    5.038    0.000    0.180    0.408
##     wy2        (b)   -0.048    0.024   -2.005    0.045   -0.095   -0.001
##     wx1               0.425    0.057    7.436    0.000    0.313    0.537
##   wx4 ~                                                                 
##     wx3               0.316    0.060    5.278    0.000    0.199    0.434
##     wy3        (b)   -0.048    0.024   -2.005    0.045   -0.095   -0.001
##     wx2               0.383    0.063    6.121    0.000    0.260    0.505
##   wx5 ~                                                                 
##     wx4               0.341    0.053    6.402    0.000    0.237    0.446
##     wy4        (b)   -0.048    0.024   -2.005    0.045   -0.095   -0.001
##     wx3               0.442    0.054    8.260    0.000    0.337    0.547
##    Std.lv  Std.all
##                   
##    -0.093   -0.093
##     0.591    0.591
##                   
##    -0.094   -0.094
##     0.518    0.518
##     0.214    0.214
##                   
##    -0.094   -0.094
##     0.527    0.527
##     0.264    0.264
##                   
##    -0.094   -0.094
##     0.345    0.345
##     0.477    0.477
##                   
##     0.539    0.539
##    -0.048   -0.048
##                   
##     0.295    0.295
##    -0.048   -0.048
##     0.425    0.425
##                   
##     0.313    0.313
##    -0.047   -0.047
##     0.380    0.380
##                   
##     0.346    0.346
##    -0.047   -0.047
##     0.444    0.444
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.249    0.049   -5.101    0.000   -0.344   -0.153
##  .wx2 ~~                                                                
##    .wy2              -0.053    0.036   -1.483    0.138   -0.124    0.017
##  .wx3 ~~                                                                
##    .wy3               0.002    0.033    0.047    0.962   -0.063    0.066
##  .wx4 ~~                                                                
##    .wy4               0.012    0.032    0.367    0.713   -0.051    0.075
##  .wx5 ~~                                                                
##    .wy5               0.001    0.028    0.047    0.963   -0.053    0.056
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.249   -0.249
##                   
##    -0.082   -0.082
##                   
##     0.003    0.003
##                   
##     0.023    0.023
##                   
##     0.003    0.003
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.003    0.047    0.063    0.949   -0.089    0.095
##    .LadderDif.2      -0.011    0.051   -0.217    0.828   -0.112    0.090
##    .LadderDif.3      -0.034    0.055   -0.626    0.531   -0.142    0.073
##    .LadderDif.4      -0.013    0.059   -0.221    0.825   -0.129    0.103
##    .LadderDif.5      -0.020    0.060   -0.343    0.731   -0.137    0.096
##    .posEmo.1         -0.006    0.047   -0.137    0.891   -0.098    0.086
##    .posEmo.2         -0.009    0.050   -0.172    0.863   -0.107    0.090
##    .posEmo.3          0.005    0.054    0.086    0.931   -0.102    0.111
##    .posEmo.4          0.000    0.056    0.006    0.995   -0.110    0.110
##    .posEmo.5          0.016    0.058    0.271    0.786   -0.098    0.130
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.003    0.003
##    -0.011   -0.011
##    -0.034   -0.034
##    -0.013   -0.013
##    -0.020   -0.021
##    -0.006   -0.006
##    -0.009   -0.009
##     0.005    0.005
##     0.000    0.000
##     0.016    0.016
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.995    0.067   14.953    0.000    0.864    1.125
##     wy1               1.003    0.067   14.874    0.000    0.871    1.135
##    .wx2               0.694    0.054   12.920    0.000    0.589    0.800
##    .wy2               0.603    0.048   12.528    0.000    0.509    0.698
##    .wx3               0.573    0.050   11.521    0.000    0.476    0.671
##    .wy3               0.500    0.043   11.662    0.000    0.416    0.585
##    .wx4               0.623    0.056   11.189    0.000    0.514    0.732
##    .wy4               0.412    0.037   11.201    0.000    0.340    0.484
##    .wx5               0.497    0.045   11.000    0.000    0.408    0.585
##    .wy5               0.372    0.034   10.991    0.000    0.306    0.438
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.694    0.694
##     0.615    0.615
##     0.576    0.576
##     0.513    0.513
##     0.613    0.613
##     0.428    0.428
##     0.502    0.502
##     0.376    0.376
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(LadderPEmoCLPM_2AR.fit, LadderPEmoCLPM.fit)
## Chi-Squared Difference Test
## 
##                        Df    AIC    BIC   Chisq Chisq diff Df diff Pr(>Chisq)
## LadderPEmoCLPM_2AR.fit 24 7532.2 7703.5  77.846                              
## LadderPEmoCLPM.fit     30 7758.9 7905.1 316.572     238.73       6  < 2.2e-16
##                           
## LadderPEmoCLPM_2AR.fit    
## LadderPEmoCLPM.fit     ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Black Participants

  1. Perceived status difference at time t does not predict positive emotions at time t+1
  2. Positive emotions at time t does not predict erceived status difference at time t+1
# Same model as above code, but fit with d_black dataset this time
LadderPEmoCLPM_b2AR.fit <- lavaan(LadderPEmoCLPM_2AR, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderPEmoCLPM_b2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                75.407
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1026.626
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.948
##   Tucker-Lewis Index (TLI)                       0.902
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3437.070
##   Loglikelihood unrestricted model (H1)      -3399.367
##                                                       
##   Akaike (AIC)                                6956.140
##   Bayesian (BIC)                              7127.436
##   Sample-size adjusted Bayesian (BIC)         6997.306
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.067
##   90 Percent confidence interval - lower         0.050
##   90 Percent confidence interval - upper         0.084
##   P-value RMSEA <= 0.05                          0.050
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.047
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.000    1.000
##                   
##     0.998    1.000
##                   
##     1.013    1.000
##                   
##     1.016    1.000
##                   
##     1.015    1.000
##                   
##     0.996    1.000
##                   
##     0.995    1.000
##                   
##     0.983    1.000
##                   
##     0.979    1.000
##                   
##     0.988    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.031    0.023   -1.353    0.176   -0.076    0.014
##     wy1               0.530    0.052   10.265    0.000    0.429    0.631
##   wy3 ~                                                                 
##     wx2        (a)   -0.031    0.023   -1.353    0.176   -0.076    0.014
##     wy2               0.576    0.053   10.924    0.000    0.473    0.679
##     wy1               0.247    0.054    4.572    0.000    0.141    0.352
##   wy4 ~                                                                 
##     wx3        (a)   -0.031    0.023   -1.353    0.176   -0.076    0.014
##     wy3               0.517    0.064    8.126    0.000    0.392    0.642
##     wy2               0.310    0.063    4.946    0.000    0.187    0.433
##   wy5 ~                                                                 
##     wx4        (a)   -0.031    0.023   -1.353    0.176   -0.076    0.014
##     wy4               0.375    0.065    5.769    0.000    0.247    0.502
##     wy3               0.477    0.064    7.472    0.000    0.352    0.602
##   wx2 ~                                                                 
##     wx1               0.264    0.061    4.344    0.000    0.145    0.383
##     wy1        (b)   -0.011    0.029   -0.384    0.701   -0.067    0.045
##   wx3 ~                                                                 
##     wx2               0.502    0.060    8.364    0.000    0.384    0.619
##     wy2        (b)   -0.011    0.029   -0.384    0.701   -0.067    0.045
##     wx1               0.174    0.062    2.799    0.005    0.052    0.296
##   wx4 ~                                                                 
##     wx3               0.334    0.070    4.751    0.000    0.196    0.472
##     wy3        (b)   -0.011    0.029   -0.384    0.701   -0.067    0.045
##     wx2               0.274    0.072    3.807    0.000    0.133    0.415
##   wx5 ~                                                                 
##     wx4               0.287    0.062    4.657    0.000    0.166    0.408
##     wy4        (b)   -0.011    0.029   -0.384    0.701   -0.067    0.045
##     wx3               0.442    0.065    6.810    0.000    0.314    0.569
##    Std.lv  Std.all
##                   
##    -0.031   -0.031
##     0.531    0.531
##                   
##    -0.031   -0.031
##     0.583    0.583
##     0.250    0.250
##                   
##    -0.032   -0.032
##     0.519    0.519
##     0.315    0.315
##                   
##    -0.032   -0.032
##     0.371    0.371
##     0.474    0.474
##                   
##     0.264    0.264
##    -0.011   -0.011
##                   
##     0.495    0.495
##    -0.011   -0.011
##     0.172    0.172
##                   
##     0.333    0.333
##    -0.011   -0.011
##     0.269    0.269
##                   
##     0.287    0.287
##    -0.011   -0.011
##     0.441    0.441
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.007    0.047   -0.143    0.886   -0.098    0.085
##  .wx2 ~~                                                                
##    .wy2              -0.012    0.049   -0.252    0.801   -0.109    0.084
##  .wx3 ~~                                                                
##    .wy3              -0.010    0.036   -0.277    0.782   -0.081    0.061
##  .wx4 ~~                                                                
##    .wy4               0.016    0.036    0.443    0.658   -0.055    0.088
##  .wx5 ~~                                                                
##    .wy5              -0.044    0.034   -1.294    0.196   -0.110    0.023
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.007   -0.007
##                   
##    -0.015   -0.015
##                   
##    -0.018   -0.018
##                   
##     0.030    0.030
##                   
##    -0.092   -0.092
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.008    0.047   -0.176    0.860   -0.100    0.084
##    .LadderDif.2       0.005    0.059    0.081    0.935   -0.110    0.119
##    .LadderDif.3      -0.001    0.064   -0.020    0.984   -0.126    0.124
##    .LadderDif.4       0.019    0.067    0.275    0.783   -0.113    0.151
##    .LadderDif.5       0.018    0.068    0.260    0.795   -0.116    0.152
##    .posEmo.1         -0.003    0.046   -0.058    0.954   -0.094    0.088
##    .posEmo.2         -0.006    0.056   -0.111    0.911   -0.115    0.103
##    .posEmo.3         -0.009    0.058   -0.160    0.873   -0.123    0.104
##    .posEmo.4         -0.014    0.060   -0.228    0.820   -0.132    0.105
##    .posEmo.5         -0.020    0.063   -0.316    0.752   -0.142    0.103
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.008   -0.008
##     0.005    0.005
##    -0.001   -0.001
##     0.019    0.018
##     0.018    0.018
##    -0.003   -0.003
##    -0.006   -0.006
##    -0.009   -0.009
##    -0.014   -0.014
##    -0.020   -0.020
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               1.000    0.067   14.992    0.000    0.869    1.131
##     wy1               0.993    0.066   15.133    0.000    0.864    1.122
##    .wx2               0.927    0.079   11.801    0.000    0.773    1.081
##    .wy2               0.710    0.061   11.589    0.000    0.590    0.830
##    .wx3               0.698    0.066   10.647    0.000    0.569    0.826
##    .wy3               0.425    0.040   10.544    0.000    0.346    0.504
##    .wx4               0.742    0.072   10.322    0.000    0.601    0.882
##    .wy4               0.379    0.037   10.320    0.000    0.307    0.450
##    .wx5               0.619    0.061   10.096    0.000    0.499    0.739
##    .wy5               0.363    0.036   10.097    0.000    0.293    0.433
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.930    0.930
##     0.717    0.717
##     0.680    0.680
##     0.440    0.440
##     0.719    0.719
##     0.395    0.395
##     0.601    0.601
##     0.372    0.372
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(LadderPEmoCLPM_b2AR.fit, LadderPEmoCLPM_b.fit)
## Chi-Squared Difference Test
## 
##                         Df    AIC    BIC   Chisq Chisq diff Df diff Pr(>Chisq)
## LadderPEmoCLPM_b2AR.fit 24 6956.1 7127.4  75.407                              
## LadderPEmoCLPM_b.fit    30 7097.7 7243.9 228.953     153.55       6  < 2.2e-16
##                            
## LadderPEmoCLPM_b2AR.fit    
## LadderPEmoCLPM_b.fit    ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LadderDif and Health

White Participants

  1. Perceived status difference at time t predicts worse health at time t+1, b = -.04, p = .03
  2. Health at time t predicts less perceived status difference at time t+1, b = -.14, p < .001
LadderHealthCLPM <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gHealth.1 + 1*gHealth.2 + 1*gHealth.3 + 1*gHealth.4 + 1*gHealth.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gHealth.1
  wy2 =~ 1*gHealth.2
  wy3 =~ 1*gHealth.3
  wy4 =~ 1*gHealth.4
  wy5 =~ 1*gHealth.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ a*wx1 + wy1 
  wy3 ~ a*wx2 + wy2 
  wy4 ~ a*wx3 + wy3 
  wy5 ~ a*wx4 + wy4 
  wx2 ~ wx1 + b*wy1 
  wx3 ~ wx2 + b*wy2 
  wx4 ~ wx3 + b*wy3 
  wx5 ~ wx4 + b*wy4 


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIx ~~ 0*RIy

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wx5 ~~ wx5
  wy5 ~~ wy5
'

LadderHealthCLPM.fit <- lavaan(LadderHealthCLPM, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderHealthCLPM.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 38 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               377.146
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1985.448
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.821
##   Tucker-Lewis Index (TLI)                       0.732
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3609.415
##   Loglikelihood unrestricted model (H1)      -3420.842
##                                                       
##   Akaike (AIC)                                7288.830
##   Bayesian (BIC)                              7435.058
##   Sample-size adjusted Bayesian (BIC)         7323.971
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.155
##   90 Percent confidence interval - lower         0.141
##   90 Percent confidence interval - upper         0.169
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.126
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.995    1.000
##                   
##     1.001    1.000
##                   
##     1.007    1.000
##                   
##     0.990    1.000
##                   
##     0.996    1.000
##                   
##     0.996    1.000
##                   
##     0.980    1.000
##                   
##     0.988    1.000
##                   
##     0.984    1.000
##                   
##     0.979    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.041    0.019   -2.137    0.033   -0.079   -0.003
##     wy1               0.772    0.033   23.690    0.000    0.708    0.836
##   wy3 ~                                                                 
##     wx2        (a)   -0.041    0.019   -2.137    0.033   -0.079   -0.003
##     wy2               0.782    0.037   21.291    0.000    0.710    0.854
##   wy4 ~                                                                 
##     wx3        (a)   -0.041    0.019   -2.137    0.033   -0.079   -0.003
##     wy3               0.786    0.037   21.188    0.000    0.713    0.859
##   wy5 ~                                                                 
##     wx4        (a)   -0.041    0.019   -2.137    0.033   -0.079   -0.003
##     wy4               0.786    0.038   20.820    0.000    0.712    0.860
##   wx2 ~                                                                 
##     wx1               0.495    0.048   10.369    0.000    0.402    0.589
##     wy1        (b)   -0.139    0.026   -5.353    0.000   -0.189   -0.088
##   wx3 ~                                                                 
##     wx2               0.512    0.052    9.774    0.000    0.410    0.615
##     wy2        (b)   -0.139    0.026   -5.353    0.000   -0.189   -0.088
##   wx4 ~                                                                 
##     wx3               0.480    0.053    9.006    0.000    0.376    0.585
##     wy3        (b)   -0.139    0.026   -5.353    0.000   -0.189   -0.088
##   wx5 ~                                                                 
##     wx4               0.563    0.052   10.921    0.000    0.462    0.664
##     wy4        (b)   -0.139    0.026   -5.353    0.000   -0.189   -0.088
##    Std.lv  Std.all
##                   
##    -0.042   -0.042
##     0.784    0.784
##                   
##    -0.042   -0.042
##     0.777    0.777
##                   
##    -0.042   -0.042
##     0.788    0.788
##                   
##    -0.042   -0.042
##     0.790    0.790
##                   
##     0.492    0.492
##    -0.138   -0.138
##                   
##     0.509    0.509
##    -0.135   -0.135
##                   
##     0.488    0.488
##    -0.138   -0.138
##                   
##     0.559    0.559
##    -0.137   -0.137
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.338    0.049   -6.877    0.000   -0.435   -0.242
##  .wx2 ~~                                                                
##    .wy2              -0.045    0.028   -1.626    0.104   -0.099    0.009
##  .wx3 ~~                                                                
##    .wy3              -0.037    0.030   -1.210    0.226   -0.096    0.023
##  .wx4 ~~                                                                
##    .wy4               0.029    0.031    0.933    0.351   -0.032    0.090
##  .wx5 ~~                                                                
##    .wy5               0.029    0.030    0.944    0.345   -0.031    0.089
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.342   -0.342
##                   
##    -0.091   -0.091
##                   
##    -0.073   -0.073
##                   
##     0.059    0.059
##                   
##     0.062    0.062
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.000    0.047   -0.008    0.994   -0.092    0.091
##    .LadderDif.2      -0.009    0.051   -0.179    0.858   -0.110    0.092
##    .LadderDif.3      -0.013    0.058   -0.231    0.817   -0.126    0.099
##    .LadderDif.4      -0.002    0.061   -0.025    0.980   -0.120    0.117
##    .LadderDif.5      -0.006    0.063   -0.102    0.919   -0.129    0.116
##    .gHealth.1         0.005    0.046    0.100    0.920   -0.086    0.095
##    .gHealth.2        -0.005    0.048   -0.112    0.911   -0.099    0.088
##    .gHealth.3        -0.001    0.053   -0.017    0.987   -0.104    0.102
##    .gHealth.4         0.005    0.056    0.092    0.926   -0.105    0.115
##    .gHealth.5         0.009    0.058    0.150    0.880   -0.106    0.123
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.000   -0.000
##    -0.009   -0.009
##    -0.013   -0.013
##    -0.002   -0.002
##    -0.006   -0.006
##     0.005    0.005
##    -0.005   -0.005
##    -0.001   -0.001
##     0.005    0.005
##     0.009    0.009
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.989    0.066   14.964    0.000    0.860    1.119
##     wy1               0.991    0.066   15.128    0.000    0.863    1.120
##    .wx2               0.693    0.054   12.901    0.000    0.588    0.799
##    .wy2               0.348    0.028   12.508    0.000    0.293    0.402
##    .wx3               0.689    0.058   11.785    0.000    0.575    0.804
##    .wy3               0.366    0.031   11.790    0.000    0.305    0.427
##    .wx4               0.690    0.062   11.198    0.000    0.569    0.811
##    .wy4               0.346    0.031   11.171    0.000    0.286    0.407
##    .wx5               0.632    0.057   10.999    0.000    0.519    0.744
##    .wy5               0.345    0.032   10.914    0.000    0.283    0.407
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.692    0.692
##     0.362    0.362
##     0.680    0.680
##     0.375    0.375
##     0.704    0.704
##     0.358    0.358
##     0.636    0.636
##     0.360    0.360
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

  1. Perceived status difference at time t predicts worse health at time t+1, b = -.05, p = .04
  2. Health at time t predicts less perceived status difference at time t+1, b = -.09, p = .005
# Same model as above code, but fit with d_black dataset this time
LadderHealthCLPM_b.fit <- lavaan(LadderHealthCLPM, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderHealthCLPM_b.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 40 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               259.528
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1202.132
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.802
##   Tucker-Lewis Index (TLI)                       0.702
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3441.377
##   Loglikelihood unrestricted model (H1)      -3311.613
##                                                       
##   Akaike (AIC)                                6952.754
##   Bayesian (BIC)                              7098.982
##   Sample-size adjusted Bayesian (BIC)         6987.895
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.126
##   90 Percent confidence interval - lower         0.112
##   90 Percent confidence interval - upper         0.140
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.124
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.989    1.000
##                   
##     1.010    1.000
##                   
##     1.006    1.000
##                   
##     0.997    1.000
##                   
##     0.994    1.000
##                   
##     1.004    1.000
##                   
##     0.991    1.000
##                   
##     0.994    1.000
##                   
##     1.003    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.047    0.023   -2.038    0.042   -0.091   -0.002
##     wy1               0.734    0.043   16.957    0.000    0.649    0.819
##   wy3 ~                                                                 
##     wx2        (a)   -0.047    0.023   -2.038    0.042   -0.091   -0.002
##     wy2               0.735    0.043   16.928    0.000    0.650    0.820
##   wy4 ~                                                                 
##     wx3        (a)   -0.047    0.023   -2.038    0.042   -0.091   -0.002
##     wy3               0.741    0.046   16.163    0.000    0.651    0.831
##   wy5 ~                                                                 
##     wx4        (a)   -0.047    0.023   -2.038    0.042   -0.091   -0.002
##     wy4               0.763    0.046   16.477    0.000    0.673    0.854
##   wx2 ~                                                                 
##     wx1               0.255    0.060    4.237    0.000    0.137    0.374
##     wy1        (b)   -0.086    0.030   -2.824    0.005   -0.145   -0.026
##   wx3 ~                                                                 
##     wx2               0.524    0.060    8.803    0.000    0.407    0.640
##     wy2        (b)   -0.086    0.030   -2.824    0.005   -0.145   -0.026
##   wx4 ~                                                                 
##     wx3               0.463    0.063    7.329    0.000    0.340    0.587
##     wy3        (b)   -0.086    0.030   -2.824    0.005   -0.145   -0.026
##   wx5 ~                                                                 
##     wx4               0.468    0.060    7.744    0.000    0.350    0.586
##     wy4        (b)   -0.086    0.030   -2.824    0.005   -0.145   -0.026
##    Std.lv  Std.all
##                   
##    -0.046   -0.046
##     0.726    0.726
##                   
##    -0.046   -0.046
##     0.745    0.745
##                   
##    -0.047   -0.047
##     0.738    0.738
##                   
##    -0.047   -0.047
##     0.756    0.756
##                   
##     0.258    0.258
##    -0.086   -0.086
##                   
##     0.513    0.513
##    -0.085   -0.085
##                   
##     0.465    0.465
##    -0.084   -0.084
##                   
##     0.472    0.472
##    -0.085   -0.085
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.050    0.046   -1.069    0.285   -0.141    0.041
##  .wx2 ~~                                                                
##    .wy2              -0.011    0.041   -0.260    0.795   -0.090    0.069
##  .wx3 ~~                                                                
##    .wy3               0.054    0.038    1.421    0.155   -0.020    0.127
##  .wx4 ~~                                                                
##    .wy4              -0.020    0.041   -0.493    0.622   -0.100    0.060
##  .wx5 ~~                                                                
##    .wy5               0.035    0.040    0.886    0.376   -0.042    0.113
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.050   -0.050
##                   
##    -0.016   -0.016
##                   
##     0.095    0.095
##                   
##    -0.034   -0.034
##                   
##     0.062    0.062
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.007    0.047   -0.156    0.876   -0.099    0.085
##    .LadderDif.2       0.015    0.058    0.252    0.801   -0.099    0.128
##    .LadderDif.3       0.013    0.065    0.204    0.838   -0.114    0.140
##    .LadderDif.4       0.027    0.068    0.403    0.687   -0.106    0.161
##    .LadderDif.5       0.017    0.069    0.250    0.803   -0.118    0.153
##    .gHealth.1        -0.002    0.046   -0.053    0.958   -0.093    0.088
##    .gHealth.2        -0.089    0.053   -1.670    0.095   -0.193    0.015
##    .gHealth.3        -0.051    0.059   -0.868    0.386   -0.166    0.064
##    .gHealth.4        -0.034    0.063   -0.534    0.593   -0.157    0.090
##    .gHealth.5        -0.055    0.066   -0.829    0.407   -0.185    0.075
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.007   -0.007
##     0.015    0.015
##     0.013    0.013
##     0.027    0.027
##     0.017    0.017
##    -0.002   -0.002
##    -0.089   -0.088
##    -0.051   -0.051
##    -0.034   -0.034
##    -0.055   -0.055
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.998    0.066   15.020    0.000    0.867    1.128
##     wy1               0.987    0.065   15.240    0.000    0.860    1.114
##    .wx2               0.903    0.077   11.728    0.000    0.752    1.054
##    .wy2               0.471    0.041   11.471    0.000    0.391    0.552
##    .wx3               0.737    0.069   10.647    0.000    0.601    0.872
##    .wy3               0.429    0.040   10.685    0.000    0.350    0.507
##    .wx4               0.781    0.076   10.326    0.000    0.632    0.929
##    .wy4               0.442    0.043   10.293    0.000    0.358    0.527
##    .wx5               0.755    0.075   10.094    0.000    0.608    0.901
##    .wy5               0.419    0.042   10.090    0.000    0.338    0.501
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.924    0.924
##     0.467    0.467
##     0.722    0.722
##     0.436    0.436
##     0.771    0.771
##     0.447    0.447
##     0.759    0.759
##     0.417    0.417
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif and Health, 2nd order AR

White Participants

  1. Perceived status difference at time t does not predict health at time t+1
  2. Health at time t predicts less perceived status difference at time t+1, b = -.10, p < .001
LadderHealthCLPM_2AR <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gHealth.1 + 1*gHealth.2 + 1*gHealth.3 + 1*gHealth.4 + 1*gHealth.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gHealth.1
  wy2 =~ 1*gHealth.2
  wy3 =~ 1*gHealth.3
  wy4 =~ 1*gHealth.4
  wy5 =~ 1*gHealth.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ a*wx1 + wy1 
  wy3 ~ a*wx2 + wy2 + wy1
  wy4 ~ a*wx3 + wy3 + wy2
  wy5 ~ a*wx4 + wy4 + wy3
  wx2 ~ wx1 + b*wy1 
  wx3 ~ wx2 + b*wy2 + wx1
  wx4 ~ wx3 + b*wy3 + wx2
  wx5 ~ wx4 + b*wy4 + wx3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIx ~~ 0*RIy

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wx5 ~~ wx5
  wy5 ~~ wy5
'

LadderHealthCLPM_2AR.fit <- lavaan(LadderHealthCLPM_2AR, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderHealthCLPM_2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                99.933
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1985.448
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.961
##   Tucker-Lewis Index (TLI)                       0.927
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3470.809
##   Loglikelihood unrestricted model (H1)      -3420.842
##                                                       
##   Akaike (AIC)                                7023.617
##   Bayesian (BIC)                              7194.913
##   Sample-size adjusted Bayesian (BIC)         7064.782
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081
##   90 Percent confidence interval - lower         0.065
##   90 Percent confidence interval - upper         0.098
##   P-value RMSEA <= 0.05                          0.001
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.042
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.997    1.000
##                   
##     0.995    1.000
##                   
##     0.998    1.000
##                   
##     0.997    1.000
##                   
##     0.993    1.000
##                   
##     0.994    1.000
##                   
##     0.979    1.000
##                   
##     0.979    1.000
##                   
##     0.974    1.000
##                   
##     0.969    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.010    0.018   -0.568    0.570   -0.046    0.025
##     wy1               0.781    0.032   24.067    0.000    0.718    0.845
##   wy3 ~                                                                 
##     wx2        (a)   -0.010    0.018   -0.568    0.570   -0.046    0.025
##     wy2               0.386    0.055    7.011    0.000    0.278    0.494
##     wy1               0.491    0.054    9.061    0.000    0.385    0.597
##   wy4 ~                                                                 
##     wx3        (a)   -0.010    0.018   -0.568    0.570   -0.046    0.025
##     wy3               0.588    0.059    9.960    0.000    0.473    0.704
##     wy2               0.258    0.059    4.363    0.000    0.142    0.374
##   wy5 ~                                                                 
##     wx4        (a)   -0.010    0.018   -0.568    0.570   -0.046    0.025
##     wy4               0.428    0.058    7.377    0.000    0.315    0.542
##     wy3               0.445    0.058    7.658    0.000    0.331    0.559
##   wx2 ~                                                                 
##     wx1               0.509    0.047   10.818    0.000    0.417    0.602
##     wy1        (b)   -0.098    0.024   -3.994    0.000   -0.146   -0.050
##   wx3 ~                                                                 
##     wx2               0.284    0.058    4.879    0.000    0.170    0.398
##     wy2        (b)   -0.098    0.024   -3.994    0.000   -0.146   -0.050
##     wx1               0.413    0.057    7.276    0.000    0.302    0.525
##   wx4 ~                                                                 
##     wx3               0.291    0.059    4.901    0.000    0.175    0.408
##     wy3        (b)   -0.098    0.024   -3.994    0.000   -0.146   -0.050
##     wx2               0.379    0.062    6.143    0.000    0.258    0.500
##   wx5 ~                                                                 
##     wx4               0.333    0.054    6.222    0.000    0.228    0.438
##     wy4        (b)   -0.098    0.024   -3.994    0.000   -0.146   -0.050
##     wx3               0.437    0.053    8.188    0.000    0.332    0.541
##    Std.lv  Std.all
##                   
##    -0.011   -0.011
##     0.794    0.794
##                   
##    -0.011   -0.011
##     0.386    0.386
##     0.499    0.499
##                   
##    -0.011   -0.011
##     0.592    0.592
##     0.259    0.259
##                   
##    -0.011   -0.011
##     0.430    0.430
##     0.450    0.450
##                   
##     0.511    0.511
##    -0.098   -0.098
##                   
##     0.283    0.283
##    -0.096   -0.096
##     0.413    0.413
##                   
##     0.292    0.292
##    -0.096   -0.096
##     0.378    0.378
##                   
##     0.335    0.335
##    -0.096   -0.096
##     0.438    0.438
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.344    0.049   -6.988    0.000   -0.441   -0.248
##  .wx2 ~~                                                                
##    .wy2              -0.043    0.027   -1.582    0.114   -0.097    0.010
##  .wx3 ~~                                                                
##    .wy3              -0.026    0.025   -1.059    0.290   -0.074    0.022
##  .wx4 ~~                                                                
##    .wy4               0.042    0.028    1.491    0.136   -0.013    0.097
##  .wx5 ~~                                                                
##    .wy5               0.015    0.024    0.610    0.542   -0.033    0.062
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.347   -0.347
##                   
##    -0.088   -0.088
##                   
##    -0.065   -0.065
##                   
##     0.096    0.096
##                   
##     0.040    0.040
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.001    0.047    0.017    0.986   -0.091    0.092
##    .LadderDif.2      -0.010    0.051   -0.194    0.846   -0.110    0.090
##    .LadderDif.3      -0.034    0.055   -0.617    0.538   -0.141    0.074
##    .LadderDif.4      -0.012    0.059   -0.213    0.831   -0.127    0.102
##    .LadderDif.5      -0.020    0.059   -0.339    0.735   -0.136    0.096
##    .gHealth.1         0.005    0.046    0.107    0.915   -0.085    0.095
##    .gHealth.2        -0.006    0.048   -0.128    0.898   -0.100    0.087
##    .gHealth.3        -0.003    0.050   -0.069    0.945   -0.101    0.094
##    .gHealth.4         0.010    0.053    0.187    0.851   -0.094    0.114
##    .gHealth.5         0.009    0.054    0.165    0.869   -0.097    0.114
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.001    0.001
##    -0.010   -0.010
##    -0.034   -0.034
##    -0.012   -0.013
##    -0.020   -0.020
##     0.005    0.005
##    -0.006   -0.006
##    -0.003   -0.004
##     0.010    0.010
##     0.009    0.009
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.995    0.067   14.948    0.000    0.864    1.125
##     wy1               0.989    0.065   15.195    0.000    0.861    1.116
##    .wx2               0.688    0.053   12.943    0.000    0.584    0.792
##    .wy2               0.349    0.028   12.560    0.000    0.294    0.403
##    .wx3               0.573    0.050   11.543    0.000    0.476    0.670
##    .wy3               0.279    0.024   11.511    0.000    0.231    0.326
##    .wx4               0.607    0.054   11.198    0.000    0.501    0.713
##    .wy4               0.319    0.028   11.182    0.000    0.263    0.374
##    .wx5               0.493    0.045   10.998    0.000    0.405    0.581
##    .wy5               0.281    0.026   10.946    0.000    0.231    0.331
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.695    0.695
##     0.364    0.364
##     0.575    0.575
##     0.291    0.291
##     0.610    0.610
##     0.336    0.336
##     0.499    0.499
##     0.299    0.299
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(LadderHealthCLPM_2AR.fit, LadderHealthCLPM.fit)
## Chi-Squared Difference Test
## 
##                          Df    AIC    BIC   Chisq Chisq diff Df diff Pr(>Chisq)
## LadderHealthCLPM_2AR.fit 24 7023.6 7194.9  99.933                              
## LadderHealthCLPM.fit     30 7288.8 7435.1 377.146     277.21       6  < 2.2e-16
##                             
## LadderHealthCLPM_2AR.fit    
## LadderHealthCLPM.fit     ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Black Participants

  1. Perceived status difference at time t doesn’t predict health at time t+1
  2. Health at time t predicts less perceived status difference at time t+1, b = -.07, p = .023
# Same model as above code, but fit with d_black dataset this time
LadderHealthCLPM_b2AR.fit <- lavaan(LadderHealthCLPM_2AR, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderHealthCLPM_b2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                83.702
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1202.132
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.948
##   Tucker-Lewis Index (TLI)                       0.903
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3353.464
##   Loglikelihood unrestricted model (H1)      -3311.613
##                                                       
##   Akaike (AIC)                                6788.929
##   Bayesian (BIC)                              6960.224
##   Sample-size adjusted Bayesian (BIC)         6830.094
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.072
##   90 Percent confidence interval - lower         0.055
##   90 Percent confidence interval - upper         0.089
##   P-value RMSEA <= 0.05                          0.015
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.052
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.000    1.000
##                   
##     0.990    1.000
##                   
##     1.009    1.000
##                   
##     1.007    1.000
##                   
##     1.008    1.000
##                   
##     0.995    1.000
##                   
##     1.002    1.000
##                   
##     0.984    1.000
##                   
##     0.993    1.000
##                   
##     1.006    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.030    0.022   -1.414    0.157   -0.073    0.012
##     wy1               0.734    0.043   17.029    0.000    0.650    0.819
##   wy3 ~                                                                 
##     wx2        (a)   -0.030    0.022   -1.414    0.157   -0.073    0.012
##     wy2               0.506    0.062    8.171    0.000    0.385    0.628
##     wy1               0.310    0.062    4.989    0.000    0.189    0.432
##   wy4 ~                                                                 
##     wx3        (a)   -0.030    0.022   -1.414    0.157   -0.073    0.012
##     wy3               0.456    0.066    6.891    0.000    0.326    0.586
##     wy2               0.372    0.066    5.655    0.000    0.243    0.501
##   wy5 ~                                                                 
##     wx4        (a)   -0.030    0.022   -1.414    0.157   -0.073    0.012
##     wy4               0.396    0.058    6.786    0.000    0.282    0.511
##     wy3               0.510    0.059    8.636    0.000    0.394    0.626
##   wx2 ~                                                                 
##     wx1               0.264    0.060    4.409    0.000    0.147    0.381
##     wy1        (b)   -0.067    0.029   -2.268    0.023   -0.124   -0.009
##   wx3 ~                                                                 
##     wx2               0.478    0.061    7.859    0.000    0.359    0.598
##     wy2        (b)   -0.067    0.029   -2.268    0.023   -0.124   -0.009
##     wx1               0.180    0.062    2.889    0.004    0.058    0.302
##   wx4 ~                                                                 
##     wx3               0.327    0.071    4.631    0.000    0.189    0.466
##     wy3        (b)   -0.067    0.029   -2.268    0.023   -0.124   -0.009
##     wx2               0.265    0.071    3.702    0.000    0.125    0.405
##   wx5 ~                                                                 
##     wx4               0.281    0.062    4.545    0.000    0.160    0.402
##     wy4        (b)   -0.067    0.029   -2.268    0.023   -0.124   -0.009
##     wx3               0.426    0.064    6.628    0.000    0.300    0.553
##    Std.lv  Std.all
##                   
##    -0.030   -0.030
##     0.729    0.729
##                   
##    -0.031   -0.031
##     0.516    0.516
##     0.314    0.314
##                   
##    -0.031   -0.031
##     0.452    0.452
##     0.376    0.376
##                   
##    -0.030   -0.030
##     0.391    0.391
##     0.499    0.499
##                   
##     0.267    0.267
##    -0.067   -0.067
##                   
##     0.469    0.469
##    -0.066   -0.066
##     0.178    0.178
##                   
##     0.328    0.328
##    -0.065   -0.065
##     0.260    0.260
##                   
##     0.281    0.281
##    -0.066   -0.066
##     0.427    0.427
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.048    0.047   -1.029    0.303   -0.139    0.043
##  .wx2 ~~                                                                
##    .wy2              -0.014    0.040   -0.356    0.722   -0.094    0.065
##  .wx3 ~~                                                                
##    .wy3               0.055    0.035    1.553    0.121   -0.014    0.124
##  .wx4 ~~                                                                
##    .wy4              -0.049    0.038   -1.307    0.191   -0.123    0.025
##  .wx5 ~~                                                                
##    .wy5               0.027    0.031    0.869    0.385   -0.034    0.087
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.048   -0.048
##                   
##    -0.022   -0.022
##                   
##     0.105    0.105
##                   
##    -0.092   -0.092
##                   
##     0.061    0.061
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.009    0.047   -0.183    0.855   -0.101    0.083
##    .LadderDif.2       0.013    0.058    0.218    0.828   -0.101    0.126
##    .LadderDif.3       0.007    0.064    0.105    0.916   -0.118    0.132
##    .LadderDif.4       0.027    0.067    0.406    0.685   -0.104    0.158
##    .LadderDif.5       0.029    0.068    0.426    0.670   -0.105    0.163
##    .gHealth.1        -0.003    0.046   -0.076    0.940   -0.094    0.087
##    .gHealth.2        -0.088    0.053   -1.660    0.097   -0.192    0.016
##    .gHealth.3        -0.073    0.056   -1.305    0.192   -0.182    0.037
##    .gHealth.4        -0.055    0.059   -0.921    0.357   -0.171    0.062
##    .gHealth.5        -0.100    0.061   -1.618    0.106   -0.220    0.021
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.009   -0.009
##     0.013    0.013
##     0.007    0.007
##     0.027    0.027
##     0.029    0.029
##    -0.003   -0.004
##    -0.088   -0.088
##    -0.073   -0.074
##    -0.055   -0.055
##    -0.100   -0.099
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               1.000    0.067   14.987    0.000    0.869    1.131
##     wy1               0.990    0.065   15.236    0.000    0.863    1.117
##    .wx2               0.904    0.077   11.720    0.000    0.753    1.055
##    .wy2               0.468    0.041   11.529    0.000    0.389    0.548
##    .wx3               0.705    0.066   10.610    0.000    0.575    0.835
##    .wy3               0.382    0.036   10.540    0.000    0.311    0.453
##    .wx4               0.737    0.071   10.322    0.000    0.597    0.876
##    .wy4               0.390    0.038   10.280    0.000    0.316    0.464
##    .wx5               0.621    0.062   10.090    0.000    0.501    0.742
##    .wy5               0.307    0.030   10.096    0.000    0.247    0.366
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.923    0.923
##     0.466    0.466
##     0.692    0.692
##     0.394    0.394
##     0.726    0.726
##     0.395    0.395
##     0.611    0.611
##     0.303    0.303
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(LadderHealthCLPM_b2AR.fit, LadderHealthCLPM_b.fit)
## Chi-Squared Difference Test
## 
##                           Df    AIC    BIC   Chisq Chisq diff Df diff
## LadderHealthCLPM_b2AR.fit 24 6788.9 6960.2  83.702                   
## LadderHealthCLPM_b.fit    30 6952.8 7099.0 259.528     175.83       6
##                           Pr(>Chisq)    
## LadderHealthCLPM_b2AR.fit               
## LadderHealthCLPM_b.fit     < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LadderDif and Sleep

White Participants

  1. Perceived status difference at time t predicts worse sleep at time t+1, b = -.06, p = .002
  2. Sleep at time t predicts less perceived status difference at time t+1, b = -.10, p < .001
LadderSleepCLPM <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gSleep.1 + 1*gSleep.2 + 1*gSleep.3 + 1*gSleep.4 + 1*gSleep.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gSleep.1
  wy2 =~ 1*gSleep.2
  wy3 =~ 1*gSleep.3
  wy4 =~ 1*gSleep.4
  wy5 =~ 1*gSleep.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ a*wx1 + wy1 
  wy3 ~ a*wx2 + wy2 
  wy4 ~ a*wx3 + wy3 
  wy5 ~ a*wx4 + wy4 
  wx2 ~ wx1 + b*wy1 
  wx3 ~ wx2 + b*wy2 
  wx4 ~ wx3 + b*wy3 
  wx5 ~ wx4 + b*wy4 


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIx ~~ 0*RIy

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wx5 ~~ wx5
  wy5 ~~ wy5
'

LadderSleepCLPM.fit <- lavaan(LadderSleepCLPM, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderSleepCLPM.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               318.786
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1735.738
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.829
##   Tucker-Lewis Index (TLI)                       0.744
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3707.374
##   Loglikelihood unrestricted model (H1)      -3547.982
##                                                       
##   Akaike (AIC)                                7484.749
##   Bayesian (BIC)                              7630.977
##   Sample-size adjusted Bayesian (BIC)         7519.890
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.141
##   90 Percent confidence interval - lower         0.128
##   90 Percent confidence interval - upper         0.156
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.127
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.997    1.000
##                   
##     0.998    1.000
##                   
##     1.003    1.000
##                   
##     1.000    1.000
##                   
##     0.994    1.000
##                   
##     0.985    1.000
##                   
##     0.998    1.000
##                   
##     0.956    1.000
##                   
##     1.031    1.000
##                   
##     1.031    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.061    0.020   -3.028    0.002   -0.101   -0.022
##     wy1               0.782    0.034   22.874    0.000    0.715    0.850
##   wy3 ~                                                                 
##     wx2        (a)   -0.061    0.020   -3.028    0.002   -0.101   -0.022
##     wy2               0.686    0.039   17.609    0.000    0.610    0.763
##   wy4 ~                                                                 
##     wx3        (a)   -0.061    0.020   -3.028    0.002   -0.101   -0.022
##     wy3               0.820    0.043   19.282    0.000    0.737    0.904
##   wy5 ~                                                                 
##     wx4        (a)   -0.061    0.020   -3.028    0.002   -0.101   -0.022
##     wy4               0.774    0.040   19.505    0.000    0.696    0.851
##   wx2 ~                                                                 
##     wx1               0.524    0.047   11.213    0.000    0.433    0.616
##     wy1        (b)   -0.099    0.025   -3.873    0.000   -0.148   -0.049
##   wx3 ~                                                                 
##     wx2               0.531    0.053   10.115    0.000    0.428    0.634
##     wy2        (b)   -0.099    0.025   -3.873    0.000   -0.148   -0.049
##   wx4 ~                                                                 
##     wx3               0.511    0.054    9.549    0.000    0.406    0.616
##     wy3        (b)   -0.099    0.025   -3.873    0.000   -0.148   -0.049
##   wx5 ~                                                                 
##     wx4               0.558    0.052   10.760    0.000    0.457    0.660
##     wy4        (b)   -0.099    0.025   -3.873    0.000   -0.148   -0.049
##    Std.lv  Std.all
##                   
##    -0.061   -0.061
##     0.772    0.772
##                   
##    -0.064   -0.064
##     0.717    0.717
##                   
##    -0.060   -0.060
##     0.761    0.761
##                   
##    -0.059   -0.059
##     0.773    0.773
##                   
##     0.524    0.524
##    -0.097   -0.097
##                   
##     0.529    0.529
##    -0.098   -0.098
##                   
##     0.513    0.513
##    -0.094   -0.094
##                   
##     0.562    0.562
##    -0.102   -0.102
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.241    0.048   -5.027    0.000   -0.335   -0.147
##  .wx2 ~~                                                                
##    .wy2               0.008    0.028    0.268    0.789   -0.048    0.063
##  .wx3 ~~                                                                
##    .wy3               0.008    0.033    0.237    0.813   -0.056    0.072
##  .wx4 ~~                                                                
##    .wy4              -0.003    0.035   -0.100    0.920   -0.072    0.065
##  .wx5 ~~                                                                
##    .wy5              -0.051    0.034   -1.513    0.130   -0.117    0.015
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.246   -0.246
##                   
##     0.015    0.015
##                   
##     0.014    0.014
##                   
##    -0.006   -0.006
##                   
##    -0.099   -0.099
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.002    0.047    0.034    0.973   -0.090    0.094
##    .LadderDif.2      -0.005    0.051   -0.104    0.917   -0.106    0.095
##    .LadderDif.3      -0.011    0.057   -0.192    0.848   -0.124    0.102
##    .LadderDif.4       0.000    0.061    0.002    0.999   -0.120    0.120
##    .LadderDif.5      -0.006    0.063   -0.098    0.922   -0.129    0.117
##    .gSleep.1          2.762    0.046   60.463    0.000    2.673    2.852
##    .gSleep.2          2.844    0.049   58.293    0.000    2.748    2.940
##    .gSleep.3          2.938    0.052   56.628    0.000    2.836    3.040
##    .gSleep.4          2.886    0.060   48.376    0.000    2.770    3.003
##    .gSleep.5          2.922    0.062   46.956    0.000    2.800    3.044
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.002    0.002
##    -0.005   -0.005
##    -0.011   -0.011
##     0.000    0.000
##    -0.006   -0.006
##     2.762    2.806
##     2.844    2.849
##     2.938    3.074
##     2.886    2.801
##     2.922    2.834
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.994    0.067   14.919    0.000    0.863    1.124
##     wy1               0.969    0.065   14.949    0.000    0.842    1.097
##    .wx2               0.688    0.053   12.922    0.000    0.584    0.792
##    .wy2               0.376    0.030   12.391    0.000    0.317    0.436
##    .wx3               0.694    0.059   11.777    0.000    0.578    0.809
##    .wy3               0.423    0.036   11.762    0.000    0.353    0.493
##    .wx4               0.711    0.063   11.201    0.000    0.586    0.835
##    .wy4               0.427    0.038   11.183    0.000    0.352    0.502
##    .wx5               0.646    0.059   10.990    0.000    0.531    0.761
##    .wy5               0.407    0.037   10.932    0.000    0.334    0.479
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.691    0.691
##     0.378    0.378
##     0.690    0.690
##     0.463    0.463
##     0.711    0.711
##     0.402    0.402
##     0.654    0.654
##     0.383    0.383
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

  1. Perceived status difference at time t predicts worse sleep at time t+1, b = -.05, p = .03
  2. Sleep at time t predicts does not predict perceived status difference at time t+1
# Same model as above code, but fit with d_black dataset this time
LadderSleepCLPM_b.fit <- lavaan(LadderSleepCLPM, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderSleepCLPM_b.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               197.797
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1022.753
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.828
##   Tucker-Lewis Index (TLI)                       0.743
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3496.830
##   Loglikelihood unrestricted model (H1)      -3397.931
##                                                       
##   Akaike (AIC)                                7063.659
##   Bayesian (BIC)                              7209.887
##   Sample-size adjusted Bayesian (BIC)         7098.800
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.108
##   90 Percent confidence interval - lower         0.094
##   90 Percent confidence interval - upper         0.122
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.111
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.998    1.000
##                   
##     1.011    1.000
##                   
##     1.005    1.000
##                   
##     0.996    1.000
##                   
##     0.973    1.000
##                   
##     0.981    1.000
##                   
##     0.993    1.000
##                   
##     1.030    1.000
##                   
##     0.994    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.051    0.024   -2.116    0.034   -0.098   -0.004
##     wy1               0.619    0.046   13.358    0.000    0.528    0.710
##   wy3 ~                                                                 
##     wx2        (a)   -0.051    0.024   -2.116    0.034   -0.098   -0.004
##     wy2               0.679    0.048   14.110    0.000    0.585    0.773
##   wy4 ~                                                                 
##     wx3        (a)   -0.051    0.024   -2.116    0.034   -0.098   -0.004
##     wy3               0.731    0.050   14.674    0.000    0.633    0.829
##   wy5 ~                                                                 
##     wx4        (a)   -0.051    0.024   -2.116    0.034   -0.098   -0.004
##     wy4               0.755    0.042   18.107    0.000    0.674    0.837
##   wx2 ~                                                                 
##     wx1               0.260    0.061    4.233    0.000    0.139    0.380
##     wy1        (b)   -0.021    0.029   -0.710    0.478   -0.079    0.037
##   wx3 ~                                                                 
##     wx2               0.543    0.059    9.218    0.000    0.427    0.658
##     wy2        (b)   -0.021    0.029   -0.710    0.478   -0.079    0.037
##   wx4 ~                                                                 
##     wx3               0.462    0.063    7.294    0.000    0.338    0.587
##     wy3        (b)   -0.021    0.029   -0.710    0.478   -0.079    0.037
##   wx5 ~                                                                 
##     wx4               0.482    0.060    8.033    0.000    0.364    0.599
##     wy4        (b)   -0.021    0.029   -0.710    0.478   -0.079    0.037
##    Std.lv  Std.all
##                   
##    -0.052   -0.052
##     0.614    0.614
##                   
##    -0.051   -0.051
##     0.670    0.670
##                   
##    -0.050   -0.050
##     0.705    0.705
##                   
##    -0.052   -0.052
##     0.783    0.783
##                   
##     0.260    0.260
##    -0.020   -0.020
##                   
##     0.536    0.536
##    -0.020   -0.020
##                   
##     0.465    0.465
##    -0.021   -0.021
##                   
##     0.487    0.487
##    -0.022   -0.022
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.056    0.046    1.220    0.223   -0.034    0.145
##  .wx2 ~~                                                                
##    .wy2              -0.005    0.046   -0.114    0.909   -0.095    0.084
##  .wx3 ~~                                                                
##    .wy3              -0.045    0.042   -1.082    0.279   -0.127    0.037
##  .wx4 ~~                                                                
##    .wy4              -0.029    0.044   -0.659    0.510   -0.116    0.058
##  .wx5 ~~                                                                
##    .wy5               0.066    0.037    1.764    0.078   -0.007    0.139
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.057    0.057
##                   
##    -0.007   -0.007
##                   
##    -0.072   -0.072
##                   
##    -0.045   -0.045
##                   
##     0.125    0.125
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.007    0.047   -0.158    0.875   -0.099    0.085
##    .LadderDif.2       0.005    0.059    0.087    0.931   -0.110    0.120
##    .LadderDif.3       0.003    0.065    0.051    0.959   -0.124    0.130
##    .LadderDif.4       0.020    0.068    0.295    0.768   -0.113    0.153
##    .LadderDif.5       0.009    0.069    0.132    0.895   -0.126    0.145
##    .gSleep.1          3.022    0.045   66.789    0.000    2.933    3.111
##    .gSleep.2          3.036    0.054   56.483    0.000    2.930    3.141
##    .gSleep.3          3.186    0.061   52.355    0.000    3.067    3.305
##    .gSleep.4          3.271    0.067   48.870    0.000    3.140    3.403
##    .gSleep.5          3.266    0.067   49.069    0.000    3.136    3.396
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.007   -0.007
##     0.005    0.005
##     0.003    0.003
##     0.020    0.020
##     0.009    0.009
##     3.022    3.107
##     3.036    3.096
##     3.186    3.207
##     3.271    3.175
##     3.266    3.285
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.998    0.066   15.017    0.000    0.868    1.128
##     wy1               0.946    0.062   15.171    0.000    0.824    1.068
##    .wx2               0.929    0.079   11.793    0.000    0.775    1.083
##    .wy2               0.600    0.052   11.571    0.000    0.498    0.701
##    .wx3               0.727    0.068   10.679    0.000    0.594    0.860
##    .wy3               0.539    0.050   10.700    0.000    0.441    0.638
##    .wx4               0.790    0.077   10.328    0.000    0.640    0.940
##    .wy4               0.525    0.051   10.310    0.000    0.425    0.624
##    .wx5               0.754    0.075   10.095    0.000    0.607    0.900
##    .wy5               0.373    0.037   10.092    0.000    0.300    0.445
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.933    0.933
##     0.624    0.624
##     0.712    0.712
##     0.547    0.547
##     0.782    0.782
##     0.494    0.494
##     0.761    0.761
##     0.377    0.377
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif and Sleep, 2nd Order AR

White Participants

  1. Perceived status difference at time t predicts worse sleep at time t+1, b = -.04, p = .043
  2. Sleep at time t predicts less perceived status difference at time t+1, b = -.07, p = .003
LadderSleepCLPM_2AR <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gSleep.1 + 1*gSleep.2 + 1*gSleep.3 + 1*gSleep.4 + 1*gSleep.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gSleep.1
  wy2 =~ 1*gSleep.2
  wy3 =~ 1*gSleep.3
  wy4 =~ 1*gSleep.4
  wy5 =~ 1*gSleep.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ a*wx1 + wy1 
  wy3 ~ a*wx2 + wy2 + wy1
  wy4 ~ a*wx3 + wy3 + wy2
  wy5 ~ a*wx4 + wy4 + wy3
  wx2 ~ wx1 + b*wy1 
  wx3 ~ wx2 + b*wy2 + wx1
  wx4 ~ wx3 + b*wy3 + wx2
  wx5 ~ wx4 + b*wy4 + wx3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIx ~~ 0*RIy

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wx5 ~~ wx5
  wy5 ~~ wy5
'

LadderSleepCLPM_2AR.fit <- lavaan(LadderSleepCLPM_2AR, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderSleepCLPM_2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               104.752
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1735.738
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.952
##   Tucker-Lewis Index (TLI)                       0.910
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3600.358
##   Loglikelihood unrestricted model (H1)      -3547.982
##                                                       
##   Akaike (AIC)                                7282.716
##   Bayesian (BIC)                              7454.011
##   Sample-size adjusted Bayesian (BIC)         7323.881
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.084
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.100
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.047
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.997    1.000
##                   
##     0.996    1.000
##                   
##     1.005    1.000
##                   
##     0.991    1.000
##                   
##     0.988    1.000
##                   
##     0.997    1.000
##                   
##     0.944    1.000
##                   
##     1.023    1.000
##                   
##     1.023    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.040    0.020   -2.028    0.043   -0.079   -0.001
##     wy1               0.785    0.034   23.029    0.000    0.718    0.852
##   wy3 ~                                                                 
##     wx2        (a)   -0.040    0.020   -2.028    0.043   -0.079   -0.001
##     wy2               0.380    0.064    5.976    0.000    0.256    0.505
##     wy1               0.382    0.064    5.963    0.000    0.256    0.507
##   wy4 ~                                                                 
##     wx3        (a)   -0.040    0.020   -2.028    0.043   -0.079   -0.001
##     wy3               0.606    0.061    9.955    0.000    0.486    0.725
##     wy2               0.280    0.059    4.756    0.000    0.165    0.396
##   wy5 ~                                                                 
##     wx4        (a)   -0.040    0.020   -2.028    0.043   -0.079   -0.001
##     wy4               0.581    0.060    9.634    0.000    0.462    0.699
##     wy3               0.272    0.064    4.218    0.000    0.145    0.398
##   wx2 ~                                                                 
##     wx1               0.532    0.047   11.434    0.000    0.441    0.623
##     wy1        (b)   -0.071    0.024   -2.955    0.003   -0.117   -0.024
##   wx3 ~                                                                 
##     wx2               0.288    0.058    4.940    0.000    0.174    0.402
##     wy2        (b)   -0.071    0.024   -2.955    0.003   -0.117   -0.024
##     wx1               0.425    0.057    7.516    0.000    0.314    0.535
##   wx4 ~                                                                 
##     wx3               0.302    0.060    5.008    0.000    0.184    0.420
##     wy3        (b)   -0.071    0.024   -2.955    0.003   -0.117   -0.024
##     wx2               0.394    0.063    6.292    0.000    0.271    0.516
##   wx5 ~                                                                 
##     wx4               0.328    0.054    6.095    0.000    0.223    0.434
##     wy4        (b)   -0.071    0.024   -2.955    0.003   -0.117   -0.024
##     wx3               0.445    0.053    8.331    0.000    0.340    0.549
##    Std.lv  Std.all
##                   
##    -0.040   -0.040
##     0.778    0.778
##                   
##    -0.042   -0.042
##     0.402    0.402
##     0.400    0.400
##                   
##    -0.039   -0.039
##     0.559    0.559
##     0.273    0.273
##                   
##    -0.039   -0.039
##     0.581    0.581
##     0.251    0.251
##                   
##     0.533    0.533
##    -0.070   -0.070
##                   
##     0.288    0.288
##    -0.071   -0.071
##     0.426    0.426
##                   
##     0.299    0.299
##    -0.066   -0.066
##     0.390    0.390
##                   
##     0.333    0.333
##    -0.073   -0.073
##     0.447    0.447
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.247    0.048   -5.112    0.000   -0.342   -0.152
##  .wx2 ~~                                                                
##    .wy2               0.007    0.028    0.243    0.808   -0.048    0.062
##  .wx3 ~~                                                                
##    .wy3               0.003    0.028    0.110    0.912   -0.052    0.059
##  .wx4 ~~                                                                
##    .wy4               0.039    0.032    1.236    0.217   -0.023    0.102
##  .wx5 ~~                                                                
##    .wy5              -0.032    0.029   -1.120    0.263   -0.088    0.024
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.250   -0.250
##                   
##     0.014    0.014
##                   
##     0.007    0.007
##                   
##     0.080    0.080
##                   
##    -0.074   -0.074
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.003    0.047    0.061    0.951   -0.089    0.095
##    .LadderDif.2      -0.008    0.051   -0.147    0.883   -0.108    0.093
##    .LadderDif.3      -0.033    0.055   -0.611    0.541   -0.141    0.074
##    .LadderDif.4      -0.011    0.059   -0.186    0.853   -0.127    0.105
##    .LadderDif.5      -0.020    0.059   -0.332    0.740   -0.136    0.097
##    .gSleep.1          2.757    0.046   60.250    0.000    2.668    2.847
##    .gSleep.2          2.845    0.049   58.423    0.000    2.750    2.941
##    .gSleep.3          2.924    0.050   58.830    0.000    2.827    3.021
##    .gSleep.4          2.888    0.057   50.878    0.000    2.776    2.999
##    .gSleep.5          2.920    0.059   49.441    0.000    2.804    3.035
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.003    0.003
##    -0.008   -0.008
##    -0.033   -0.034
##    -0.011   -0.011
##    -0.020   -0.020
##     2.757    2.791
##     2.845    2.855
##     2.924    3.097
##     2.888    2.823
##     2.920    2.855
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.998    0.067   14.919    0.000    0.867    1.129
##     wy1               0.976    0.065   14.952    0.000    0.848    1.104
##    .wx2               0.688    0.053   12.943    0.000    0.583    0.792
##    .wy2               0.375    0.030   12.451    0.000    0.316    0.434
##    .wx3               0.570    0.049   11.534    0.000    0.473    0.667
##    .wy3               0.367    0.032   11.488    0.000    0.304    0.430
##    .wx4               0.617    0.055   11.199    0.000    0.509    0.725
##    .wy4               0.394    0.035   11.153    0.000    0.325    0.464
##    .wx5               0.500    0.046   10.986    0.000    0.411    0.589
##    .wy5               0.382    0.035   10.908    0.000    0.313    0.450
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.692    0.692
##     0.377    0.377
##     0.574    0.574
##     0.412    0.412
##     0.611    0.611
##     0.377    0.377
##     0.509    0.509
##     0.365    0.365
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(LadderSleepCLPM_2AR.fit, LadderSleepCLPM.fit)
## Chi-Squared Difference Test
## 
##                         Df    AIC  BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## LadderSleepCLPM_2AR.fit 24 7282.7 7454 104.75                                  
## LadderSleepCLPM.fit     30 7484.7 7631 318.79     214.03       6  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Black Participants

  1. Perceived status difference at time t predicts worse sleep at time t+1, b = -.06, p = .01
  2. Sleep at time t predicts does not predict perceived status difference at time t+1
# Same model as above code, but fit with d_black dataset this time
LadderSleepCLPM_b2AR.fit <- lavaan(LadderSleepCLPM_2AR, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderSleepCLPM_b2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                46.666
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.004
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1022.753
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.977
##   Tucker-Lewis Index (TLI)                       0.957
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3421.264
##   Loglikelihood unrestricted model (H1)      -3397.931
##                                                       
##   Akaike (AIC)                                6924.528
##   Bayesian (BIC)                              7095.823
##   Sample-size adjusted Bayesian (BIC)         6965.693
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.044
##   90 Percent confidence interval - lower         0.025
##   90 Percent confidence interval - upper         0.063
##   P-value RMSEA <= 0.05                          0.668
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.037
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.000    1.000
##                   
##     0.999    1.000
##                   
##     1.014    1.000
##                   
##     1.012    1.000
##                   
##     1.008    1.000
##                   
##     0.973    1.000
##                   
##     0.981    1.000
##                   
##     0.983    1.000
##                   
##     1.018    1.000
##                   
##     0.983    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)   -0.059    0.023   -2.568    0.010   -0.104   -0.014
##     wy1               0.621    0.046   13.406    0.000    0.530    0.711
##   wy3 ~                                                                 
##     wx2        (a)   -0.059    0.023   -2.568    0.010   -0.104   -0.014
##     wy2               0.504    0.060    8.396    0.000    0.386    0.622
##     wy1               0.268    0.060    4.487    0.000    0.151    0.385
##   wy4 ~                                                                 
##     wx3        (a)   -0.059    0.023   -2.568    0.010   -0.104   -0.014
##     wy3               0.481    0.062    7.711    0.000    0.359    0.603
##     wy2               0.366    0.061    5.969    0.000    0.246    0.486
##   wy5 ~                                                                 
##     wx4        (a)   -0.059    0.023   -2.568    0.010   -0.104   -0.014
##     wy4               0.504    0.054    9.292    0.000    0.397    0.610
##     wy3               0.358    0.056    6.451    0.000    0.249    0.467
##   wx2 ~                                                                 
##     wx1               0.267    0.061    4.382    0.000    0.147    0.386
##     wy1        (b)   -0.008    0.028   -0.274    0.784   -0.064    0.048
##   wx3 ~                                                                 
##     wx2               0.504    0.060    8.384    0.000    0.386    0.621
##     wy2        (b)   -0.008    0.028   -0.274    0.784   -0.064    0.048
##     wx1               0.173    0.062    2.782    0.005    0.051    0.296
##   wx4 ~                                                                 
##     wx3               0.327    0.071    4.608    0.000    0.188    0.466
##     wy3        (b)   -0.008    0.028   -0.274    0.784   -0.064    0.048
##     wx2               0.273    0.072    3.809    0.000    0.133    0.413
##   wx5 ~                                                                 
##     wx4               0.294    0.061    4.804    0.000    0.174    0.414
##     wy4        (b)   -0.008    0.028   -0.274    0.784   -0.064    0.048
##     wx3               0.425    0.064    6.690    0.000    0.301    0.550
##    Std.lv  Std.all
##                   
##    -0.060   -0.060
##     0.615    0.615
##                   
##    -0.060   -0.060
##     0.503    0.503
##     0.265    0.265
##                   
##    -0.059   -0.059
##     0.464    0.464
##     0.353    0.353
##                   
##    -0.061   -0.061
##     0.522    0.522
##     0.358    0.358
##                   
##     0.267    0.267
##    -0.008   -0.008
##                   
##     0.496    0.496
##    -0.008   -0.008
##     0.171    0.171
##                   
##     0.327    0.327
##    -0.008   -0.008
##     0.269    0.269
##                   
##     0.295    0.295
##    -0.008   -0.008
##     0.428    0.428
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.059    0.046    1.287    0.198   -0.031    0.148
##  .wx2 ~~                                                                
##    .wy2              -0.008    0.046   -0.177    0.859   -0.097    0.081
##  .wx3 ~~                                                                
##    .wy3              -0.038    0.039   -0.971    0.332   -0.115    0.039
##  .wx4 ~~                                                                
##    .wy4              -0.035    0.040   -0.885    0.376   -0.114    0.043
##  .wx5 ~~                                                                
##    .wy5               0.069    0.031    2.219    0.026    0.008    0.131
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.060    0.060
##                   
##    -0.011   -0.011
##                   
##    -0.065   -0.065
##                   
##    -0.061   -0.061
##                   
##     0.158    0.158
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.009    0.047   -0.182    0.855   -0.101    0.084
##    .LadderDif.2       0.005    0.059    0.085    0.932   -0.110    0.120
##    .LadderDif.3      -0.001    0.064   -0.014    0.989   -0.126    0.124
##    .LadderDif.4       0.019    0.067    0.284    0.776   -0.113    0.151
##    .LadderDif.5       0.018    0.068    0.264    0.792   -0.116    0.152
##    .gSleep.1          3.020    0.045   66.820    0.000    2.931    3.108
##    .gSleep.2          3.036    0.054   56.475    0.000    2.931    3.142
##    .gSleep.3          3.183    0.058   54.705    0.000    3.069    3.297
##    .gSleep.4          3.261    0.063   51.899    0.000    3.137    3.384
##    .gSleep.5          3.250    0.062   52.337    0.000    3.128    3.371
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.009   -0.009
##     0.005    0.005
##    -0.001   -0.001
##     0.019    0.019
##     0.018    0.018
##     3.020    3.104
##     3.036    3.094
##     3.183    3.237
##     3.261    3.202
##     3.250    3.306
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               1.000    0.067   14.985    0.000    0.869    1.131
##     wy1               0.947    0.062   15.178    0.000    0.824    1.069
##    .wx2               0.926    0.079   11.790    0.000    0.772    1.080
##    .wy2               0.600    0.052   11.592    0.000    0.498    0.701
##    .wx3               0.698    0.066   10.640    0.000    0.569    0.826
##    .wy3               0.492    0.046   10.622    0.000    0.402    0.583
##    .wx4               0.741    0.072   10.324    0.000    0.601    0.882
##    .wy4               0.449    0.044   10.284    0.000    0.364    0.535
##    .wx5               0.619    0.061   10.099    0.000    0.499    0.740
##    .wy5               0.313    0.031   10.090    0.000    0.252    0.374
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.929    0.929
##     0.622    0.622
##     0.679    0.679
##     0.509    0.509
##     0.724    0.724
##     0.433    0.433
##     0.609    0.609
##     0.324    0.324
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(LadderSleepCLPM_b2AR.fit, LadderSleepCLPM_b.fit)
## Chi-Squared Difference Test
## 
##                          Df    AIC    BIC   Chisq Chisq diff Df diff Pr(>Chisq)
## LadderSleepCLPM_b2AR.fit 24 6924.5 7095.8  46.666                              
## LadderSleepCLPM_b.fit    30 7063.7 7209.9 197.797     151.13       6  < 2.2e-16
##                             
## LadderSleepCLPM_b2AR.fit    
## LadderSleepCLPM_b.fit    ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LadderDif and Depression

White Participants

  1. Perceived status difference at time t predicts more depression at time t+1, b = .06, p = .001
  2. Depression at time t predicts more perceived status difference at time t+1, b = .13, p < .001
LadderDepCLPM <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*dep.1 + 1*dep.2 + 1*dep.3 + 1*dep.4 + 1*dep.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*dep.1
  wy2 =~ 1*dep.2
  wy3 =~ 1*dep.3
  wy4 =~ 1*dep.4
  wy5 =~ 1*dep.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ a*wx1 + wy1 
  wy3 ~ a*wx2 + wy2 
  wy4 ~ a*wx3 + wy3 
  wy5 ~ a*wx4 + wy4 
  wx2 ~ wx1 + b*wy1 
  wx3 ~ wx2 + b*wy2 
  wx4 ~ wx3 + b*wy3 
  wx5 ~ wx4 + b*wy4 


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIx ~~ 0*RIy

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wx5 ~~ wx5
  wy5 ~~ wy5
'

LadderDepCLPM.fit <- lavaan(LadderDepCLPM, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderDepCLPM.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               348.208
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1965.104
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.834
##   Tucker-Lewis Index (TLI)                       0.751
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3605.118
##   Loglikelihood unrestricted model (H1)      -3431.014
##                                                       
##   Akaike (AIC)                                7280.236
##   Bayesian (BIC)                              7426.464
##   Sample-size adjusted Bayesian (BIC)         7315.377
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.148
##   90 Percent confidence interval - lower         0.135
##   90 Percent confidence interval - upper         0.163
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.124
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.997    1.000
##                   
##     0.993    1.000
##                   
##     1.001    1.000
##                   
##     1.000    1.000
##                   
##     0.998    1.000
##                   
##     1.011    1.000
##                   
##     1.007    1.000
##                   
##     1.009    1.000
##                   
##     0.998    1.000
##                   
##     1.006    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)    0.062    0.019    3.302    0.001    0.025    0.098
##     wy1               0.798    0.033   24.193    0.000    0.733    0.862
##   wy3 ~                                                                 
##     wx2        (a)    0.062    0.019    3.302    0.001    0.025    0.098
##     wy2               0.799    0.036   22.182    0.000    0.729    0.870
##   wy4 ~                                                                 
##     wx3        (a)    0.062    0.019    3.302    0.001    0.025    0.098
##     wy3               0.776    0.038   20.622    0.000    0.702    0.850
##   wy5 ~                                                                 
##     wx4        (a)    0.062    0.019    3.302    0.001    0.025    0.098
##     wy4               0.817    0.037   22.153    0.000    0.744    0.889
##   wx2 ~                                                                 
##     wx1               0.505    0.047   10.784    0.000    0.413    0.597
##     wy1        (b)    0.127    0.026    4.826    0.000    0.075    0.178
##   wx3 ~                                                                 
##     wx2               0.513    0.053    9.730    0.000    0.410    0.617
##     wy2        (b)    0.127    0.026    4.826    0.000    0.075    0.178
##   wx4 ~                                                                 
##     wx3               0.500    0.053    9.384    0.000    0.396    0.605
##     wy3        (b)    0.127    0.026    4.826    0.000    0.075    0.178
##   wx5 ~                                                                 
##     wx4               0.550    0.051   10.744    0.000    0.450    0.651
##     wy4        (b)    0.127    0.026    4.826    0.000    0.075    0.178
##    Std.lv  Std.all
##                   
##     0.061    0.061
##     0.801    0.801
##                   
##     0.061    0.061
##     0.798    0.798
##                   
##     0.062    0.062
##     0.784    0.784
##                   
##     0.061    0.061
##     0.810    0.810
##                   
##     0.507    0.507
##     0.129    0.129
##                   
##     0.509    0.509
##     0.128    0.128
##                   
##     0.500    0.500
##     0.128    0.128
##                   
##     0.551    0.551
##     0.127    0.127
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.301    0.050    6.027    0.000    0.203    0.399
##  .wx2 ~~                                                                
##    .wy2              -0.021    0.026   -0.808    0.419   -0.073    0.030
##  .wx3 ~~                                                                
##    .wy3              -0.021    0.029   -0.706    0.480   -0.078    0.037
##  .wx4 ~~                                                                
##    .wy4               0.044    0.032    1.368    0.171   -0.019    0.107
##  .wx5 ~~                                                                
##    .wy5               0.061    0.029    2.066    0.039    0.003    0.118
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.299    0.299
##                   
##    -0.045   -0.045
##                   
##    -0.042   -0.042
##                   
##     0.087    0.087
##                   
##     0.134    0.134
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.002    0.047    0.046    0.963   -0.090    0.094
##    .LadderDif.2      -0.004    0.051   -0.076    0.939   -0.104    0.096
##    .LadderDif.3      -0.000    0.057   -0.002    0.999   -0.113    0.112
##    .LadderDif.4       0.015    0.061    0.248    0.804   -0.105    0.135
##    .LadderDif.5       0.011    0.063    0.175    0.861   -0.112    0.134
##    .dep.1             0.008    0.047    0.175    0.861   -0.084    0.100
##    .dep.2             0.044    0.049    0.911    0.362   -0.051    0.140
##    .dep.3             0.066    0.053    1.237    0.216   -0.038    0.170
##    .dep.4             0.057    0.056    1.012    0.311   -0.054    0.168
##    .dep.5             0.045    0.059    0.749    0.454   -0.072    0.161
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.002    0.002
##    -0.004   -0.004
##    -0.000   -0.000
##     0.015    0.015
##     0.011    0.011
##     0.008    0.008
##     0.044    0.044
##     0.066    0.065
##     0.057    0.057
##     0.045    0.044
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.994    0.067   14.913    0.000    0.864    1.125
##     wy1               1.022    0.068   14.993    0.000    0.889    1.156
##    .wx2               0.677    0.052   12.931    0.000    0.575    0.780
##    .wy2               0.330    0.027   12.363    0.000    0.277    0.382
##    .wx3               0.694    0.059   11.788    0.000    0.579    0.810
##    .wy3               0.342    0.029   11.742    0.000    0.285    0.399
##    .wx4               0.706    0.063   11.200    0.000    0.583    0.830
##    .wy4               0.359    0.032   11.163    0.000    0.296    0.422
##    .wx5               0.641    0.058   10.994    0.000    0.527    0.755
##    .wy5               0.319    0.029   10.993    0.000    0.262    0.376
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.687    0.687
##     0.325    0.325
##     0.693    0.693
##     0.336    0.336
##     0.706    0.706
##     0.360    0.360
##     0.644    0.644
##     0.315    0.315
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

  1. Perceived status difference at time t does not predict depression at time t+1
  2. Depression at time t does not predict perceived status difference at time t+1
# Same model as above code, but fit with d_black dataset this time
LadderDepCLPM_b.fit <- lavaan(LadderDepCLPM, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderDepCLPM_b.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               210.219
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1194.723
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.843
##   Tucker-Lewis Index (TLI)                       0.765
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3420.427
##   Loglikelihood unrestricted model (H1)      -3315.318
##                                                       
##   Akaike (AIC)                                6910.855
##   Bayesian (BIC)                              7057.083
##   Sample-size adjusted Bayesian (BIC)         6945.996
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.112
##   90 Percent confidence interval - lower         0.098
##   90 Percent confidence interval - upper         0.126
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.114
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.997    1.000
##                   
##     1.011    1.000
##                   
##     1.008    1.000
##                   
##     0.996    1.000
##                   
##     0.998    1.000
##                   
##     1.006    1.000
##                   
##     1.005    1.000
##                   
##     0.991    1.000
##                   
##     0.994    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)    0.016    0.022    0.730    0.465   -0.027    0.059
##     wy1               0.677    0.046   14.595    0.000    0.586    0.768
##   wy3 ~                                                                 
##     wx2        (a)    0.016    0.022    0.730    0.465   -0.027    0.059
##     wy2               0.773    0.042   18.203    0.000    0.689    0.856
##   wy4 ~                                                                 
##     wx3        (a)    0.016    0.022    0.730    0.465   -0.027    0.059
##     wy3               0.785    0.040   19.583    0.000    0.706    0.863
##   wy5 ~                                                                 
##     wx4        (a)    0.016    0.022    0.730    0.465   -0.027    0.059
##     wy4               0.804    0.042   19.314    0.000    0.722    0.885
##   wx2 ~                                                                 
##     wx1               0.258    0.061    4.241    0.000    0.139    0.378
##     wy1        (b)    0.031    0.030    1.026    0.305   -0.028    0.089
##   wx3 ~                                                                 
##     wx2               0.542    0.059    9.194    0.000    0.427    0.658
##     wy2        (b)    0.031    0.030    1.026    0.305   -0.028    0.089
##   wx4 ~                                                                 
##     wx3               0.467    0.063    7.434    0.000    0.344    0.590
##     wy3        (b)    0.031    0.030    1.026    0.305   -0.028    0.089
##   wx5 ~                                                                 
##     wx4               0.482    0.060    8.002    0.000    0.364    0.600
##     wy4        (b)    0.031    0.030    1.026    0.305   -0.028    0.089
##    Std.lv  Std.all
##                   
##     0.016    0.016
##     0.672    0.672
##                   
##     0.016    0.016
##     0.773    0.773
##                   
##     0.016    0.016
##     0.796    0.796
##                   
##     0.016    0.016
##     0.802    0.802
##                   
##     0.259    0.259
##     0.031    0.031
##                   
##     0.535    0.535
##     0.031    0.031
##                   
##     0.468    0.468
##     0.031    0.031
##                   
##     0.488    0.488
##     0.030    0.030
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.010    0.047    0.203    0.839   -0.082    0.101
##  .wx2 ~~                                                                
##    .wy2              -0.022    0.044   -0.490    0.624   -0.108    0.065
##  .wx3 ~~                                                                
##    .wy3               0.023    0.036    0.646    0.519   -0.047    0.094
##  .wx4 ~~                                                                
##    .wy4               0.070    0.037    1.901    0.057   -0.002    0.142
##  .wx5 ~~                                                                
##    .wy5               0.002    0.036    0.042    0.967   -0.069    0.072
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.010    0.010
##                   
##    -0.030   -0.030
##                   
##     0.043    0.043
##                   
##     0.132    0.132
##                   
##     0.003    0.003
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.007    0.047   -0.158    0.875   -0.099    0.085
##    .LadderDif.2       0.006    0.058    0.104    0.917   -0.109    0.121
##    .LadderDif.3       0.005    0.065    0.079    0.937   -0.122    0.132
##    .LadderDif.4       0.022    0.068    0.329    0.742   -0.111    0.156
##    .LadderDif.5       0.011    0.069    0.158    0.875   -0.125    0.147
##    .dep.1             0.002    0.046    0.045    0.964   -0.089    0.093
##    .dep.2             0.039    0.054    0.713    0.476   -0.068    0.145
##    .dep.3             0.054    0.059    0.901    0.368   -0.063    0.170
##    .dep.4             0.052    0.062    0.834    0.404   -0.070    0.174
##    .dep.5             0.055    0.065    0.840    0.401   -0.073    0.182
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.007   -0.007
##     0.006    0.006
##     0.005    0.005
##     0.022    0.022
##     0.011    0.011
##     0.002    0.002
##     0.039    0.038
##     0.054    0.053
##     0.052    0.052
##     0.055    0.055
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.998    0.066   15.017    0.000    0.868    1.128
##     wy1               0.997    0.066   15.133    0.000    0.868    1.126
##    .wx2               0.926    0.079   11.780    0.000    0.772    1.080
##    .wy2               0.554    0.048   11.436    0.000    0.459    0.649
##    .wx3               0.728    0.068   10.677    0.000    0.594    0.862
##    .wy3               0.406    0.038   10.700    0.000    0.331    0.480
##    .wx4               0.792    0.077   10.325    0.000    0.642    0.942
##    .wy4               0.359    0.035   10.305    0.000    0.291    0.427
##    .wx5               0.752    0.075   10.092    0.000    0.606    0.898
##    .wy5               0.349    0.035   10.062    0.000    0.281    0.417
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.932    0.932
##     0.547    0.547
##     0.713    0.713
##     0.402    0.402
##     0.779    0.779
##     0.365    0.365
##     0.758    0.758
##     0.354    0.354
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif and Depression, 2nd Order AR

White Participants

  1. Perceived status difference at time t predicts more depression at time t+1, b = .04, p = .018
  2. Depression at time t predicts more perceived status difference at time t+1, b = .08, p = .001
LadderDepCLPM_2AR <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*dep.1 + 1*dep.2 + 1*dep.3 + 1*dep.4 + 1*dep.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*dep.1
  wy2 =~ 1*dep.2
  wy3 =~ 1*dep.3
  wy4 =~ 1*dep.4
  wy5 =~ 1*dep.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ a*wx1 + wy1 
  wy3 ~ a*wx2 + wy2 + wy1
  wy4 ~ a*wx3 + wy3 + wy2
  wy5 ~ a*wx4 + wy4 + wy3
  wx2 ~ wx1 + b*wy1 
  wx3 ~ wx2 + b*wy2 + wx1
  wx4 ~ wx3 + b*wy3 + wx2
  wx5 ~ wx4 + b*wy4 + wx3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIx ~~ 0*RIy

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wx5 ~~ wx5
  wy5 ~~ wy5
'

LadderDepCLPM_2AR.fit <- lavaan(LadderDepCLPM_2AR, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderDepCLPM_2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 38 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               105.608
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1965.104
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.957
##   Tucker-Lewis Index (TLI)                       0.920
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3483.818
##   Loglikelihood unrestricted model (H1)      -3431.014
##                                                       
##   Akaike (AIC)                                7049.636
##   Bayesian (BIC)                              7220.932
##   Sample-size adjusted Bayesian (BIC)         7090.801
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.084
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.101
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.045
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.992    1.000
##                   
##     0.995    1.000
##                   
##     1.001    1.000
##                   
##     0.991    1.000
##                   
##     1.016    1.000
##                   
##     1.007    1.000
##                   
##     1.006    1.000
##                   
##     0.998    1.000
##                   
##     1.003    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)    0.042    0.018    2.369    0.018    0.007    0.077
##     wy1               0.803    0.033   24.524    0.000    0.739    0.867
##   wy3 ~                                                                 
##     wx2        (a)    0.042    0.018    2.369    0.018    0.007    0.077
##     wy2               0.520    0.063    8.227    0.000    0.396    0.643
##     wy1               0.338    0.063    5.362    0.000    0.215    0.462
##   wy4 ~                                                                 
##     wx3        (a)    0.042    0.018    2.369    0.018    0.007    0.077
##     wy3               0.528    0.063    8.395    0.000    0.405    0.651
##     wy2               0.313    0.064    4.872    0.000    0.187    0.440
##   wy5 ~                                                                 
##     wx4        (a)    0.042    0.018    2.369    0.018    0.007    0.077
##     wy4               0.482    0.053    9.015    0.000    0.377    0.586
##     wy3               0.422    0.052    8.053    0.000    0.319    0.524
##   wx2 ~                                                                 
##     wx1               0.524    0.047   11.235    0.000    0.432    0.615
##     wy1        (b)    0.080    0.025    3.201    0.001    0.031    0.129
##   wx3 ~                                                                 
##     wx2               0.282    0.059    4.803    0.000    0.167    0.397
##     wy2        (b)    0.080    0.025    3.201    0.001    0.031    0.129
##     wx1               0.415    0.057    7.263    0.000    0.303    0.527
##   wx4 ~                                                                 
##     wx3               0.315    0.060    5.254    0.000    0.198    0.433
##     wy3        (b)    0.080    0.025    3.201    0.001    0.031    0.129
##     wx2               0.370    0.063    5.877    0.000    0.246    0.493
##   wx5 ~                                                                 
##     wx4               0.324    0.053    6.078    0.000    0.219    0.428
##     wy4        (b)    0.080    0.025    3.201    0.001    0.031    0.129
##     wx3               0.443    0.053    8.354    0.000    0.339    0.547
##    Std.lv  Std.all
##                   
##     0.042    0.042
##     0.810    0.810
##                   
##     0.042    0.042
##     0.520    0.520
##     0.341    0.341
##                   
##     0.042    0.042
##     0.532    0.532
##     0.316    0.316
##                   
##     0.042    0.042
##     0.479    0.479
##     0.423    0.423
##                   
##     0.527    0.527
##     0.082    0.082
##                   
##     0.281    0.281
##     0.081    0.081
##     0.417    0.417
##                   
##     0.313    0.313
##     0.080    0.080
##     0.366    0.366
##                   
##     0.327    0.327
##     0.081    0.081
##     0.445    0.445
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.306    0.050    6.075    0.000    0.207    0.404
##  .wx2 ~~                                                                
##    .wy2              -0.021    0.026   -0.799    0.424   -0.072    0.030
##  .wx3 ~~                                                                
##    .wy3              -0.023    0.026   -0.894    0.371   -0.074    0.028
##  .wx4 ~~                                                                
##    .wy4               0.007    0.029    0.260    0.795   -0.049    0.064
##  .wx5 ~~                                                                
##    .wy5               0.043    0.023    1.868    0.062   -0.002    0.088
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.301    0.301
##                   
##    -0.045   -0.045
##                   
##    -0.055   -0.055
##                   
##     0.017    0.017
##                   
##     0.122    0.122
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.003    0.047    0.060    0.952   -0.089    0.095
##    .LadderDif.2      -0.007    0.051   -0.135    0.893   -0.107    0.093
##    .LadderDif.3      -0.026    0.055   -0.469    0.639   -0.133    0.082
##    .LadderDif.4      -0.003    0.059   -0.044    0.965   -0.118    0.113
##    .LadderDif.5      -0.007    0.059   -0.119    0.905   -0.123    0.109
##    .dep.1             0.007    0.047    0.151    0.880   -0.085    0.099
##    .dep.2             0.045    0.049    0.932    0.351   -0.050    0.141
##    .dep.3             0.071    0.052    1.383    0.167   -0.030    0.172
##    .dep.4             0.064    0.054    1.182    0.237   -0.042    0.170
##    .dep.5             0.060    0.055    1.089    0.276   -0.048    0.169
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.003    0.003
##    -0.007   -0.007
##    -0.026   -0.026
##    -0.003   -0.003
##    -0.007   -0.007
##     0.007    0.007
##     0.045    0.045
##     0.071    0.071
##     0.064    0.064
##     0.060    0.060
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.998    0.067   14.921    0.000    0.867    1.130
##     wy1               1.032    0.069   14.983    0.000    0.897    1.167
##    .wx2               0.679    0.052   12.937    0.000    0.576    0.782
##    .wy2               0.326    0.026   12.467    0.000    0.275    0.378
##    .wx3               0.577    0.050   11.539    0.000    0.479    0.675
##    .wy3               0.308    0.027   11.542    0.000    0.255    0.360
##    .wx4               0.618    0.055   11.200    0.000    0.510    0.726
##    .wy4               0.326    0.029   11.170    0.000    0.268    0.383
##    .wx5               0.498    0.045   10.993    0.000    0.409    0.587
##    .wy5               0.251    0.023   10.981    0.000    0.206    0.296
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.689    0.689
##     0.322    0.322
##     0.583    0.583
##     0.304    0.304
##     0.616    0.616
##     0.327    0.327
##     0.507    0.507
##     0.249    0.249
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(LadderDepCLPM_2AR.fit, LadderDepCLPM.fit)
## Chi-Squared Difference Test
## 
##                       Df    AIC    BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## LadderDepCLPM_2AR.fit 24 7049.6 7220.9 105.61                                  
## LadderDepCLPM.fit     30 7280.2 7426.5 348.21      242.6       6  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Black Participants

  1. Perceived status difference at time t does not predict depression at time t+1
  2. Depression at time t does not predict perceived status difference at time t+1
# Same model as above code, but fit with d_black dataset this time
LadderDepCLPM_b2AR.fit <- lavaan(LadderDepCLPM_2AR, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(LadderDepCLPM_b2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##   Number of equality constraints                     6
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                64.280
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1194.723
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.965
##   Tucker-Lewis Index (TLI)                       0.934
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3347.458
##   Loglikelihood unrestricted model (H1)      -3315.318
##                                                       
##   Akaike (AIC)                                6776.915
##   Bayesian (BIC)                              6948.211
##   Sample-size adjusted Bayesian (BIC)         6818.081
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059
##   90 Percent confidence interval - lower         0.042
##   90 Percent confidence interval - upper         0.077
##   P-value RMSEA <= 0.05                          0.182
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.042
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.000    1.000
##                   
##     0.997    1.000
##                   
##     1.015    1.000
##                   
##     1.013    1.000
##                   
##     1.011    1.000
##                   
##     0.996    1.000
##                   
##     1.007    1.000
##                   
##     0.998    1.000
##                   
##     0.989    1.000
##                   
##     0.993    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wx1        (a)    0.017    0.021    0.797    0.425   -0.024    0.058
##     wy1               0.677    0.047   14.446    0.000    0.585    0.769
##   wy3 ~                                                                 
##     wx2        (a)    0.017    0.021    0.797    0.425   -0.024    0.058
##     wy2               0.508    0.056    9.025    0.000    0.398    0.618
##     wy1               0.376    0.058    6.471    0.000    0.262    0.489
##   wy4 ~                                                                 
##     wx3        (a)    0.017    0.021    0.797    0.425   -0.024    0.058
##     wy3               0.579    0.062    9.397    0.000    0.459    0.700
##     wy2               0.267    0.063    4.274    0.000    0.145    0.390
##   wy5 ~                                                                 
##     wx4        (a)    0.017    0.021    0.797    0.425   -0.024    0.058
##     wy4               0.486    0.068    7.183    0.000    0.354    0.619
##     wy3               0.391    0.068    5.741    0.000    0.257    0.524
##   wx2 ~                                                                 
##     wx1               0.266    0.060    4.409    0.000    0.148    0.384
##     wy1        (b)    0.026    0.029    0.916    0.360   -0.030    0.083
##   wx3 ~                                                                 
##     wx2               0.503    0.060    8.348    0.000    0.385    0.621
##     wy2        (b)    0.026    0.029    0.916    0.360   -0.030    0.083
##     wx1               0.176    0.062    2.835    0.005    0.054    0.298
##   wx4 ~                                                                 
##     wx3               0.340    0.070    4.842    0.000    0.202    0.478
##     wy3        (b)    0.026    0.029    0.916    0.360   -0.030    0.083
##     wx2               0.257    0.072    3.576    0.000    0.116    0.398
##   wx5 ~                                                                 
##     wx4               0.291    0.062    4.718    0.000    0.170    0.411
##     wy4        (b)    0.026    0.029    0.916    0.360   -0.030    0.083
##     wx3               0.431    0.064    6.720    0.000    0.305    0.557
##    Std.lv  Std.all
##                   
##     0.017    0.017
##     0.669    0.669
##                   
##     0.017    0.017
##     0.512    0.512
##     0.375    0.375
##                   
##     0.017    0.017
##     0.585    0.585
##     0.272    0.272
##                   
##     0.017    0.017
##     0.485    0.485
##     0.393    0.393
##                   
##     0.267    0.267
##     0.026    0.026
##                   
##     0.494    0.494
##     0.026    0.026
##     0.174    0.174
##                   
##     0.341    0.341
##     0.026    0.026
##     0.253    0.253
##                   
##     0.291    0.291
##     0.026    0.026
##     0.433    0.433
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.008    0.047    0.179    0.858   -0.083    0.100
##  .wx2 ~~                                                                
##    .wy2              -0.017    0.044   -0.395    0.693   -0.103    0.069
##  .wx3 ~~                                                                
##    .wy3               0.028    0.033    0.846    0.397   -0.036    0.092
##  .wx4 ~~                                                                
##    .wy4               0.055    0.034    1.586    0.113   -0.013    0.122
##  .wx5 ~~                                                                
##    .wy5              -0.020    0.030   -0.652    0.515   -0.079    0.040
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.008    0.008
##                   
##    -0.024   -0.024
##                   
##     0.057    0.057
##                   
##     0.110    0.110
##                   
##    -0.046   -0.046
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.008    0.047   -0.178    0.859   -0.100    0.084
##    .LadderDif.2       0.006    0.058    0.106    0.916   -0.108    0.121
##    .LadderDif.3       0.001    0.064    0.018    0.986   -0.124    0.127
##    .LadderDif.4       0.022    0.067    0.330    0.741   -0.110    0.154
##    .LadderDif.5       0.022    0.068    0.315    0.752   -0.112    0.156
##    .dep.1             0.001    0.046    0.026    0.980   -0.089    0.091
##    .dep.2             0.039    0.054    0.720    0.472   -0.067    0.145
##    .dep.3             0.072    0.056    1.292    0.196   -0.037    0.181
##    .dep.4             0.072    0.059    1.226    0.220   -0.043    0.187
##    .dep.5             0.090    0.061    1.487    0.137   -0.029    0.209
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.008   -0.008
##     0.006    0.006
##     0.001    0.001
##     0.022    0.022
##     0.022    0.021
##     0.001    0.001
##     0.039    0.039
##     0.072    0.072
##     0.072    0.073
##     0.090    0.091
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     wx1               1.000    0.067   14.983    0.000    0.870    1.131
##     wy1               0.992    0.065   15.213    0.000    0.864    1.119
##    .wx2               0.923    0.078   11.781    0.000    0.769    1.076
##    .wy2               0.559    0.049   11.457    0.000    0.463    0.654
##    .wx3               0.699    0.066   10.633    0.000    0.570    0.828
##    .wy3               0.338    0.032   10.465    0.000    0.274    0.401
##    .wx4               0.743    0.072   10.316    0.000    0.602    0.884
##    .wy4               0.331    0.032   10.292    0.000    0.268    0.394
##    .wx5               0.617    0.061   10.095    0.000    0.497    0.737
##    .wy5               0.301    0.030   10.053    0.000    0.242    0.360
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     0.928    0.928
##     0.551    0.551
##     0.679    0.679
##     0.339    0.339
##     0.725    0.725
##     0.339    0.339
##     0.604    0.604
##     0.306    0.306
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(LadderDepCLPM_b2AR.fit, LadderDepCLPM_b.fit)
## Chi-Squared Difference Test
## 
##                        Df    AIC    BIC  Chisq Chisq diff Df diff Pr(>Chisq)
## LadderDepCLPM_b2AR.fit 24 6776.9 6948.2  64.28                              
## LadderDepCLPM_b.fit    30 6910.9 7057.1 210.22     145.94       6  < 2.2e-16
##                           
## LadderDepCLPM_b2AR.fit    
## LadderDepCLPM_b.fit    ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3-variable models, CLPM

Adding in a third variable for CLPM models. As with the 2-variable models, adding in second-order autoregressions always improves model fit, as shown by the likelihood ratio tests.

This output includes 95% CIs, allowing for comparison of coefficients for different effects.

LadderDif, Positive Emotions, and Depression

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.073, p = .001
(b1) Positive emotions at time t predict less depression at time t+1, b = -.07, p < .001
c’1 path is still significant, b = .06, p = .008
a2 and b2 paths are also significant, and their CIs overlap with a1 and b1 CIs

PEmoDepCLPM <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*dep.1 + 1*dep.2 + 1*dep.3 + 1*dep.4 + 1*dep.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*dep.1
  wy2 =~ 1*dep.2
  wy3 =~ 1*dep.3
  wy4 =~ 1*dep.4
  wy5 =~ 1*dep.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2
  wy4 ~ cp1*wx2 + wy3 + b1*wm3
  wy5 ~ cp1*wx3 + wy4 + b1*wm4
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2
  wx4 ~ wx3 + cp2*wy2 + b2*wm3
  wx5 ~ wx4 + cp2*wy3 + b2*wm4
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2
  wm4 ~ a1*wx3 + a2*wy3 + wm3
  wm5 ~ a1*wx4 + a2*wy4 + wm4


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoDepCLPM_w.fit <- lavaan(PEmoDepCLPM, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoDepCLPM_w.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 43 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               484.846
##   Degrees of freedom                                72
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2940.253
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.854
##   Tucker-Lewis Index (TLI)                       0.788
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5392.646
##   Loglikelihood unrestricted model (H1)      -5150.222
##                                                       
##   Akaike (AIC)                               10911.291
##   Bayesian (BIC)                             11174.502
##   Sample-size adjusted Bayesian (BIC)        10974.545
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.109
##   90 Percent confidence interval - lower         0.100
##   90 Percent confidence interval - upper         0.118
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.104
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     1.004    1.000
##                   
##     0.999    1.000
##                   
##     0.993    1.000
##                   
##     0.987    1.000
##                   
##     1.014    1.000
##                   
##     1.006    1.000
##                   
##     1.007    1.000
##                   
##     0.992    1.000
##                   
##     0.997    1.000
##                   
##     1.008    1.000
##                   
##     0.984    1.000
##                   
##     0.983    1.000
##                   
##     0.968    1.000
##                   
##     0.987    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.791    0.033   23.755    0.000    0.725    0.856
##     wm1       (b1)   -0.068    0.019   -3.524    0.000   -0.106   -0.030
##   wy3 ~                                                                 
##     wx1      (cp1)    0.063    0.024    2.639    0.008    0.016    0.110
##     wy2               0.772    0.037   21.148    0.000    0.701    0.844
##     wm2       (b1)   -0.068    0.019   -3.524    0.000   -0.106   -0.030
##   wy4 ~                                                                 
##     wx2      (cp1)    0.063    0.024    2.639    0.008    0.016    0.110
##     wy3               0.743    0.039   19.253    0.000    0.667    0.819
##     wm3       (b1)   -0.068    0.019   -3.524    0.000   -0.106   -0.030
##   wy5 ~                                                                 
##     wx3      (cp1)    0.063    0.024    2.639    0.008    0.016    0.110
##     wy4               0.793    0.037   21.323    0.000    0.720    0.866
##     wm4       (b1)   -0.068    0.019   -3.524    0.000   -0.106   -0.030
##   wx2 ~                                                                 
##     wx1               0.542    0.047   11.574    0.000    0.450    0.634
##     wm1       (b2)   -0.063    0.027   -2.354    0.019   -0.116   -0.011
##   wx3 ~                                                                 
##     wx2               0.507    0.053    9.564    0.000    0.403    0.610
##     wy1      (cp2)    0.091    0.034    2.665    0.008    0.024    0.159
##     wm2       (b2)   -0.063    0.027   -2.354    0.019   -0.116   -0.011
##   wx4 ~                                                                 
##     wx3               0.488    0.054    9.030    0.000    0.382    0.593
##     wy2      (cp2)    0.091    0.034    2.665    0.008    0.024    0.159
##     wm3       (b2)   -0.063    0.027   -2.354    0.019   -0.116   -0.011
##   wx5 ~                                                                 
##     wx4               0.552    0.051   10.772    0.000    0.452    0.653
##     wy3      (cp2)    0.091    0.034    2.665    0.008    0.024    0.159
##     wm4       (b2)   -0.063    0.027   -2.354    0.019   -0.116   -0.011
##   wm2 ~                                                                 
##     wx1       (a1)   -0.073    0.023   -3.238    0.001   -0.117   -0.029
##     wy1       (a2)   -0.141    0.024   -5.780    0.000   -0.189   -0.093
##     wm1               0.541    0.041   13.187    0.000    0.460    0.621
##   wm3 ~                                                                 
##     wx2       (a1)   -0.073    0.023   -3.238    0.001   -0.117   -0.029
##     wy2       (a2)   -0.141    0.024   -5.780    0.000   -0.189   -0.093
##     wm2               0.589    0.044   13.481    0.000    0.503    0.674
##   wm4 ~                                                                 
##     wx3       (a1)   -0.073    0.023   -3.238    0.001   -0.117   -0.029
##     wy3       (a2)   -0.141    0.024   -5.780    0.000   -0.189   -0.093
##     wm3               0.636    0.042   15.044    0.000    0.553    0.719
##   wm5 ~                                                                 
##     wx4       (a1)   -0.073    0.023   -3.238    0.001   -0.117   -0.029
##     wy4       (a2)   -0.141    0.024   -5.780    0.000   -0.189   -0.093
##     wm4               0.648    0.046   14.212    0.000    0.558    0.737
##    Std.lv  Std.all
##                   
##     0.797    0.797
##    -0.068   -0.068
##                   
##     0.062    0.062
##     0.772    0.772
##    -0.066   -0.066
##                   
##     0.064    0.064
##     0.754    0.754
##    -0.067   -0.067
##                   
##     0.063    0.063
##     0.789    0.789
##    -0.066   -0.066
##                   
##     0.540    0.540
##    -0.064   -0.064
##                   
##     0.509    0.509
##     0.093    0.093
##    -0.062   -0.062
##                   
##     0.491    0.491
##     0.093    0.093
##    -0.063   -0.063
##                   
##     0.555    0.555
##     0.093    0.093
##    -0.062   -0.062
##                   
##    -0.074   -0.074
##    -0.146   -0.146
##     0.554    0.554
##                   
##    -0.074   -0.074
##    -0.144   -0.144
##     0.589    0.589
##                   
##    -0.075   -0.075
##    -0.147   -0.147
##     0.646    0.646
##                   
##    -0.073   -0.073
##    -0.142   -0.142
##     0.635    0.635
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.311    0.050    6.172    0.000    0.213    0.410
##     wm1              -0.255    0.049   -5.157    0.000   -0.352   -0.158
##   wy1 ~~                                                                
##     wm1              -0.347    0.051   -6.754    0.000   -0.447   -0.246
##  .wx2 ~~                                                                
##    .wy2              -0.022    0.027   -0.827    0.408   -0.075    0.031
##  .wx3 ~~                                                                
##    .wy3              -0.052    0.030   -1.753    0.080   -0.111    0.006
##  .wx4 ~~                                                                
##    .wy4               0.025    0.033    0.753    0.451   -0.039    0.089
##  .wx5 ~~                                                                
##    .wy5               0.020    0.030    0.648    0.517   -0.040    0.079
##  .wx2 ~~                                                                
##    .wm2              -0.032    0.035   -0.925    0.355   -0.100    0.036
##  .wx3 ~~                                                                
##    .wm3               0.032    0.036    0.884    0.376   -0.039    0.103
##  .wx4 ~~                                                                
##    .wm4               0.013    0.035    0.363    0.716   -0.056    0.081
##  .wx5 ~~                                                                
##    .wm5              -0.001    0.035   -0.017    0.987   -0.070    0.068
##  .wy2 ~~                                                                
##    .wm2              -0.045    0.025   -1.825    0.068   -0.093    0.003
##  .wy3 ~~                                                                
##    .wm3              -0.090    0.026   -3.492    0.000   -0.141   -0.040
##  .wy4 ~~                                                                
##    .wm4               0.032    0.025    1.286    0.199   -0.017    0.081
##  .wy5 ~~                                                                
##    .wm5              -0.054    0.025   -2.155    0.031   -0.104   -0.005
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.307    0.307
##    -0.254   -0.254
##                   
##    -0.339   -0.339
##                   
##    -0.047   -0.047
##                   
##    -0.109   -0.109
##                   
##     0.049    0.049
##                   
##     0.044    0.044
##                   
##    -0.051   -0.051
##                   
##     0.053    0.053
##                   
##     0.023    0.023
##                   
##    -0.001   -0.001
##                   
##    -0.104   -0.104
##                   
##    -0.216   -0.216
##                   
##     0.082    0.082
##                   
##    -0.140   -0.140
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.002    0.047    0.045    0.964   -0.090    0.094
##    .LadderDif.2      -0.011    0.052   -0.207    0.836   -0.112    0.090
##    .LadderDif.3      -0.006    0.057   -0.101    0.919   -0.118    0.106
##    .LadderDif.4       0.012    0.061    0.191    0.849   -0.108    0.131
##    .LadderDif.5       0.009    0.062    0.143    0.887   -0.113    0.131
##    .dep.1             0.008    0.047    0.176    0.861   -0.084    0.100
##    .dep.2             0.047    0.049    0.955    0.340   -0.049    0.142
##    .dep.3             0.063    0.053    1.196    0.232   -0.040    0.167
##    .dep.4             0.053    0.056    0.948    0.343   -0.057    0.163
##    .dep.5             0.040    0.059    0.685    0.493   -0.075    0.155
##    .posEmo.1         -0.004    0.047   -0.079    0.937   -0.096    0.089
##    .posEmo.2         -0.017    0.050   -0.341    0.733   -0.114    0.080
##    .posEmo.3         -0.018    0.055   -0.335    0.737   -0.126    0.089
##    .posEmo.4         -0.026    0.057   -0.450    0.652   -0.137    0.086
##    .posEmo.5         -0.012    0.060   -0.196    0.844   -0.129    0.106
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.002    0.002
##    -0.011   -0.011
##    -0.006   -0.006
##     0.012    0.012
##     0.009    0.009
##     0.008    0.008
##     0.047    0.046
##     0.063    0.063
##     0.053    0.054
##     0.040    0.040
##    -0.004   -0.004
##    -0.017   -0.017
##    -0.018   -0.019
##    -0.026   -0.026
##    -0.012   -0.012
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.998    0.067   14.883    0.000    0.867    1.130
##     wy1               1.028    0.069   14.962    0.000    0.893    1.162
##     wm1               1.015    0.069   14.758    0.000    0.880    1.150
##    .wx2               0.693    0.054   12.914    0.000    0.588    0.798
##    .wy2               0.328    0.026   12.429    0.000    0.276    0.380
##    .wm2               0.566    0.045   12.701    0.000    0.478    0.653
##    .wx3               0.691    0.059   11.770    0.000    0.576    0.806
##    .wy3               0.335    0.029   11.725    0.000    0.279    0.391
##    .wm3               0.524    0.045   11.766    0.000    0.437    0.611
##    .wx4               0.707    0.063   11.182    0.000    0.583    0.831
##    .wy4               0.356    0.032   11.123    0.000    0.293    0.419
##    .wm4               0.427    0.038   11.187    0.000    0.352    0.502
##    .wx5               0.630    0.057   10.997    0.000    0.518    0.742
##    .wy5               0.315    0.029   10.985    0.000    0.259    0.371
##    .wm5               0.475    0.043   10.991    0.000    0.390    0.560
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.687    0.687
##     0.324    0.324
##     0.585    0.585
##     0.693    0.693
##     0.330    0.330
##     0.542    0.542
##     0.717    0.717
##     0.362    0.362
##     0.455    0.455
##     0.646    0.646
##     0.317    0.317
##     0.488    0.488
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

(a1) Perceived status difference at time t does not predict positive emotions at time t+1
(b1) Positive emotions at time t predict less depression at time t+1, b = -.10, p < .001

# Same model as above code, but fit with d_black dataset this time
PEmoDepCLPM_b.fit <- lavaan(PEmoDepCLPM, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoDepCLPM_b.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               379.992
##   Degrees of freedom                                72
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2054.729
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.842
##   Tucker-Lewis Index (TLI)                       0.770
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5032.360
##   Loglikelihood unrestricted model (H1)      -4842.364
##                                                       
##   Akaike (AIC)                               10190.720
##   Bayesian (BIC)                             10453.931
##   Sample-size adjusted Bayesian (BIC)        10253.974
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.094
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.104
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.099
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.998    1.000
##                   
##     1.009    1.000
##                   
##     1.008    1.000
##                   
##     0.996    1.000
##                   
##     0.998    1.000
##                   
##     1.004    1.000
##                   
##     0.994    1.000
##                   
##     0.977    1.000
##                   
##     0.987    1.000
##                   
##     0.997    1.000
##                   
##     0.992    1.000
##                   
##     0.977    1.000
##                   
##     0.984    1.000
##                   
##     0.998    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.657    0.046   14.198    0.000    0.566    0.747
##     wm1       (b1)   -0.101    0.023   -4.437    0.000   -0.145   -0.056
##   wy3 ~                                                                 
##     wx1      (cp1)    0.037    0.026    1.410    0.158   -0.014    0.088
##     wy2               0.741    0.042   17.655    0.000    0.658    0.823
##     wm2       (b1)   -0.101    0.023   -4.437    0.000   -0.145   -0.056
##   wy4 ~                                                                 
##     wx2      (cp1)    0.037    0.026    1.410    0.158   -0.014    0.088
##     wy3               0.743    0.041   18.304    0.000    0.664    0.823
##     wm3       (b1)   -0.101    0.023   -4.437    0.000   -0.145   -0.056
##   wy5 ~                                                                 
##     wx3      (cp1)    0.037    0.026    1.410    0.158   -0.014    0.088
##     wy4               0.758    0.043   17.804    0.000    0.674    0.841
##     wm4       (b1)   -0.101    0.023   -4.437    0.000   -0.145   -0.056
##   wx2 ~                                                                 
##     wx1               0.253    0.061    4.123    0.000    0.133    0.373
##     wm1       (b2)   -0.026    0.031   -0.816    0.414   -0.087    0.036
##   wx3 ~                                                                 
##     wx2               0.542    0.059    9.179    0.000    0.426    0.658
##     wy1      (cp2)   -0.002    0.038   -0.052    0.959   -0.076    0.072
##     wm2       (b2)   -0.026    0.031   -0.816    0.414   -0.087    0.036
##   wx4 ~                                                                 
##     wx3               0.468    0.063    7.458    0.000    0.345    0.591
##     wy2      (cp2)   -0.002    0.038   -0.052    0.959   -0.076    0.072
##     wm3       (b2)   -0.026    0.031   -0.816    0.414   -0.087    0.036
##   wx5 ~                                                                 
##     wx4               0.483    0.060    8.023    0.000    0.365    0.601
##     wy3      (cp2)   -0.002    0.038   -0.052    0.959   -0.076    0.072
##     wm4       (b2)   -0.026    0.031   -0.816    0.414   -0.087    0.036
##   wm2 ~                                                                 
##     wx1       (a1)   -0.030    0.024   -1.277    0.202   -0.077    0.016
##     wy1       (a2)   -0.133    0.025   -5.288    0.000   -0.182   -0.084
##     wm1               0.507    0.051    9.977    0.000    0.407    0.606
##   wm3 ~                                                                 
##     wx2       (a1)   -0.030    0.024   -1.277    0.202   -0.077    0.016
##     wy2       (a2)   -0.133    0.025   -5.288    0.000   -0.182   -0.084
##     wm2               0.673    0.044   15.165    0.000    0.586    0.760
##   wm4 ~                                                                 
##     wx3       (a1)   -0.030    0.024   -1.277    0.202   -0.077    0.016
##     wy3       (a2)   -0.133    0.025   -5.288    0.000   -0.182   -0.084
##     wm3               0.693    0.046   15.132    0.000    0.603    0.783
##   wm5 ~                                                                 
##     wx4       (a1)   -0.030    0.024   -1.277    0.202   -0.077    0.016
##     wy4       (a2)   -0.133    0.025   -5.288    0.000   -0.182   -0.084
##     wm4               0.695    0.048   14.441    0.000    0.600    0.789
##    Std.lv  Std.all
##                   
##     0.653    0.653
##    -0.100   -0.100
##                   
##     0.037    0.037
##     0.748    0.748
##    -0.101   -0.101
##                   
##     0.038    0.038
##     0.756    0.756
##    -0.101   -0.101
##                   
##     0.038    0.038
##     0.750    0.750
##    -0.100   -0.100
##                   
##     0.253    0.253
##    -0.025   -0.025
##                   
##     0.536    0.536
##    -0.002   -0.002
##    -0.025   -0.025
##                   
##     0.468    0.468
##    -0.002   -0.002
##    -0.025   -0.025
##                   
##     0.489    0.489
##    -0.002   -0.002
##    -0.025   -0.025
##                   
##    -0.030   -0.030
##    -0.134   -0.134
##     0.509    0.509
##                   
##    -0.031   -0.031
##    -0.136   -0.136
##     0.684    0.684
##                   
##    -0.031   -0.031
##    -0.134   -0.134
##     0.688    0.688
##                   
##    -0.031   -0.031
##    -0.130   -0.130
##     0.684    0.684
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.009    0.047    0.183    0.855   -0.083    0.100
##     wm1              -0.007    0.047   -0.159    0.874   -0.099    0.084
##   wy1 ~~                                                                
##     wm1              -0.226    0.048   -4.748    0.000   -0.319   -0.133
##  .wx2 ~~                                                                
##    .wy2              -0.020    0.044   -0.448    0.654   -0.105    0.066
##  .wx3 ~~                                                                
##    .wy3               0.016    0.036    0.456    0.649   -0.054    0.087
##  .wx4 ~~                                                                
##    .wy4               0.063    0.037    1.713    0.087   -0.009    0.134
##  .wx5 ~~                                                                
##    .wy5              -0.012    0.038   -0.323    0.747   -0.086    0.061
##  .wx2 ~~                                                                
##    .wm2               0.001    0.048    0.012    0.990   -0.094    0.095
##  .wx3 ~~                                                                
##    .wm3              -0.029    0.038   -0.766    0.444   -0.103    0.045
##  .wx4 ~~                                                                
##    .wm4               0.010    0.040    0.246    0.805   -0.068    0.088
##  .wx5 ~~                                                                
##    .wm5               0.024    0.040    0.591    0.555   -0.055    0.103
##  .wy2 ~~                                                                
##    .wm2               0.005    0.037    0.140    0.889   -0.068    0.078
##  .wy3 ~~                                                                
##    .wm3              -0.066    0.028   -2.360    0.018   -0.122   -0.011
##  .wy4 ~~                                                                
##    .wm4              -0.045    0.027   -1.687    0.092   -0.097    0.007
##  .wy5 ~~                                                                
##    .wm5              -0.061    0.028   -2.161    0.031   -0.116   -0.006
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.009    0.009
##    -0.007   -0.007
##                   
##    -0.227   -0.227
##                   
##    -0.028   -0.028
##                   
##     0.031    0.031
##                   
##     0.120    0.120
##                   
##    -0.024   -0.024
##                   
##     0.001    0.001
##                   
##    -0.051   -0.051
##                   
##     0.017    0.017
##                   
##     0.042    0.042
##                   
##     0.009    0.009
##                   
##    -0.158   -0.158
##                   
##    -0.117   -0.117
##                   
##    -0.155   -0.155
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.007    0.047   -0.156    0.876   -0.099    0.085
##    .LadderDif.2       0.005    0.059    0.078    0.938   -0.110    0.119
##    .LadderDif.3       0.002    0.065    0.036    0.972   -0.125    0.129
##    .LadderDif.4       0.019    0.068    0.285    0.776   -0.114    0.153
##    .LadderDif.5       0.008    0.069    0.115    0.909   -0.128    0.144
##    .dep.1             0.003    0.046    0.058    0.954   -0.088    0.093
##    .dep.2             0.038    0.054    0.708    0.479   -0.067    0.144
##    .dep.3             0.051    0.058    0.878    0.380   -0.063    0.166
##    .dep.4             0.049    0.061    0.810    0.418   -0.070    0.169
##    .dep.5             0.053    0.064    0.832    0.405   -0.072    0.179
##    .posEmo.1         -0.001    0.046   -0.019    0.985   -0.092    0.090
##    .posEmo.2         -0.014    0.055   -0.254    0.800   -0.122    0.094
##    .posEmo.3         -0.017    0.059   -0.288    0.773   -0.133    0.099
##    .posEmo.4         -0.025    0.063   -0.393    0.695   -0.148    0.098
##    .posEmo.5         -0.030    0.066   -0.450    0.653   -0.159    0.100
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.007   -0.007
##     0.005    0.005
##     0.002    0.002
##     0.019    0.019
##     0.008    0.008
##     0.003    0.003
##     0.038    0.038
##     0.051    0.052
##     0.049    0.050
##     0.053    0.054
##    -0.001   -0.001
##    -0.014   -0.014
##    -0.017   -0.017
##    -0.025   -0.025
##    -0.030   -0.030
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.997    0.066   15.025    0.000    0.867    1.127
##     wy1               0.996    0.066   15.151    0.000    0.867    1.124
##     wm1               0.994    0.066   15.118    0.000    0.865    1.123
##    .wx2               0.932    0.079   11.803    0.000    0.777    1.086
##    .wy2               0.538    0.047   11.415    0.000    0.446    0.631
##    .wm2               0.680    0.059   11.573    0.000    0.565    0.796
##    .wx3               0.725    0.068   10.683    0.000    0.592    0.858
##    .wy3               0.392    0.037   10.691    0.000    0.320    0.464
##    .wm3               0.451    0.042   10.697    0.000    0.368    0.534
##    .wx4               0.791    0.077   10.327    0.000    0.641    0.941
##    .wy4               0.346    0.034   10.298    0.000    0.280    0.411
##    .wm4               0.425    0.041   10.290    0.000    0.344    0.506
##    .wx5               0.753    0.075   10.067    0.000    0.606    0.900
##    .wy5               0.352    0.035   10.045    0.000    0.283    0.421
##    .wm5               0.437    0.043   10.082    0.000    0.352    0.522
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.935    0.935
##     0.534    0.534
##     0.691    0.691
##     0.711    0.711
##     0.397    0.397
##     0.473    0.473
##     0.778    0.778
##     0.362    0.362
##     0.439    0.439
##     0.759    0.759
##     0.361    0.361
##     0.439    0.439
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif, Positive Emotions, and Depression, 2nd Order AR

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.07, p = .002
(b1) Positive emotions at time t predict less depression at time t+1, b = -.037, p = .047
C’ path is still significant, b = .04, p = .04
a2 path is also significant, and its CIs overlap with a1 CIs

PEmoDepCLPM_2AR <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*dep.1 + 1*dep.2 + 1*dep.3 + 1*dep.4 + 1*dep.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*dep.1
  wy2 =~ 1*dep.2
  wy3 =~ 1*dep.3
  wy4 =~ 1*dep.4
  wy5 =~ 1*dep.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1 
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2 
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3 
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoDepCLPM_w2AR.fit <- lavaan(PEmoDepCLPM_2AR, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoDepCLPM_w2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               163.664
##   Degrees of freedom                                63
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2940.253
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.964
##   Tucker-Lewis Index (TLI)                       0.941
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5232.055
##   Loglikelihood unrestricted model (H1)      -5150.222
##                                                       
##   Akaike (AIC)                               10608.109
##   Bayesian (BIC)                             10908.921
##   Sample-size adjusted Bayesian (BIC)        10680.400
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.058
##   90 Percent confidence interval - lower         0.047
##   90 Percent confidence interval - upper         0.068
##   P-value RMSEA <= 0.05                          0.119
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.049
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.001    1.000
##                   
##     1.001    1.000
##                   
##     0.995    1.000
##                   
##     1.001    1.000
##                   
##     0.988    1.000
##                   
##     1.018    1.000
##                   
##     1.004    1.000
##                   
##     1.003    1.000
##                   
##     0.990    1.000
##                   
##     1.001    1.000
##                   
##     1.006    1.000
##                   
##     0.978    1.000
##                   
##     0.973    1.000
##                   
##     0.961    1.000
##                   
##     0.989    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.798    0.033   24.153    0.000    0.734    0.863
##     wm1       (b1)   -0.037    0.019   -1.989    0.047   -0.074   -0.001
##   wy3 ~                                                                 
##     wx1      (cp1)    0.043    0.021    2.057    0.040    0.002    0.084
##     wy2               0.520    0.062    8.378    0.000    0.399    0.642
##     wm2       (b1)   -0.037    0.019   -1.989    0.047   -0.074   -0.001
##     wy1               0.319    0.062    5.152    0.000    0.197    0.440
##   wy4 ~                                                                 
##     wx2      (cp1)    0.043    0.021    2.057    0.040    0.002    0.084
##     wy3               0.509    0.063    8.118    0.000    0.386    0.632
##     wm3       (b1)   -0.037    0.019   -1.989    0.047   -0.074   -0.001
##     wy2               0.315    0.064    4.952    0.000    0.190    0.439
##   wy5 ~                                                                 
##     wx3      (cp1)    0.043    0.021    2.057    0.040    0.002    0.084
##     wy4               0.489    0.053    9.197    0.000    0.384    0.593
##     wm4       (b1)   -0.037    0.019   -1.989    0.047   -0.074   -0.001
##     wy3               0.402    0.053    7.585    0.000    0.298    0.506
##   wx2 ~                                                                 
##     wx1               0.548    0.046   11.792    0.000    0.457    0.639
##     wm1       (b2)   -0.036    0.025   -1.413    0.158   -0.086    0.014
##   wx3 ~                                                                 
##     wx2               0.283    0.059    4.832    0.000    0.168    0.398
##     wy1      (cp2)    0.045    0.031    1.447    0.148   -0.016    0.105
##     wm2       (b2)   -0.036    0.025   -1.413    0.158   -0.086    0.014
##     wx1               0.414    0.058    7.197    0.000    0.301    0.527
##   wx4 ~                                                                 
##     wx3               0.310    0.060    5.177    0.000    0.193    0.428
##     wy2      (cp2)    0.045    0.031    1.447    0.148   -0.016    0.105
##     wm3       (b2)   -0.036    0.025   -1.413    0.158   -0.086    0.014
##     wx2               0.374    0.063    5.984    0.000    0.252    0.497
##   wx5 ~                                                                 
##     wx4               0.323    0.053    6.052    0.000    0.218    0.428
##     wy3      (cp2)    0.045    0.031    1.447    0.148   -0.016    0.105
##     wm4       (b2)   -0.036    0.025   -1.413    0.158   -0.086    0.014
##     wx3               0.447    0.053    8.375    0.000    0.343    0.552
##   wm2 ~                                                                 
##     wx1       (a1)   -0.068    0.022   -3.154    0.002   -0.110   -0.026
##     wy1       (a2)   -0.109    0.024   -4.586    0.000   -0.155   -0.062
##     wm1               0.546    0.041   13.206    0.000    0.465    0.627
##   wm3 ~                                                                 
##     wx2       (a1)   -0.068    0.022   -3.154    0.002   -0.110   -0.026
##     wy2       (a2)   -0.109    0.024   -4.586    0.000   -0.155   -0.062
##     wm2               0.486    0.056    8.672    0.000    0.376    0.596
##     wm1               0.180    0.058    3.085    0.002    0.065    0.294
##   wm4 ~                                                                 
##     wx3       (a1)   -0.068    0.022   -3.154    0.002   -0.110   -0.026
##     wy3       (a2)   -0.109    0.024   -4.586    0.000   -0.155   -0.062
##     wm3               0.492    0.054    9.082    0.000    0.386    0.598
##     wm2               0.237    0.055    4.340    0.000    0.130    0.344
##   wm5 ~                                                                 
##     wx4       (a1)   -0.068    0.022   -3.154    0.002   -0.110   -0.026
##     wy4       (a2)   -0.109    0.024   -4.586    0.000   -0.155   -0.062
##     wm4               0.333    0.057    5.849    0.000    0.222    0.445
##     wm3               0.461    0.056    8.216    0.000    0.351    0.571
##    Std.lv  Std.all
##                   
##     0.810    0.810
##    -0.037   -0.037
##                   
##     0.043    0.043
##     0.521    0.521
##    -0.036   -0.036
##     0.324    0.324
##                   
##     0.043    0.043
##     0.516    0.516
##    -0.036   -0.036
##     0.319    0.319
##                   
##     0.043    0.043
##     0.483    0.483
##    -0.036   -0.036
##     0.403    0.403
##                   
##     0.547    0.547
##    -0.036   -0.036
##                   
##     0.285    0.285
##     0.046    0.046
##    -0.035   -0.035
##     0.417    0.417
##                   
##     0.308    0.308
##     0.045    0.045
##    -0.035   -0.035
##     0.375    0.375
##                   
##     0.327    0.327
##     0.045    0.045
##    -0.035   -0.035
##     0.451    0.451
##                   
##    -0.070   -0.070
##    -0.113   -0.113
##     0.562    0.562
##                   
##    -0.070   -0.070
##    -0.112   -0.112
##     0.489    0.489
##     0.186    0.186
##                   
##    -0.071   -0.071
##    -0.113   -0.113
##     0.498    0.498
##     0.241    0.241
##                   
##    -0.069   -0.069
##    -0.109   -0.109
##     0.324    0.324
##     0.454    0.454
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.314    0.051    6.204    0.000    0.215    0.414
##     wm1              -0.257    0.049   -5.200    0.000   -0.354   -0.160
##   wy1 ~~                                                                
##     wm1              -0.349    0.052   -6.770    0.000   -0.450   -0.248
##  .wx2 ~~                                                                
##    .wy2              -0.023    0.027   -0.872    0.383   -0.076    0.029
##  .wx3 ~~                                                                
##    .wy3              -0.029    0.026   -1.132    0.258   -0.079    0.021
##  .wx4 ~~                                                                
##    .wy4               0.009    0.028    0.329    0.742   -0.046    0.065
##  .wx5 ~~                                                                
##    .wy5               0.043    0.023    1.864    0.062   -0.002    0.089
##  .wx2 ~~                                                                
##    .wm2              -0.036    0.035   -1.033    0.302   -0.104    0.032
##  .wx3 ~~                                                                
##    .wm3               0.003    0.033    0.097    0.923   -0.061    0.068
##  .wx4 ~~                                                                
##    .wm4               0.018    0.032    0.557    0.578   -0.044    0.079
##  .wx5 ~~                                                                
##    .wm5               0.002    0.028    0.077    0.938   -0.052    0.056
##  .wy2 ~~                                                                
##    .wm2              -0.046    0.025   -1.845    0.065   -0.094    0.003
##  .wy3 ~~                                                                
##    .wm3              -0.077    0.024   -3.174    0.002   -0.125   -0.030
##  .wy4 ~~                                                                
##    .wm4               0.031    0.023    1.346    0.178   -0.014    0.075
##  .wy5 ~~                                                                
##    .wm5              -0.048    0.020   -2.402    0.016   -0.088   -0.009
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.308    0.308
##    -0.255   -0.255
##                   
##    -0.341   -0.341
##                   
##    -0.049   -0.049
##                   
##    -0.070   -0.070
##                   
##     0.021    0.021
##                   
##     0.122    0.122
##                   
##    -0.057   -0.057
##                   
##     0.006    0.006
##                   
##     0.035    0.035
##                   
##     0.005    0.005
##                   
##    -0.106   -0.106
##                   
##    -0.198   -0.198
##                   
##     0.086    0.086
##                   
##    -0.157   -0.157
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.003    0.047    0.069    0.945   -0.089    0.095
##    .LadderDif.2      -0.011    0.051   -0.221    0.825   -0.112    0.089
##    .LadderDif.3      -0.029    0.055   -0.533    0.594   -0.137    0.078
##    .LadderDif.4      -0.008    0.059   -0.127    0.899   -0.123    0.108
##    .LadderDif.5      -0.012    0.059   -0.202    0.840   -0.128    0.104
##    .dep.1             0.007    0.047    0.152    0.879   -0.085    0.099
##    .dep.2             0.047    0.049    0.960    0.337   -0.049    0.142
##    .dep.3             0.069    0.051    1.351    0.177   -0.031    0.170
##    .dep.4             0.063    0.054    1.166    0.243   -0.043    0.168
##    .dep.5             0.057    0.055    1.037    0.300   -0.051    0.165
##    .posEmo.1         -0.006    0.047   -0.134    0.893   -0.099    0.086
##    .posEmo.2         -0.015    0.050   -0.298    0.766   -0.112    0.082
##    .posEmo.3         -0.009    0.054   -0.172    0.863   -0.114    0.096
##    .posEmo.4         -0.017    0.055   -0.305    0.760   -0.124    0.091
##    .posEmo.5         -0.004    0.058   -0.073    0.942   -0.117    0.109
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.003    0.003
##    -0.011   -0.011
##    -0.029   -0.029
##    -0.008   -0.008
##    -0.012   -0.012
##     0.007    0.007
##     0.047    0.046
##     0.069    0.069
##     0.063    0.063
##     0.057    0.057
##    -0.006   -0.006
##    -0.015   -0.015
##    -0.009   -0.009
##    -0.017   -0.017
##    -0.004   -0.004
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               1.002    0.067   14.901    0.000    0.870    1.134
##     wy1               1.037    0.069   14.957    0.000    0.901    1.173
##     wm1               1.011    0.068   14.796    0.000    0.877    1.145
##    .wx2               0.691    0.053   12.944    0.000    0.586    0.795
##    .wy2               0.325    0.026   12.507    0.000    0.274    0.376
##    .wm2               0.573    0.045   12.634    0.000    0.484    0.662
##    .wx3               0.575    0.050   11.528    0.000    0.477    0.673
##    .wy3               0.304    0.026   11.538    0.000    0.252    0.355
##    .wm3               0.500    0.043   11.678    0.000    0.416    0.584
##    .wx4               0.619    0.055   11.179    0.000    0.510    0.727
##    .wy4               0.322    0.029   11.155    0.000    0.265    0.378
##    .wm4               0.399    0.036   11.197    0.000    0.329    0.469
##    .wx5               0.495    0.045   10.997    0.000    0.406    0.583
##    .wy5               0.255    0.023   10.984    0.000    0.209    0.300
##    .wm5               0.373    0.034   10.964    0.000    0.307    0.440
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.689    0.689
##     0.323    0.323
##     0.599    0.599
##     0.581    0.581
##     0.302    0.302
##     0.528    0.528
##     0.618    0.618
##     0.328    0.328
##     0.432    0.432
##     0.507    0.507
##     0.254    0.254
##     0.382    0.382
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(PEmoDepCLPM_w2AR.fit, PEmoDepCLPM_w.fit)
## Chi-Squared Difference Test
## 
##                      Df   AIC   BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## PEmoDepCLPM_w2AR.fit 63 10608 10909 163.66                                  
## PEmoDepCLPM_w.fit    72 10911 11174 484.85     321.18       9  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Black Participants

(a1) Perceived status difference at time t does not predict positive emotions at time t+1
(b1) Positive emotions at time t predict less depression at time t+1, b = -.09, p < .001

# Same model as above code, but fit with d_black dataset this time
PEmoDepCLPM_b2AR.fit <- lavaan(PEmoDepCLPM_2AR, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoDepCLPM_b2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 46 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               154.995
##   Degrees of freedom                                63
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2054.729
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.953
##   Tucker-Lewis Index (TLI)                       0.921
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4919.862
##   Loglikelihood unrestricted model (H1)      -4842.364
##                                                       
##   Akaike (AIC)                                9983.723
##   Bayesian (BIC)                             10284.535
##   Sample-size adjusted Bayesian (BIC)        10056.013
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.055
##   90 Percent confidence interval - lower         0.044
##   90 Percent confidence interval - upper         0.066
##   P-value RMSEA <= 0.05                          0.214
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.048
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.000    1.000
##                   
##     0.998    1.000
##                   
##     1.014    1.000
##                   
##     1.015    1.000
##                   
##     1.016    1.000
##                   
##     0.996    1.000
##                   
##     1.004    1.000
##                   
##     0.989    1.000
##                   
##     0.974    1.000
##                   
##     0.985    1.000
##                   
##     0.996    1.000
##                   
##     0.990    1.000
##                   
##     0.971    1.000
##                   
##     0.970    1.000
##                   
##     0.978    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.659    0.047   14.101    0.000    0.567    0.750
##     wm1       (b1)   -0.087    0.022   -3.984    0.000   -0.129   -0.044
##   wy3 ~                                                                 
##     wx1      (cp1)    0.037    0.024    1.587    0.112   -0.009    0.084
##     wy2               0.483    0.055    8.837    0.000    0.376    0.590
##     wm2       (b1)   -0.087    0.022   -3.984    0.000   -0.129   -0.044
##     wy1               0.371    0.056    6.653    0.000    0.262    0.480
##   wy4 ~                                                                 
##     wx2      (cp1)    0.037    0.024    1.587    0.112   -0.009    0.084
##     wy3               0.556    0.061    9.079    0.000    0.436    0.677
##     wm3       (b1)   -0.087    0.022   -3.984    0.000   -0.129   -0.044
##     wy2               0.249    0.061    4.056    0.000    0.129    0.370
##   wy5 ~                                                                 
##     wx3      (cp1)    0.037    0.024    1.587    0.112   -0.009    0.084
##     wy4               0.472    0.068    6.904    0.000    0.338    0.607
##     wm4       (b1)   -0.087    0.022   -3.984    0.000   -0.129   -0.044
##     wy3               0.364    0.069    5.296    0.000    0.229    0.499
##   wx2 ~                                                                 
##     wx1               0.263    0.061    4.323    0.000    0.144    0.382
##     wm1       (b2)   -0.010    0.030   -0.336    0.737   -0.069    0.049
##   wx3 ~                                                                 
##     wx2               0.505    0.060    8.382    0.000    0.387    0.623
##     wy1      (cp2)   -0.001    0.035   -0.035    0.972   -0.070    0.067
##     wm2       (b2)   -0.010    0.030   -0.336    0.737   -0.069    0.049
##     wx1               0.175    0.062    2.801    0.005    0.052    0.297
##   wx4 ~                                                                 
##     wx3               0.337    0.070    4.819    0.000    0.200    0.475
##     wy2      (cp2)   -0.001    0.035   -0.035    0.972   -0.070    0.067
##     wm3       (b2)   -0.010    0.030   -0.336    0.737   -0.069    0.049
##     wx2               0.268    0.072    3.736    0.000    0.127    0.408
##   wx5 ~                                                                 
##     wx4               0.290    0.062    4.706    0.000    0.169    0.411
##     wy3      (cp2)   -0.001    0.035   -0.035    0.972   -0.070    0.067
##     wm4       (b2)   -0.010    0.030   -0.336    0.737   -0.069    0.049
##     wx3               0.440    0.065    6.778    0.000    0.313    0.567
##   wm2 ~                                                                 
##     wx1       (a1)   -0.029    0.023   -1.291    0.197   -0.073    0.015
##     wy1       (a2)   -0.101    0.024   -4.155    0.000   -0.148   -0.053
##     wm1               0.510    0.051    9.970    0.000    0.410    0.611
##   wm3 ~                                                                 
##     wx2       (a1)   -0.029    0.023   -1.291    0.197   -0.073    0.015
##     wy2       (a2)   -0.101    0.024   -4.155    0.000   -0.148   -0.053
##     wm2               0.547    0.051   10.649    0.000    0.446    0.648
##     wm1               0.237    0.052    4.563    0.000    0.135    0.340
##   wm4 ~                                                                 
##     wx3       (a1)   -0.029    0.023   -1.291    0.197   -0.073    0.015
##     wy3       (a2)   -0.101    0.024   -4.155    0.000   -0.148   -0.053
##     wm3               0.478    0.064    7.446    0.000    0.352    0.604
##     wm2               0.300    0.063    4.799    0.000    0.178    0.423
##   wm5 ~                                                                 
##     wx4       (a1)   -0.029    0.023   -1.291    0.197   -0.073    0.015
##     wy4       (a2)   -0.101    0.024   -4.155    0.000   -0.148   -0.053
##     wm4               0.363    0.064    5.636    0.000    0.237    0.490
##     wm3               0.444    0.063    7.014    0.000    0.320    0.568
##    Std.lv  Std.all
##                   
##     0.654    0.654
##    -0.086   -0.086
##                   
##     0.038    0.038
##     0.490    0.490
##    -0.087   -0.087
##     0.373    0.373
##                   
##     0.038    0.038
##     0.565    0.565
##    -0.087   -0.087
##     0.257    0.257
##                   
##     0.038    0.038
##     0.467    0.467
##    -0.085   -0.085
##     0.365    0.365
##                   
##     0.263    0.263
##    -0.010   -0.010
##                   
##     0.497    0.497
##    -0.001   -0.001
##    -0.010   -0.010
##     0.172    0.172
##                   
##     0.337    0.337
##    -0.001   -0.001
##    -0.010   -0.010
##     0.264    0.264
##                   
##     0.290    0.290
##    -0.001   -0.001
##    -0.010   -0.010
##     0.439    0.439
##                   
##    -0.029   -0.029
##    -0.101   -0.101
##     0.514    0.514
##                   
##    -0.030   -0.030
##    -0.104   -0.104
##     0.558    0.558
##     0.244    0.244
##                   
##    -0.030   -0.030
##    -0.103   -0.103
##     0.478    0.478
##     0.306    0.306
##                   
##    -0.030   -0.030
##    -0.100   -0.100
##     0.360    0.360
##     0.441    0.441
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.008    0.047    0.166    0.868   -0.084    0.099
##     wm1              -0.007    0.047   -0.151    0.880   -0.099    0.085
##   wy1 ~~                                                                
##     wm1              -0.228    0.047   -4.820    0.000   -0.321   -0.136
##  .wx2 ~~                                                                
##    .wy2              -0.016    0.043   -0.378    0.705   -0.102    0.069
##  .wx3 ~~                                                                
##    .wy3               0.027    0.032    0.837    0.403   -0.036    0.090
##  .wx4 ~~                                                                
##    .wy4               0.054    0.034    1.602    0.109   -0.012    0.120
##  .wx5 ~~                                                                
##    .wy5              -0.019    0.031   -0.615    0.539   -0.079    0.041
##  .wx2 ~~                                                                
##    .wm2              -0.003    0.048   -0.069    0.945   -0.098    0.091
##  .wx3 ~~                                                                
##    .wm3              -0.013    0.036   -0.367    0.714   -0.083    0.057
##  .wx4 ~~                                                                
##    .wm4               0.015    0.037    0.405    0.686   -0.057    0.086
##  .wx5 ~~                                                                
##    .wm5              -0.037    0.034   -1.115    0.265   -0.103    0.028
##  .wy2 ~~                                                                
##    .wm2               0.007    0.038    0.181    0.856   -0.067    0.081
##  .wy3 ~~                                                                
##    .wm3              -0.073    0.025   -2.899    0.004   -0.122   -0.024
##  .wy4 ~~                                                                
##    .wm4              -0.035    0.024   -1.451    0.147   -0.083    0.012
##  .wy5 ~~                                                                
##    .wm5              -0.034    0.024   -1.414    0.157   -0.080    0.013
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.008    0.008
##    -0.007   -0.007
##                   
##    -0.230   -0.230
##                   
##    -0.023   -0.023
##                   
##     0.056    0.056
##                   
##     0.111    0.111
##                   
##    -0.043   -0.043
##                   
##    -0.004   -0.004
##                   
##    -0.024   -0.024
##                   
##     0.028    0.028
##                   
##    -0.080   -0.080
##                   
##     0.011    0.011
##                   
##    -0.199   -0.199
##                   
##    -0.101   -0.101
##                   
##    -0.102   -0.102
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.008    0.047   -0.179    0.858   -0.100    0.084
##    .LadderDif.2       0.005    0.059    0.081    0.936   -0.110    0.119
##    .LadderDif.3      -0.001    0.064   -0.021    0.983   -0.127    0.124
##    .LadderDif.4       0.019    0.067    0.280    0.779   -0.113    0.151
##    .LadderDif.5       0.018    0.069    0.257    0.797   -0.117    0.152
##    .dep.1             0.002    0.046    0.035    0.972   -0.089    0.092
##    .dep.2             0.038    0.054    0.713    0.476   -0.067    0.144
##    .dep.3             0.070    0.055    1.266    0.205   -0.038    0.177
##    .dep.4             0.069    0.058    1.195    0.232   -0.044    0.182
##    .dep.5             0.087    0.060    1.447    0.148   -0.031    0.205
##    .posEmo.1         -0.002    0.046   -0.053    0.957   -0.093    0.088
##    .posEmo.2         -0.012    0.055   -0.213    0.831   -0.120    0.097
##    .posEmo.3         -0.019    0.057   -0.329    0.742   -0.130    0.093
##    .posEmo.4         -0.028    0.060   -0.463    0.643   -0.144    0.089
##    .posEmo.5         -0.036    0.062   -0.591    0.554   -0.157    0.084
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.008   -0.008
##     0.005    0.005
##    -0.001   -0.001
##     0.019    0.019
##     0.018    0.017
##     0.002    0.002
##     0.038    0.038
##     0.070    0.070
##     0.069    0.071
##     0.087    0.088
##    -0.002   -0.002
##    -0.012   -0.012
##    -0.019   -0.019
##    -0.028   -0.028
##    -0.036   -0.037
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.999    0.067   14.998    0.000    0.869    1.130
##     wy1               0.991    0.065   15.221    0.000    0.864    1.119
##     wm1               0.992    0.066   15.144    0.000    0.864    1.121
##    .wx2               0.928    0.079   11.801    0.000    0.774    1.082
##    .wy2               0.543    0.048   11.431    0.000    0.450    0.637
##    .wm2               0.687    0.059   11.562    0.000    0.571    0.804
##    .wx3               0.698    0.066   10.637    0.000    0.569    0.826
##    .wy3               0.327    0.031   10.482    0.000    0.266    0.388
##    .wm3               0.413    0.039   10.567    0.000    0.336    0.489
##    .wx4               0.742    0.072   10.322    0.000    0.601    0.882
##    .wy4               0.320    0.031   10.290    0.000    0.259    0.381
##    .wm4               0.381    0.037   10.290    0.000    0.309    0.454
##    .wx5               0.619    0.061   10.071    0.000    0.499    0.740
##    .wy5               0.305    0.030   10.030    0.000    0.246    0.365
##    .wm5               0.356    0.035   10.095    0.000    0.287    0.425
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.931    0.931
##     0.539    0.539
##     0.701    0.701
##     0.678    0.678
##     0.334    0.334
##     0.438    0.438
##     0.720    0.720
##     0.338    0.338
##     0.405    0.405
##     0.600    0.600
##     0.315    0.315
##     0.372    0.372
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(PEmoDepCLPM_w2AR.fit, PEmoDepCLPM_w.fit)
## Chi-Squared Difference Test
## 
##                      Df   AIC   BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## PEmoDepCLPM_w2AR.fit 63 10608 10909 163.66                                  
## PEmoDepCLPM_w.fit    72 10911 11174 484.85     321.18       9  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LadderDif, Positive Emotions, and Health

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.09, p < .001
(b1) Positive emotions at time t do not predict health at time t+1

PEmoHealthCLPM <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gHealth.1 + 1*gHealth.2 + 1*gHealth.3 + 1*gHealth.4 + 1*gHealth.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gHealth.1
  wy2 =~ 1*gHealth.2
  wy3 =~ 1*gHealth.3
  wy4 =~ 1*gHealth.4
  wy5 =~ 1*gHealth.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2
  wy4 ~ cp1*wx2 + wy3 + b1*wm3
  wy5 ~ cp1*wx3 + wy4 + b1*wm4
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2
  wx4 ~ wx3 + cp2*wy2 + b2*wm3
  wx5 ~ wx4 + cp2*wy3 + b2*wm4
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2
  wm4 ~ a1*wx3 + a2*wy3 + wm3
  wm5 ~ a1*wx4 + a2*wy4 + wm4


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoHealthCLPM_w.fit <- lavaan(PEmoHealthCLPM, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoHealthCLPM_w.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        12
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               522.333
##   Degrees of freedom                                72
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2897.268
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.839
##   Tucker-Lewis Index (TLI)                       0.765
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5432.882
##   Loglikelihood unrestricted model (H1)      -5171.715
##                                                       
##   Akaike (AIC)                               10991.764
##   Bayesian (BIC)                             11254.974
##   Sample-size adjusted Bayesian (BIC)        11055.018
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.114
##   90 Percent confidence interval - lower         0.105
##   90 Percent confidence interval - upper         0.123
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.105
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.997    1.000
##                   
##     1.001    1.000
##                   
##     0.994    1.000
##                   
##     0.991    1.000
##                   
##     0.997    1.000
##                   
##     0.996    1.000
##                   
##     0.975    1.000
##                   
##     0.984    1.000
##                   
##     0.981    1.000
##                   
##     0.981    1.000
##                   
##     1.004    1.000
##                   
##     0.990    1.000
##                   
##     0.992    1.000
##                   
##     0.979    1.000
##                   
##     0.991    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.774    0.032   24.347    0.000    0.712    0.837
##     wm1       (b1)    0.026    0.018    1.430    0.153   -0.010    0.063
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.072    0.024   -2.976    0.003   -0.120   -0.025
##     wy2               0.767    0.037   20.491    0.000    0.693    0.840
##     wm2       (b1)    0.026    0.018    1.430    0.153   -0.010    0.063
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.072    0.024   -2.976    0.003   -0.120   -0.025
##     wy3               0.776    0.037   20.944    0.000    0.703    0.849
##     wm3       (b1)    0.026    0.018    1.430    0.153   -0.010    0.063
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.072    0.024   -2.976    0.003   -0.120   -0.025
##     wy4               0.774    0.038   20.462    0.000    0.700    0.848
##     wm4       (b1)    0.026    0.018    1.430    0.153   -0.010    0.063
##   wx2 ~                                                                 
##     wx1               0.535    0.047   11.473    0.000    0.444    0.626
##     wm1       (b2)   -0.071    0.025   -2.795    0.005   -0.120   -0.021
##   wx3 ~                                                                 
##     wx2               0.493    0.053    9.353    0.000    0.390    0.596
##     wy1      (cp2)   -0.132    0.032   -4.128    0.000   -0.195   -0.069
##     wm2       (b2)   -0.071    0.025   -2.795    0.005   -0.120   -0.021
##   wx4 ~                                                                 
##     wx3               0.464    0.054    8.550    0.000    0.357    0.570
##     wy2      (cp2)   -0.132    0.032   -4.128    0.000   -0.195   -0.069
##     wm3       (b2)   -0.071    0.025   -2.795    0.005   -0.120   -0.021
##   wx5 ~                                                                 
##     wx4               0.549    0.052   10.662    0.000    0.448    0.650
##     wy3      (cp2)   -0.132    0.032   -4.128    0.000   -0.195   -0.069
##     wm4       (b2)   -0.071    0.025   -2.795    0.005   -0.120   -0.021
##   wm2 ~                                                                 
##     wx1       (a1)   -0.090    0.023   -3.846    0.000   -0.135   -0.044
##     wy1       (a2)    0.041    0.023    1.780    0.075   -0.004    0.086
##     wm1               0.580    0.041   14.030    0.000    0.499    0.661
##   wm3 ~                                                                 
##     wx2       (a1)   -0.090    0.023   -3.846    0.000   -0.135   -0.044
##     wy2       (a2)    0.041    0.023    1.780    0.075   -0.004    0.086
##     wm2               0.642    0.044   14.653    0.000    0.556    0.728
##   wm4 ~                                                                 
##     wx3       (a1)   -0.090    0.023   -3.846    0.000   -0.135   -0.044
##     wy3       (a2)    0.041    0.023    1.780    0.075   -0.004    0.086
##     wm3               0.693    0.042   16.563    0.000    0.611    0.775
##   wm5 ~                                                                 
##     wx4       (a1)   -0.090    0.023   -3.846    0.000   -0.135   -0.044
##     wy4       (a2)    0.041    0.023    1.780    0.075   -0.004    0.086
##     wm4               0.692    0.045   15.246    0.000    0.603    0.780
##    Std.lv  Std.all
##                   
##     0.791    0.791
##     0.027    0.027
##                   
##    -0.073   -0.073
##     0.760    0.760
##     0.027    0.027
##                   
##    -0.074   -0.074
##     0.778    0.778
##     0.027    0.027
##                   
##    -0.073   -0.073
##     0.774    0.774
##     0.026    0.026
##                   
##     0.532    0.532
##    -0.071   -0.071
##                   
##     0.497    0.497
##    -0.133   -0.133
##    -0.071   -0.071
##                   
##     0.465    0.465
##    -0.130   -0.130
##    -0.071   -0.071
##                   
##     0.546    0.546
##    -0.131   -0.131
##    -0.070   -0.070
##                   
##    -0.090   -0.090
##     0.041    0.041
##     0.588    0.588
##                   
##    -0.090   -0.090
##     0.040    0.040
##     0.640    0.640
##                   
##    -0.091   -0.091
##     0.041    0.041
##     0.702    0.702
##                   
##    -0.090   -0.090
##     0.041    0.041
##     0.683    0.683
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.345    0.050   -6.969    0.000   -0.442   -0.248
##     wm1              -0.249    0.049   -5.085    0.000   -0.345   -0.153
##   wy1 ~~                                                                
##     wm1               0.201    0.048    4.171    0.000    0.107    0.295
##  .wx2 ~~                                                                
##    .wy2              -0.045    0.028   -1.640    0.101   -0.099    0.009
##  .wx3 ~~                                                                
##    .wy3               0.004    0.031    0.144    0.885   -0.056    0.065
##  .wx4 ~~                                                                
##    .wy4               0.059    0.032    1.839    0.066   -0.004    0.122
##  .wx5 ~~                                                                
##    .wy5               0.071    0.032    2.230    0.026    0.009    0.134
##  .wx2 ~~                                                                
##    .wm2              -0.048    0.036   -1.353    0.176   -0.118    0.022
##  .wx3 ~~                                                                
##    .wm3               0.024    0.036    0.676    0.499   -0.046    0.095
##  .wx4 ~~                                                                
##    .wm4               0.011    0.036    0.322    0.748   -0.058    0.081
##  .wx5 ~~                                                                
##    .wm5              -0.001    0.035   -0.017    0.986   -0.070    0.069
##  .wy2 ~~                                                                
##    .wm2               0.068    0.026    2.600    0.009    0.017    0.119
##  .wy3 ~~                                                                
##    .wm3               0.027    0.027    0.997    0.319   -0.026    0.079
##  .wy4 ~~                                                                
##    .wm4               0.001    0.025    0.057    0.954   -0.047    0.050
##  .wy5 ~~                                                                
##    .wm5               0.059    0.027    2.208    0.027    0.007    0.112
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.348   -0.348
##    -0.249   -0.249
##                   
##     0.201    0.201
##                   
##    -0.092   -0.092
##                   
##     0.009    0.009
##                   
##     0.121    0.121
##                   
##     0.152    0.152
##                   
##    -0.075   -0.075
##                   
##     0.041    0.041
##                   
##     0.020    0.020
##                   
##    -0.001   -0.001
##                   
##     0.149    0.149
##                   
##     0.061    0.061
##                   
##     0.004    0.004
##                   
##     0.144    0.144
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.000    0.047    0.003    0.997   -0.092    0.092
##    .LadderDif.2      -0.010    0.051   -0.191    0.848   -0.111    0.091
##    .LadderDif.3      -0.012    0.057   -0.215    0.830   -0.124    0.099
##    .LadderDif.4      -0.003    0.060   -0.054    0.957   -0.122    0.115
##    .LadderDif.5      -0.008    0.062   -0.131    0.896   -0.130    0.114
##    .gHealth.1         0.005    0.046    0.103    0.918   -0.086    0.095
##    .gHealth.2        -0.007    0.047   -0.141    0.888   -0.100    0.086
##    .gHealth.3         0.001    0.052    0.023    0.981   -0.101    0.104
##    .gHealth.4         0.008    0.056    0.136    0.892   -0.101    0.117
##    .gHealth.5         0.011    0.058    0.186    0.852   -0.103    0.125
##    .posEmo.1         -0.003    0.047   -0.062    0.950   -0.095    0.089
##    .posEmo.2         -0.010    0.050   -0.196    0.844   -0.108    0.088
##    .posEmo.3         -0.002    0.055   -0.031    0.975   -0.110    0.107
##    .posEmo.4         -0.005    0.058   -0.084    0.933   -0.118    0.108
##    .posEmo.5          0.011    0.061    0.181    0.857   -0.108    0.130
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.000    0.000
##    -0.010   -0.010
##    -0.012   -0.012
##    -0.003   -0.003
##    -0.008   -0.008
##     0.005    0.005
##    -0.007   -0.007
##     0.001    0.001
##     0.008    0.008
##     0.011    0.011
##    -0.003   -0.003
##    -0.010   -0.010
##    -0.002   -0.002
##    -0.005   -0.005
##     0.011    0.011
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.993    0.067   14.934    0.000    0.863    1.124
##     wy1               0.993    0.066   15.114    0.000    0.864    1.121
##     wm1               1.008    0.068   14.817    0.000    0.875    1.141
##    .wx2               0.695    0.054   12.902    0.000    0.589    0.800
##    .wy2               0.346    0.028   12.510    0.000    0.292    0.401
##    .wm2               0.594    0.047   12.578    0.000    0.502    0.687
##    .wx3               0.677    0.058   11.761    0.000    0.564    0.790
##    .wy3               0.363    0.031   11.778    0.000    0.302    0.423
##    .wm3               0.532    0.045   11.752    0.000    0.443    0.621
##    .wx4               0.707    0.063   11.189    0.000    0.583    0.830
##    .wy4               0.341    0.030   11.192    0.000    0.281    0.401
##    .wm4               0.442    0.040   11.167    0.000    0.365    0.520
##    .wx5               0.629    0.057   10.982    0.000    0.517    0.742
##    .wy5               0.350    0.032   10.974    0.000    0.288    0.413
##    .wm5               0.482    0.044   10.996    0.000    0.396    0.568
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.693    0.693
##     0.364    0.364
##     0.606    0.606
##     0.685    0.685
##     0.375    0.375
##     0.540    0.540
##     0.719    0.719
##     0.354    0.354
##     0.461    0.461
##     0.633    0.633
##     0.364    0.364
##     0.491    0.491
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

(a1) Perceived status difference at time t does not predict positive emotions at time t+1
(b1) Positive emotions at time t do not predict health at time t+1

# Same model as above code, but fit with d_black dataset this time
PEmoHealthCLPM_b.fit <- lavaan(PEmoHealthCLPM, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoHealthCLPM_b.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               444.357
##   Degrees of freedom                                72
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2035.348
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.807
##   Tucker-Lewis Index (TLI)                       0.719
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5074.233
##   Loglikelihood unrestricted model (H1)      -4852.055
##                                                       
##   Akaike (AIC)                               10274.466
##   Bayesian (BIC)                             10537.676
##   Sample-size adjusted Bayesian (BIC)        10337.720
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.104
##   90 Percent confidence interval - lower         0.094
##   90 Percent confidence interval - upper         0.113
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.112
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.998    1.000
##                   
##     1.008    1.000
##                   
##     1.005    1.000
##                   
##     0.995    1.000
##                   
##     0.994    1.000
##                   
##     1.002    1.000
##                   
##     0.997    1.000
##                   
##     0.989    1.000
##                   
##     1.004    1.000
##                   
##     0.997    1.000
##                   
##     0.994    1.000
##                   
##     0.994    1.000
##                   
##     0.983    1.000
##                   
##     0.999    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.725    0.044   16.331    0.000    0.638    0.812
##     wm1       (b1)    0.031    0.023    1.360    0.174   -0.014    0.076
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.023    0.028   -0.809    0.419   -0.079    0.033
##     wy2               0.744    0.043   17.386    0.000    0.660    0.828
##     wm2       (b1)    0.031    0.023    1.360    0.174   -0.014    0.076
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.023    0.028   -0.809    0.419   -0.079    0.033
##     wy3               0.724    0.047   15.548    0.000    0.632    0.815
##     wm3       (b1)    0.031    0.023    1.360    0.174   -0.014    0.076
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.023    0.028   -0.809    0.419   -0.079    0.033
##     wy4               0.766    0.047   16.384    0.000    0.675    0.858
##     wm4       (b1)    0.031    0.023    1.360    0.174   -0.014    0.076
##   wx2 ~                                                                 
##     wx1               0.252    0.061    4.106    0.000    0.132    0.373
##     wm1       (b2)   -0.023    0.030   -0.741    0.458   -0.082    0.037
##   wx3 ~                                                                 
##     wx2               0.540    0.059    9.081    0.000    0.423    0.656
##     wy1      (cp2)   -0.001    0.038   -0.034    0.973   -0.075    0.072
##     wm2       (b2)   -0.023    0.030   -0.741    0.458   -0.082    0.037
##   wx4 ~                                                                 
##     wx3               0.462    0.064    7.197    0.000    0.336    0.588
##     wy2      (cp2)   -0.001    0.038   -0.034    0.973   -0.075    0.072
##     wm3       (b2)   -0.023    0.030   -0.741    0.458   -0.082    0.037
##   wx5 ~                                                                 
##     wx4               0.484    0.060    8.040    0.000    0.366    0.601
##     wy3      (cp2)   -0.001    0.038   -0.034    0.973   -0.075    0.072
##     wm4       (b2)   -0.023    0.030   -0.741    0.458   -0.082    0.037
##   wm2 ~                                                                 
##     wx1       (a1)   -0.025    0.024   -1.049    0.294   -0.073    0.022
##     wy1       (a2)    0.055    0.025    2.227    0.026    0.007    0.104
##     wm1               0.522    0.051   10.189    0.000    0.422    0.623
##   wm3 ~                                                                 
##     wx2       (a1)   -0.025    0.024   -1.049    0.294   -0.073    0.022
##     wy2       (a2)    0.055    0.025    2.227    0.026    0.007    0.104
##     wm2               0.712    0.045   15.879    0.000    0.624    0.800
##   wm4 ~                                                                 
##     wx3       (a1)   -0.025    0.024   -1.049    0.294   -0.073    0.022
##     wy3       (a2)    0.055    0.025    2.227    0.026    0.007    0.104
##     wm3               0.728    0.045   16.291    0.000    0.641    0.816
##   wm5 ~                                                                 
##     wx4       (a1)   -0.025    0.024   -1.049    0.294   -0.073    0.022
##     wy4       (a2)    0.055    0.025    2.227    0.026    0.007    0.104
##     wm4               0.728    0.049   14.939    0.000    0.632    0.823
##    Std.lv  Std.all
##                   
##     0.719    0.719
##     0.031    0.031
##                   
##    -0.023   -0.023
##     0.747    0.747
##     0.031    0.031
##                   
##    -0.023   -0.023
##     0.729    0.729
##     0.031    0.031
##                   
##    -0.023   -0.023
##     0.755    0.755
##     0.031    0.031
##                   
##     0.252    0.252
##    -0.023   -0.023
##                   
##     0.534    0.534
##    -0.001   -0.001
##    -0.022   -0.022
##                   
##     0.463    0.463
##    -0.001   -0.001
##    -0.022   -0.022
##                   
##     0.488    0.488
##    -0.001   -0.001
##    -0.022   -0.022
##                   
##    -0.025   -0.025
##     0.055    0.055
##     0.524    0.524
##                   
##    -0.025   -0.025
##     0.056    0.056
##     0.712    0.712
##                   
##    -0.026   -0.026
##     0.056    0.056
##     0.737    0.737
##                   
##    -0.025   -0.025
##     0.055    0.055
##     0.716    0.716
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.051    0.046   -1.093    0.274   -0.142    0.040
##     wm1              -0.007    0.047   -0.160    0.873   -0.099    0.084
##   wy1 ~~                                                                
##     wm1               0.266    0.048    5.570    0.000    0.173    0.360
##  .wx2 ~~                                                                
##    .wy2              -0.017    0.042   -0.412    0.680   -0.099    0.065
##  .wx3 ~~                                                                
##    .wy3               0.054    0.038    1.440    0.150   -0.020    0.128
##  .wx4 ~~                                                                
##    .wy4              -0.016    0.042   -0.372    0.710   -0.099    0.067
##  .wx5 ~~                                                                
##    .wy5               0.043    0.042    1.044    0.297   -0.038    0.125
##  .wx2 ~~                                                                
##    .wm2              -0.001    0.049   -0.022    0.982   -0.097    0.095
##  .wx3 ~~                                                                
##    .wm3              -0.025    0.039   -0.646    0.518   -0.101    0.051
##  .wx4 ~~                                                                
##    .wm4               0.016    0.039    0.409    0.683   -0.061    0.093
##  .wx5 ~~                                                                
##    .wm5               0.020    0.041    0.476    0.634   -0.061    0.101
##  .wy2 ~~                                                                
##    .wm2               0.013    0.035    0.357    0.721   -0.057    0.082
##  .wy3 ~~                                                                
##    .wm3               0.084    0.030    2.782    0.005    0.025    0.143
##  .wy4 ~~                                                                
##    .wm4               0.057    0.030    1.898    0.058   -0.002    0.116
##  .wy5 ~~                                                                
##    .wm5               0.051    0.031    1.630    0.103   -0.010    0.112
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.051   -0.051
##    -0.007   -0.007
##                   
##     0.269    0.269
##                   
##    -0.026   -0.026
##                   
##     0.097    0.097
##                   
##    -0.027   -0.027
##                   
##     0.077    0.077
##                   
##    -0.001   -0.001
##                   
##    -0.043   -0.043
##                   
##     0.028    0.028
##                   
##     0.033    0.033
##                   
##     0.022    0.022
##                   
##     0.188    0.188
##                   
##     0.133    0.133
##                   
##     0.116    0.116
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.007    0.047   -0.147    0.883   -0.099    0.085
##    .LadderDif.2       0.004    0.059    0.076    0.939   -0.110    0.119
##    .LadderDif.3       0.003    0.065    0.039    0.969   -0.124    0.129
##    .LadderDif.4       0.019    0.068    0.279    0.780   -0.114    0.152
##    .LadderDif.5       0.008    0.069    0.115    0.908   -0.128    0.144
##    .gHealth.1        -0.004    0.046   -0.080    0.936   -0.094    0.086
##    .gHealth.2        -0.087    0.053   -1.631    0.103   -0.191    0.017
##    .gHealth.3        -0.049    0.059   -0.832    0.405   -0.164    0.066
##    .gHealth.4        -0.030    0.063   -0.478    0.633   -0.153    0.093
##    .gHealth.5        -0.053    0.067   -0.793    0.428   -0.183    0.078
##    .posEmo.1         -0.001    0.046   -0.026    0.980   -0.092    0.090
##    .posEmo.2         -0.013    0.056   -0.236    0.813   -0.122    0.096
##    .posEmo.3         -0.011    0.061   -0.188    0.851   -0.130    0.107
##    .posEmo.4         -0.015    0.063   -0.238    0.812   -0.139    0.109
##    .posEmo.5         -0.019    0.067   -0.280    0.779   -0.150    0.112
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.007   -0.007
##     0.004    0.004
##     0.003    0.003
##     0.019    0.019
##     0.008    0.008
##    -0.004   -0.004
##    -0.087   -0.086
##    -0.049   -0.049
##    -0.030   -0.030
##    -0.053   -0.053
##    -0.001   -0.001
##    -0.013   -0.013
##    -0.011   -0.011
##    -0.015   -0.015
##    -0.019   -0.019
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.997    0.066   15.023    0.000    0.867    1.128
##     wy1               0.988    0.065   15.236    0.000    0.861    1.115
##     wm1               0.995    0.066   15.108    0.000    0.866    1.124
##    .wx2               0.932    0.079   11.803    0.000    0.777    1.086
##    .wy2               0.472    0.041   11.480    0.000    0.392    0.553
##    .wm2               0.698    0.060   11.594    0.000    0.580    0.816
##    .wx3               0.725    0.068   10.690    0.000    0.592    0.858
##    .wy3               0.428    0.040   10.688    0.000    0.349    0.506
##    .wm3               0.469    0.044   10.692    0.000    0.383    0.555
##    .wx4               0.791    0.077   10.325    0.000    0.641    0.941
##    .wy4               0.444    0.043   10.288    0.000    0.360    0.529
##    .wm4               0.417    0.040   10.318    0.000    0.337    0.496
##    .wx5               0.753    0.075   10.090    0.000    0.607    0.899
##    .wy5               0.421    0.042   10.075    0.000    0.339    0.503
##    .wm5               0.461    0.046   10.081    0.000    0.371    0.550
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.936    0.936
##     0.470    0.470
##     0.706    0.706
##     0.713    0.713
##     0.430    0.430
##     0.475    0.475
##     0.783    0.783
##     0.454    0.454
##     0.431    0.431
##     0.760    0.760
##     0.417    0.417
##     0.462    0.462
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif, Positive Emotions, and Health, 2nd Order AR

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.08, p < .001
(b1) Positive emotions at time t do not predict health at time t+1

PEmoHealthCLPM_2AR <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gHealth.1 + 1*gHealth.2 + 1*gHealth.3 + 1*gHealth.4 + 1*gHealth.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gHealth.1
  wy2 =~ 1*gHealth.2
  wy3 =~ 1*gHealth.3
  wy4 =~ 1*gHealth.4
  wy5 =~ 1*gHealth.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoHealthCLPM_w2AR.fit <- lavaan(PEmoHealthCLPM_2AR, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoHealthCLPM_w2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 40 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        12
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               165.856
##   Degrees of freedom                                63
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2897.268
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.963
##   Tucker-Lewis Index (TLI)                       0.939
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5254.643
##   Loglikelihood unrestricted model (H1)      -5171.715
##                                                       
##   Akaike (AIC)                               10653.286
##   Bayesian (BIC)                             10954.098
##   Sample-size adjusted Bayesian (BIC)        10725.577
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.058
##   90 Percent confidence interval - lower         0.047
##   90 Percent confidence interval - upper         0.069
##   P-value RMSEA <= 0.05                          0.101
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.048
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.999    1.000
##                   
##     0.994    1.000
##                   
##     1.002    1.000
##                   
##     0.988    1.000
##                   
##     0.994    1.000
##                   
##     0.974    1.000
##                   
##     0.974    1.000
##                   
##     0.971    1.000
##                   
##     0.967    1.000
##                   
##     1.002    1.000
##                   
##     0.988    1.000
##                   
##     0.987    1.000
##                   
##     0.977    1.000
##                   
##     0.991    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.774    0.032   24.313    0.000    0.712    0.837
##     wm1       (b1)    0.025    0.017    1.450    0.147   -0.009    0.060
##   wy3 ~                                                                 
##     wx1      (cp1)    0.004    0.022    0.174    0.861   -0.038    0.046
##     wy2               0.375    0.056    6.761    0.000    0.267    0.484
##     wm2       (b1)    0.025    0.017    1.450    0.147   -0.009    0.060
##     wy1               0.496    0.055    9.040    0.000    0.389    0.604
##   wy4 ~                                                                 
##     wx2      (cp1)    0.004    0.022    0.174    0.861   -0.038    0.046
##     wy3               0.593    0.059    9.979    0.000    0.476    0.709
##     wm3       (b1)    0.025    0.017    1.450    0.147   -0.009    0.060
##     wy2               0.255    0.059    4.305    0.000    0.139    0.371
##   wy5 ~                                                                 
##     wx3      (cp1)    0.004    0.022    0.174    0.861   -0.038    0.046
##     wy4               0.433    0.058    7.423    0.000    0.319    0.548
##     wm4       (b1)    0.025    0.017    1.450    0.147   -0.009    0.060
##     wy3               0.437    0.058    7.477    0.000    0.322    0.551
##   wx2 ~                                                                 
##     wx1               0.541    0.046   11.685    0.000    0.450    0.631
##     wm1       (b2)   -0.041    0.024   -1.723    0.085   -0.089    0.006
##   wx3 ~                                                                 
##     wx2               0.287    0.058    4.924    0.000    0.173    0.401
##     wy1      (cp2)   -0.047    0.029   -1.620    0.105   -0.104    0.010
##     wm2       (b2)   -0.041    0.024   -1.723    0.085   -0.089    0.006
##     wx1               0.411    0.058    7.114    0.000    0.298    0.525
##   wx4 ~                                                                 
##     wx3               0.297    0.060    4.949    0.000    0.180    0.415
##     wy2      (cp2)   -0.047    0.029   -1.620    0.105   -0.104    0.010
##     wm3       (b2)   -0.041    0.024   -1.723    0.085   -0.089    0.006
##     wx2               0.384    0.063    6.133    0.000    0.261    0.506
##   wx5 ~                                                                 
##     wx4               0.336    0.054    6.204    0.000    0.230    0.442
##     wy3      (cp2)   -0.047    0.029   -1.620    0.105   -0.104    0.010
##     wm4       (b2)   -0.041    0.024   -1.723    0.085   -0.089    0.006
##     wx3               0.432    0.054    8.025    0.000    0.327    0.538
##   wm2 ~                                                                 
##     wx1       (a1)   -0.081    0.022   -3.661    0.000   -0.125   -0.038
##     wy1       (a2)    0.033    0.022    1.516    0.130   -0.010    0.077
##     wm1               0.579    0.042   13.868    0.000    0.497    0.660
##   wm3 ~                                                                 
##     wx2       (a1)   -0.081    0.022   -3.661    0.000   -0.125   -0.038
##     wy2       (a2)    0.033    0.022    1.516    0.130   -0.010    0.077
##     wm2               0.508    0.057    8.926    0.000    0.396    0.619
##     wm1               0.214    0.060    3.575    0.000    0.097    0.331
##   wm4 ~                                                                 
##     wx3       (a1)   -0.081    0.022   -3.661    0.000   -0.125   -0.038
##     wy3       (a2)    0.033    0.022    1.516    0.130   -0.010    0.077
##     wm3               0.521    0.055    9.511    0.000    0.413    0.628
##     wm2               0.258    0.056    4.634    0.000    0.149    0.367
##   wm5 ~                                                                 
##     wx4       (a1)   -0.081    0.022   -3.661    0.000   -0.125   -0.038
##     wy4       (a2)    0.033    0.022    1.516    0.130   -0.010    0.077
##     wm4               0.352    0.057    6.137    0.000    0.240    0.465
##     wm3               0.472    0.056    8.395    0.000    0.362    0.583
##    Std.lv  Std.all
##                   
##     0.790    0.790
##     0.026    0.026
##                   
##     0.004    0.004
##     0.375    0.375
##     0.026    0.026
##     0.507    0.507
##                   
##     0.004    0.004
##     0.594    0.594
##     0.026    0.026
##     0.255    0.255
##                   
##     0.004    0.004
##     0.435    0.435
##     0.026    0.026
##     0.440    0.440
##                   
##     0.541    0.541
##    -0.042   -0.042
##                   
##     0.288    0.288
##    -0.047   -0.047
##    -0.041   -0.041
##     0.413    0.413
##                   
##     0.295    0.295
##    -0.046   -0.046
##    -0.041   -0.041
##     0.382    0.382
##                   
##     0.341    0.341
##    -0.047   -0.047
##    -0.041   -0.041
##     0.435    0.435
##                   
##    -0.082   -0.082
##     0.034    0.034
##     0.587    0.587
##                   
##    -0.082   -0.082
##     0.033    0.033
##     0.508    0.508
##     0.217    0.217
##                   
##    -0.083   -0.083
##     0.033    0.033
##     0.526    0.526
##     0.261    0.261
##                   
##    -0.082   -0.082
##     0.033    0.033
##     0.347    0.347
##     0.470    0.470
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.349    0.049   -7.071    0.000   -0.446   -0.252
##     wm1              -0.251    0.049   -5.138    0.000   -0.347   -0.155
##   wy1 ~~                                                                
##     wm1               0.201    0.048    4.208    0.000    0.107    0.295
##  .wx2 ~~                                                                
##    .wy2              -0.042    0.027   -1.535    0.125   -0.096    0.012
##  .wx3 ~~                                                                
##    .wy3              -0.023    0.025   -0.938    0.348   -0.071    0.025
##  .wx4 ~~                                                                
##    .wy4               0.042    0.029    1.476    0.140   -0.014    0.098
##  .wx5 ~~                                                                
##    .wy5               0.015    0.025    0.613    0.540   -0.033    0.063
##  .wx2 ~~                                                                
##    .wm2              -0.049    0.036   -1.363    0.173   -0.119    0.021
##  .wx3 ~~                                                                
##    .wm3               0.004    0.033    0.109    0.913   -0.061    0.068
##  .wx4 ~~                                                                
##    .wm4               0.017    0.032    0.519    0.604   -0.046    0.079
##  .wx5 ~~                                                                
##    .wm5               0.005    0.028    0.166    0.868   -0.050    0.059
##  .wy2 ~~                                                                
##    .wm2               0.069    0.026    2.625    0.009    0.017    0.120
##  .wy3 ~~                                                                
##    .wm3              -0.005    0.023   -0.199    0.842   -0.051    0.041
##  .wy4 ~~                                                                
##    .wm4               0.010    0.023    0.442    0.658   -0.035    0.055
##  .wy5 ~~                                                                
##    .wm5               0.037    0.021    1.727    0.084   -0.005    0.078
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.352   -0.352
##    -0.251   -0.251
##                   
##     0.202    0.202
##                   
##    -0.086   -0.086
##                   
##    -0.058   -0.058
##                   
##     0.095    0.095
##                   
##     0.040    0.040
##                   
##    -0.076   -0.076
##                   
##     0.007    0.007
##                   
##     0.033    0.033
##                   
##     0.011    0.011
##                   
##     0.150    0.150
##                   
##    -0.012   -0.012
##                   
##     0.028    0.028
##                   
##     0.113    0.113
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.002    0.047    0.038    0.970   -0.090    0.093
##    .LadderDif.2      -0.011    0.051   -0.212    0.832   -0.111    0.090
##    .LadderDif.3      -0.033    0.055   -0.608    0.543   -0.141    0.074
##    .LadderDif.4      -0.014    0.059   -0.232    0.817   -0.129    0.102
##    .LadderDif.5      -0.020    0.059   -0.334    0.738   -0.136    0.096
##    .gHealth.1         0.005    0.046    0.100    0.920   -0.085    0.095
##    .gHealth.2        -0.007    0.047   -0.139    0.889   -0.100    0.086
##    .gHealth.3        -0.004    0.049   -0.085    0.932   -0.101    0.093
##    .gHealth.4         0.009    0.053    0.169    0.866   -0.095    0.112
##    .gHealth.5         0.008    0.054    0.152    0.879   -0.097    0.114
##    .posEmo.1         -0.006    0.047   -0.131    0.896   -0.098    0.086
##    .posEmo.2         -0.009    0.050   -0.182    0.855   -0.107    0.089
##    .posEmo.3          0.004    0.054    0.081    0.935   -0.102    0.111
##    .posEmo.4         -0.000    0.056   -0.005    0.996   -0.110    0.109
##    .posEmo.5          0.015    0.058    0.266    0.790   -0.098    0.129
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.002    0.002
##    -0.011   -0.011
##    -0.033   -0.033
##    -0.014   -0.014
##    -0.020   -0.020
##     0.005    0.005
##    -0.007   -0.007
##    -0.004   -0.004
##     0.009    0.009
##     0.008    0.008
##    -0.006   -0.006
##    -0.009   -0.009
##     0.004    0.004
##    -0.000   -0.000
##     0.015    0.016
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.998    0.067   14.935    0.000    0.867    1.129
##     wy1               0.989    0.065   15.192    0.000    0.861    1.116
##     wm1               1.004    0.068   14.863    0.000    0.872    1.136
##    .wx2               0.692    0.054   12.936    0.000    0.587    0.797
##    .wy2               0.348    0.028   12.553    0.000    0.294    0.403
##    .wm2               0.600    0.048   12.551    0.000    0.506    0.694
##    .wx3               0.572    0.050   11.539    0.000    0.475    0.669
##    .wy3               0.277    0.024   11.503    0.000    0.230    0.324
##    .wm3               0.503    0.043   11.641    0.000    0.419    0.588
##    .wx4               0.619    0.055   11.184    0.000    0.511    0.728
##    .wy4               0.317    0.028   11.194    0.000    0.261    0.372
##    .wm4               0.408    0.036   11.188    0.000    0.337    0.480
##    .wx5               0.496    0.045   10.999    0.000    0.407    0.584
##    .wy5               0.283    0.026   10.971    0.000    0.232    0.333
##    .wm5               0.371    0.034   10.988    0.000    0.305    0.437
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.694    0.694
##     0.367    0.367
##     0.614    0.614
##     0.578    0.578
##     0.292    0.292
##     0.516    0.516
##     0.617    0.617
##     0.336    0.336
##     0.427    0.427
##     0.508    0.508
##     0.302    0.302
##     0.378    0.378
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(PEmoHealthCLPM_w2AR.fit, PEmoHealthCLPM_w.fit)
## Chi-Squared Difference Test
## 
##                         Df   AIC   BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## PEmoHealthCLPM_w2AR.fit 63 10653 10954 165.86                                  
## PEmoHealthCLPM_w.fit    72 10992 11255 522.33     356.48       9  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Black Participants

(a1) Perceived status difference at time t does not predict positive emotions at time t+1
(b1) Positive emotions at time t do not predict health at time t+1

# Same model as above code, but fit with d_black dataset this time
PEmoHealthCLPM_b2AR.fit <- lavaan(PEmoHealthCLPM_2AR, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoHealthCLPM_b2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 43 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               173.057
##   Degrees of freedom                                63
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2035.348
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.943
##   Tucker-Lewis Index (TLI)                       0.905
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4938.583
##   Loglikelihood unrestricted model (H1)      -4852.055
##                                                       
##   Akaike (AIC)                               10021.167
##   Bayesian (BIC)                             10321.979
##   Sample-size adjusted Bayesian (BIC)        10093.457
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.060
##   90 Percent confidence interval - lower         0.050
##   90 Percent confidence interval - upper         0.071
##   P-value RMSEA <= 0.05                          0.057
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.061
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.000    1.000
##                   
##     0.998    1.000
##                   
##     1.009    1.000
##                   
##     1.011    1.000
##                   
##     1.013    1.000
##                   
##     0.995    1.000
##                   
##     1.000    1.000
##                   
##     0.992    1.000
##                   
##     0.986    1.000
##                   
##     1.008    1.000
##                   
##     0.996    1.000
##                   
##     0.994    1.000
##                   
##     0.987    1.000
##                   
##     0.967    1.000
##                   
##     0.987    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.727    0.044   16.514    0.000    0.641    0.814
##     wm1       (b1)    0.019    0.022    0.873    0.383   -0.023    0.061
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.024    0.025   -0.942    0.346   -0.073    0.025
##     wy2               0.510    0.061    8.404    0.000    0.391    0.629
##     wm2       (b1)    0.019    0.022    0.873    0.383   -0.023    0.061
##     wy1               0.319    0.061    5.267    0.000    0.200    0.438
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.024    0.025   -0.942    0.346   -0.073    0.025
##     wy3               0.418    0.067    6.271    0.000    0.288    0.549
##     wm3       (b1)    0.019    0.022    0.873    0.383   -0.023    0.061
##     wy2               0.393    0.066    5.995    0.000    0.265    0.522
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.024    0.025   -0.942    0.346   -0.073    0.025
##     wy4               0.400    0.059    6.802    0.000    0.285    0.515
##     wm4       (b1)    0.019    0.022    0.873    0.383   -0.023    0.061
##     wy3               0.510    0.059    8.649    0.000    0.395    0.626
##   wx2 ~                                                                 
##     wx1               0.261    0.061    4.291    0.000    0.142    0.381
##     wm1       (b2)   -0.007    0.029   -0.254    0.800   -0.065    0.050
##   wx3 ~                                                                 
##     wx2               0.497    0.061    8.183    0.000    0.378    0.616
##     wy1      (cp2)    0.010    0.034    0.286    0.775   -0.058    0.077
##     wm2       (b2)   -0.007    0.029   -0.254    0.800   -0.065    0.050
##     wx1               0.173    0.062    2.793    0.005    0.052    0.295
##   wx4 ~                                                                 
##     wx3               0.315    0.071    4.420    0.000    0.175    0.454
##     wy2      (cp2)    0.010    0.034    0.286    0.775   -0.058    0.077
##     wm3       (b2)   -0.007    0.029   -0.254    0.800   -0.065    0.050
##     wx2               0.287    0.072    3.975    0.000    0.146    0.429
##   wx5 ~                                                                 
##     wx4               0.288    0.062    4.676    0.000    0.167    0.409
##     wy3      (cp2)    0.010    0.034    0.286    0.775   -0.058    0.077
##     wm4       (b2)   -0.007    0.029   -0.254    0.800   -0.065    0.050
##     wx3               0.443    0.065    6.827    0.000    0.316    0.570
##   wm2 ~                                                                 
##     wx1       (a1)   -0.026    0.023   -1.132    0.258   -0.071    0.019
##     wy1       (a2)    0.041    0.024    1.719    0.086   -0.006    0.087
##     wm1               0.523    0.052   10.138    0.000    0.422    0.624
##   wm3 ~                                                                 
##     wx2       (a1)   -0.026    0.023   -1.132    0.258   -0.071    0.019
##     wy2       (a2)    0.041    0.024    1.719    0.086   -0.006    0.087
##     wm2               0.586    0.053   11.121    0.000    0.483    0.690
##     wm1               0.228    0.054    4.245    0.000    0.123    0.333
##   wm4 ~                                                                 
##     wx3       (a1)   -0.026    0.023   -1.132    0.258   -0.071    0.019
##     wy3       (a2)    0.041    0.024    1.719    0.086   -0.006    0.087
##     wm3               0.488    0.063    7.736    0.000    0.364    0.612
##     wm2               0.313    0.061    5.099    0.000    0.192    0.433
##   wm5 ~                                                                 
##     wx4       (a1)   -0.026    0.023   -1.132    0.258   -0.071    0.019
##     wy4       (a2)    0.041    0.024    1.719    0.086   -0.006    0.087
##     wm4               0.370    0.065    5.672    0.000    0.242    0.498
##     wm3               0.471    0.064    7.390    0.000    0.346    0.595
##    Std.lv  Std.all
##                   
##     0.724    0.724
##     0.019    0.019
##                   
##    -0.024   -0.024
##     0.514    0.514
##     0.019    0.019
##     0.320    0.320
##                   
##    -0.024   -0.024
##     0.421    0.421
##     0.019    0.019
##     0.399    0.399
##                   
##    -0.024   -0.024
##     0.391    0.391
##     0.018    0.018
##     0.502    0.502
##                   
##     0.262    0.262
##    -0.007   -0.007
##                   
##     0.492    0.492
##     0.010    0.010
##    -0.007   -0.007
##     0.172    0.172
##                   
##     0.314    0.314
##     0.010    0.010
##    -0.007   -0.007
##     0.283    0.283
##                   
##     0.288    0.288
##     0.010    0.010
##    -0.007   -0.007
##     0.441    0.441
##                   
##    -0.026   -0.026
##     0.041    0.041
##     0.524    0.524
##                   
##    -0.026   -0.026
##     0.041    0.041
##     0.590    0.590
##     0.230    0.230
##                   
##    -0.027   -0.027
##     0.042    0.042
##     0.498    0.498
##     0.321    0.321
##                   
##    -0.026   -0.026
##     0.041    0.041
##     0.363    0.363
##     0.471    0.471
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.049    0.047   -1.061    0.289   -0.141    0.042
##     wm1              -0.007    0.047   -0.148    0.883   -0.098    0.085
##   wy1 ~~                                                                
##     wm1               0.265    0.048    5.557    0.000    0.172    0.359
##  .wx2 ~~                                                                
##    .wy2              -0.018    0.041   -0.445    0.657   -0.100    0.063
##  .wx3 ~~                                                                
##    .wy3               0.052    0.035    1.496    0.135   -0.016    0.120
##  .wx4 ~~                                                                
##    .wy4              -0.053    0.038   -1.382    0.167   -0.128    0.022
##  .wx5 ~~                                                                
##    .wy5               0.027    0.031    0.879    0.380   -0.033    0.087
##  .wx2 ~~                                                                
##    .wm2              -0.004    0.049   -0.092    0.927   -0.101    0.092
##  .wx3 ~~                                                                
##    .wm3              -0.012    0.036   -0.331    0.741   -0.083    0.059
##  .wx4 ~~                                                                
##    .wm4               0.020    0.036    0.537    0.591   -0.052    0.091
##  .wx5 ~~                                                                
##    .wm5              -0.043    0.034   -1.266    0.205   -0.110    0.024
##  .wy2 ~~                                                                
##    .wm2               0.014    0.035    0.402    0.688   -0.055    0.083
##  .wy3 ~~                                                                
##    .wm3               0.074    0.028    2.669    0.008    0.020    0.128
##  .wy4 ~~                                                                
##    .wm4               0.068    0.027    2.497    0.013    0.015    0.122
##  .wy5 ~~                                                                
##    .wm5               0.035    0.024    1.457    0.145   -0.012    0.081
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.050   -0.050
##    -0.007   -0.007
##                   
##     0.268    0.268
##                   
##    -0.028   -0.028
##                   
##     0.101    0.101
##                   
##    -0.098   -0.098
##                   
##     0.062    0.062
##                   
##    -0.006   -0.006
##                   
##    -0.022   -0.022
##                   
##     0.037    0.037
##                   
##    -0.091   -0.091
##                   
##     0.025    0.025
##                   
##     0.183    0.183
##                   
##     0.178    0.178
##                   
##     0.104    0.104
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.008    0.047   -0.170    0.865   -0.100    0.084
##    .LadderDif.2       0.005    0.059    0.079    0.937   -0.110    0.119
##    .LadderDif.3      -0.003    0.064   -0.041    0.967   -0.128    0.122
##    .LadderDif.4       0.017    0.067    0.254    0.799   -0.115    0.149
##    .LadderDif.5       0.016    0.069    0.227    0.820   -0.119    0.150
##    .gHealth.1        -0.004    0.046   -0.090    0.929   -0.094    0.086
##    .gHealth.2        -0.087    0.053   -1.634    0.102   -0.190    0.017
##    .gHealth.3        -0.073    0.056   -1.296    0.195   -0.183    0.037
##    .gHealth.4        -0.052    0.059   -0.888    0.375   -0.168    0.063
##    .gHealth.5        -0.099    0.061   -1.614    0.106   -0.220    0.021
##    .posEmo.1         -0.003    0.046   -0.059    0.953   -0.094    0.088
##    .posEmo.2         -0.011    0.056   -0.195    0.846   -0.120    0.098
##    .posEmo.3         -0.014    0.058   -0.239    0.811   -0.128    0.100
##    .posEmo.4         -0.020    0.060   -0.329    0.742   -0.137    0.097
##    .posEmo.5         -0.027    0.063   -0.439    0.661   -0.150    0.095
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.008   -0.008
##     0.005    0.005
##    -0.003   -0.003
##     0.017    0.017
##     0.016    0.015
##    -0.004   -0.004
##    -0.087   -0.087
##    -0.073   -0.073
##    -0.052   -0.053
##    -0.099   -0.098
##    -0.003   -0.003
##    -0.011   -0.011
##    -0.014   -0.014
##    -0.020   -0.020
##    -0.027   -0.028
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.999    0.067   14.998    0.000    0.869    1.130
##     wy1               0.991    0.065   15.234    0.000    0.863    1.118
##     wm1               0.992    0.065   15.145    0.000    0.864    1.120
##    .wx2               0.928    0.079   11.801    0.000    0.774    1.082
##    .wy2               0.469    0.041   11.536    0.000    0.389    0.549
##    .wm2               0.703    0.061   11.587    0.000    0.584    0.822
##    .wx3               0.697    0.065   10.647    0.000    0.569    0.826
##    .wy3               0.379    0.036   10.560    0.000    0.309    0.450
##    .wm3               0.428    0.041   10.541    0.000    0.348    0.507
##    .wx4               0.741    0.072   10.319    0.000    0.601    0.882
##    .wy4               0.392    0.038   10.261    0.000    0.317    0.467
##    .wm4               0.374    0.036   10.298    0.000    0.303    0.446
##    .wx5               0.619    0.061   10.092    0.000    0.499    0.740
##    .wy5               0.307    0.030   10.086    0.000    0.247    0.367
##    .wm5               0.366    0.036   10.076    0.000    0.295    0.437
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.931    0.931
##     0.469    0.469
##     0.711    0.711
##     0.685    0.685
##     0.385    0.385
##     0.439    0.439
##     0.725    0.725
##     0.403    0.403
##     0.400    0.400
##     0.603    0.603
##     0.302    0.302
##     0.376    0.376
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(PEmoHealthCLPM_b2AR.fit, PEmoHealthCLPM_b.fit)
## Chi-Squared Difference Test
## 
##                         Df   AIC   BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## PEmoHealthCLPM_b2AR.fit 63 10021 10322 173.06                                  
## PEmoHealthCLPM_b.fit    72 10274 10538 444.36      271.3       9  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LadderDif, Positive Emotions, and Sleep

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.09, p < .001
(b1) Positive emotions at time t predict sleep at time t+1, b = .056, p = .006

PEmoSleepCLPM <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gSleep.1 + 1*gSleep.2 + 1*gSleep.3 + 1*gSleep.4 + 1*gSleep.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gSleep.1
  wy2 =~ 1*gSleep.2
  wy3 =~ 1*gSleep.3
  wy4 =~ 1*gSleep.4
  wy5 =~ 1*gSleep.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2
  wy4 ~ cp1*wx2 + wy3 + b1*wm3
  wy5 ~ cp1*wx3 + wy4 + b1*wm4
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2
  wx4 ~ wx3 + cp2*wy2 + b2*wm3
  wx5 ~ wx4 + cp2*wy3 + b2*wm4
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2
  wm4 ~ a1*wx3 + a2*wy3 + wm3
  wm5 ~ a1*wx4 + a2*wy4 + wm4


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoSleepCLPM_w.fit <- lavaan(PEmoSleepCLPM, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoSleepCLPM_w.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               450.816
##   Degrees of freedom                                72
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2666.889
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.852
##   Tucker-Lewis Index (TLI)                       0.784
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5514.597
##   Loglikelihood unrestricted model (H1)      -5289.189
##                                                       
##   Akaike (AIC)                               11155.194
##   Bayesian (BIC)                             11418.404
##   Sample-size adjusted Bayesian (BIC)        11218.448
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.104
##   90 Percent confidence interval - lower         0.095
##   90 Percent confidence interval - upper         0.114
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.104
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.998    1.000
##                   
##     1.004    1.000
##                   
##     1.000    1.000
##                   
##     0.994    1.000
##                   
##     0.988    1.000
##                   
##     0.987    1.000
##                   
##     0.995    1.000
##                   
##     0.957    1.000
##                   
##     1.029    1.000
##                   
##     1.031    1.000
##                   
##     1.006    1.000
##                   
##     0.988    1.000
##                   
##     0.991    1.000
##                   
##     0.983    1.000
##                   
##     0.994    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.782    0.034   22.948    0.000    0.715    0.849
##     wm1       (b1)    0.056    0.020    2.757    0.006    0.016    0.096
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.081    0.026   -3.095    0.002   -0.132   -0.030
##     wy2               0.670    0.039   17.205    0.000    0.593    0.746
##     wm2       (b1)    0.056    0.020    2.757    0.006    0.016    0.096
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.081    0.026   -3.095    0.002   -0.132   -0.030
##     wy3               0.801    0.042   18.874    0.000    0.717    0.884
##     wm3       (b1)    0.056    0.020    2.757    0.006    0.016    0.096
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.081    0.026   -3.095    0.002   -0.132   -0.030
##     wy4               0.751    0.040   18.558    0.000    0.672    0.830
##     wm4       (b1)    0.056    0.020    2.757    0.006    0.016    0.096
##   wx2 ~                                                                 
##     wx1               0.539    0.047   11.518    0.000    0.447    0.630
##     wm1       (b2)   -0.074    0.026   -2.838    0.005   -0.125   -0.023
##   wx3 ~                                                                 
##     wx2               0.512    0.053    9.694    0.000    0.408    0.615
##     wy1      (cp2)   -0.081    0.032   -2.514    0.012   -0.145   -0.018
##     wm2       (b2)   -0.074    0.026   -2.838    0.005   -0.125   -0.023
##   wx4 ~                                                                 
##     wx3               0.488    0.054    9.003    0.000    0.382    0.595
##     wy2      (cp2)   -0.081    0.032   -2.514    0.012   -0.145   -0.018
##     wm3       (b2)   -0.074    0.026   -2.838    0.005   -0.125   -0.023
##   wx5 ~                                                                 
##     wx4               0.557    0.052   10.744    0.000    0.455    0.658
##     wy3      (cp2)   -0.081    0.032   -2.514    0.012   -0.145   -0.018
##     wm4       (b2)   -0.074    0.026   -2.838    0.005   -0.125   -0.023
##   wm2 ~                                                                 
##     wx1       (a1)   -0.092    0.023   -4.080    0.000   -0.136   -0.048
##     wy1       (a2)    0.089    0.023    3.889    0.000    0.044    0.134
##     wm1               0.565    0.041   13.646    0.000    0.484    0.646
##   wm3 ~                                                                 
##     wx2       (a1)   -0.092    0.023   -4.080    0.000   -0.136   -0.048
##     wy2       (a2)    0.089    0.023    3.889    0.000    0.044    0.134
##     wm2               0.629    0.043   14.570    0.000    0.545    0.714
##   wm4 ~                                                                 
##     wx3       (a1)   -0.092    0.023   -4.080    0.000   -0.136   -0.048
##     wy3       (a2)    0.089    0.023    3.889    0.000    0.044    0.134
##     wm3               0.671    0.043   15.766    0.000    0.588    0.755
##   wm5 ~                                                                 
##     wx4       (a1)   -0.092    0.023   -4.080    0.000   -0.136   -0.048
##     wy4       (a2)    0.089    0.023    3.889    0.000    0.044    0.134
##     wm4               0.674    0.045   14.876    0.000    0.585    0.763
##    Std.lv  Std.all
##                   
##     0.776    0.776
##     0.057    0.057
##                   
##    -0.084   -0.084
##     0.696    0.696
##     0.058    0.058
##                   
##    -0.079   -0.079
##     0.745    0.745
##     0.054    0.054
##                   
##    -0.078   -0.078
##     0.749    0.749
##     0.053    0.053
##                   
##     0.535    0.535
##    -0.074   -0.074
##                   
##     0.514    0.514
##    -0.080   -0.080
##    -0.073   -0.073
##                   
##     0.491    0.491
##    -0.081   -0.081
##    -0.074   -0.074
##                   
##     0.560    0.560
##    -0.079   -0.079
##    -0.073   -0.073
##                   
##    -0.093   -0.093
##     0.089    0.089
##     0.575    0.575
##                   
##    -0.093   -0.093
##     0.090    0.090
##     0.627    0.627
##                   
##    -0.094   -0.094
##     0.087    0.087
##     0.677    0.677
##                   
##    -0.092   -0.092
##     0.092    0.092
##     0.667    0.667
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.249    0.048   -5.143    0.000   -0.343   -0.154
##     wm1              -0.250    0.049   -5.090    0.000   -0.347   -0.154
##   wy1 ~~                                                                
##     wm1               0.254    0.049    5.201    0.000    0.158    0.349
##  .wx2 ~~                                                                
##    .wy2               0.011    0.028    0.405    0.685   -0.044    0.067
##  .wx3 ~~                                                                
##    .wy3               0.043    0.034    1.273    0.203   -0.023    0.108
##  .wx4 ~~                                                                
##    .wy4               0.027    0.035    0.760    0.447   -0.042    0.096
##  .wx5 ~~                                                                
##    .wy5              -0.013    0.035   -0.386    0.700   -0.081    0.054
##  .wx2 ~~                                                                
##    .wm2              -0.043    0.035   -1.236    0.217   -0.112    0.025
##  .wx3 ~~                                                                
##    .wm3               0.032    0.036    0.874    0.382   -0.039    0.103
##  .wx4 ~~                                                                
##    .wm4               0.006    0.036    0.156    0.876   -0.065    0.076
##  .wx5 ~~                                                                
##    .wm5               0.002    0.035    0.070    0.944   -0.066    0.071
##  .wy2 ~~                                                                
##    .wm2              -0.004    0.026   -0.156    0.876   -0.056    0.047
##  .wy3 ~~                                                                
##    .wm3               0.098    0.029    3.383    0.001    0.041    0.155
##  .wy4 ~~                                                                
##    .wm4               0.029    0.027    1.071    0.284   -0.024    0.083
##  .wy5 ~~                                                                
##    .wm5               0.020    0.028    0.711    0.477   -0.036    0.076
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.253   -0.253
##    -0.250   -0.250
##                   
##     0.255    0.255
##                   
##     0.023    0.023
##                   
##     0.079    0.079
##                   
##     0.049    0.049
##                   
##    -0.026   -0.026
##                   
##    -0.069   -0.069
##                   
##     0.053    0.053
##                   
##     0.010    0.010
##                   
##     0.005    0.005
##                   
##    -0.009   -0.009
##                   
##     0.209    0.209
##                   
##     0.068    0.068
##                   
##     0.046    0.046
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.004    0.047    0.087    0.931   -0.088    0.096
##    .LadderDif.2      -0.011    0.052   -0.212    0.832   -0.112    0.090
##    .LadderDif.3      -0.010    0.057   -0.174    0.862   -0.122    0.102
##    .LadderDif.4      -0.000    0.061   -0.003    0.998   -0.119    0.119
##    .LadderDif.5      -0.006    0.062   -0.104    0.918   -0.128    0.115
##    .gSleep.1          2.762    0.046   60.329    0.000    2.672    2.852
##    .gSleep.2          2.842    0.049   58.504    0.000    2.747    2.937
##    .gSleep.3          2.940    0.052   56.711    0.000    2.838    3.041
##    .gSleep.4          2.888    0.059   48.732    0.000    2.772    3.005
##    .gSleep.5          2.923    0.062   47.241    0.000    2.802    3.045
##    .posEmo.1         -0.004    0.047   -0.081    0.935   -0.096    0.089
##    .posEmo.2         -0.014    0.050   -0.283    0.777   -0.112    0.084
##    .posEmo.3         -0.005    0.055   -0.090    0.928   -0.113    0.103
##    .posEmo.4         -0.007    0.058   -0.123    0.902   -0.121    0.106
##    .posEmo.5          0.010    0.061    0.172    0.863   -0.109    0.130
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.004    0.004
##    -0.011   -0.011
##    -0.010   -0.010
##    -0.000   -0.000
##    -0.006   -0.007
##     2.762    2.798
##     2.842    2.856
##     2.940    3.071
##     2.888    2.807
##     2.923    2.834
##    -0.004   -0.004
##    -0.014   -0.014
##    -0.005   -0.005
##    -0.007   -0.007
##     0.010    0.011
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.995    0.067   14.911    0.000    0.864    1.126
##     wy1               0.974    0.065   14.929    0.000    0.846    1.102
##     wm1               1.012    0.068   14.790    0.000    0.878    1.146
##    .wx2               0.693    0.054   12.908    0.000    0.588    0.799
##    .wy2               0.369    0.030   12.430    0.000    0.311    0.427
##    .wm2               0.581    0.046   12.617    0.000    0.491    0.671
##    .wx3               0.691    0.059   11.770    0.000    0.576    0.806
##    .wy3               0.421    0.036   11.732    0.000    0.350    0.491
##    .wm3               0.526    0.045   11.772    0.000    0.438    0.613
##    .wx4               0.712    0.064   11.188    0.000    0.587    0.837
##    .wy4               0.413    0.037   11.191    0.000    0.341    0.486
##    .wm4               0.449    0.040   11.184    0.000    0.370    0.528
##    .wx5               0.631    0.057   10.996    0.000    0.518    0.743
##    .wy5               0.412    0.037   10.992    0.000    0.339    0.486
##    .wm5               0.469    0.043   10.988    0.000    0.385    0.552
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.688    0.688
##     0.373    0.373
##     0.595    0.595
##     0.691    0.691
##     0.459    0.459
##     0.535    0.535
##     0.721    0.721
##     0.390    0.390
##     0.464    0.464
##     0.645    0.645
##     0.387    0.387
##     0.475    0.475
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

(a1) Perceived status difference at time t does not predict positive emotions at time t+1
(b1) Positive emotions at time t predict sleep at time t+1, b = .087, p < .001

# Same model as above code, but fit with d_black dataset this time
PEmoSleepCLPM_b.fit <- lavaan(PEmoSleepCLPM, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoSleepCLPM_b.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               371.547
##   Degrees of freedom                                72
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1880.801
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.831
##   Tucker-Lewis Index (TLI)                       0.754
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5111.730
##   Loglikelihood unrestricted model (H1)      -4925.956
##                                                       
##   Akaike (AIC)                               10349.460
##   Bayesian (BIC)                             10612.670
##   Sample-size adjusted Bayesian (BIC)        10412.714
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.093
##   90 Percent confidence interval - lower         0.084
##   90 Percent confidence interval - upper         0.102
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.099
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.999    1.000
##                   
##     0.998    1.000
##                   
##     1.008    1.000
##                   
##     1.006    1.000
##                   
##     0.999    1.000
##                   
##     0.973    1.000
##                   
##     0.980    1.000
##                   
##     1.001    1.000
##                   
##     1.021    1.000
##                   
##     0.989    1.000
##                   
##     0.997    1.000
##                   
##     0.996    1.000
##                   
##     0.996    1.000
##                   
##     0.986    1.000
##                   
##     0.999    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.591    0.046   12.792    0.000    0.501    0.682
##     wm1       (b1)    0.087    0.025    3.528    0.000    0.039    0.136
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.034    0.030   -1.163    0.245   -0.092    0.024
##     wy2               0.667    0.048   13.926    0.000    0.573    0.761
##     wm2       (b1)    0.087    0.025    3.528    0.000    0.039    0.136
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.034    0.030   -1.163    0.245   -0.092    0.024
##     wy3               0.695    0.050   13.948    0.000    0.597    0.793
##     wm3       (b1)    0.087    0.025    3.528    0.000    0.039    0.136
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.034    0.030   -1.163    0.245   -0.092    0.024
##     wy4               0.727    0.043   17.034    0.000    0.643    0.810
##     wm4       (b1)    0.087    0.025    3.528    0.000    0.039    0.136
##   wx2 ~                                                                 
##     wx1               0.256    0.061    4.175    0.000    0.136    0.376
##     wm1       (b2)   -0.020    0.030   -0.670    0.503   -0.080    0.039
##   wx3 ~                                                                 
##     wx2               0.538    0.059    9.115    0.000    0.422    0.654
##     wy1      (cp2)   -0.016    0.037   -0.428    0.668   -0.087    0.056
##     wm2       (b2)   -0.020    0.030   -0.670    0.503   -0.080    0.039
##   wx4 ~                                                                 
##     wx3               0.463    0.064    7.248    0.000    0.338    0.588
##     wy2      (cp2)   -0.016    0.037   -0.428    0.668   -0.087    0.056
##     wm3       (b2)   -0.020    0.030   -0.670    0.503   -0.080    0.039
##   wx5 ~                                                                 
##     wx4               0.490    0.060    8.238    0.000    0.374    0.607
##     wy3      (cp2)   -0.016    0.037   -0.428    0.668   -0.087    0.056
##     wm4       (b2)   -0.020    0.030   -0.670    0.503   -0.080    0.039
##   wm2 ~                                                                 
##     wx1       (a1)   -0.027    0.024   -1.147    0.251   -0.074    0.019
##     wy1       (a2)    0.043    0.025    1.742    0.082   -0.005    0.091
##     wm1               0.525    0.051   10.254    0.000    0.425    0.626
##   wm3 ~                                                                 
##     wx2       (a1)   -0.027    0.024   -1.147    0.251   -0.074    0.019
##     wy2       (a2)    0.043    0.025    1.742    0.082   -0.005    0.091
##     wm2               0.711    0.045   15.844    0.000    0.623    0.799
##   wm4 ~                                                                 
##     wx3       (a1)   -0.027    0.024   -1.147    0.251   -0.074    0.019
##     wy3       (a2)    0.043    0.025    1.742    0.082   -0.005    0.091
##     wm3               0.732    0.045   16.278    0.000    0.643    0.820
##   wm5 ~                                                                 
##     wx4       (a1)   -0.027    0.024   -1.147    0.251   -0.074    0.019
##     wy4       (a2)    0.043    0.025    1.742    0.082   -0.005    0.091
##     wm4               0.727    0.049   14.819    0.000    0.631    0.824
##    Std.lv  Std.all
##                   
##     0.587    0.587
##     0.089    0.089
##                   
##    -0.034   -0.034
##     0.653    0.653
##     0.087    0.087
##                   
##    -0.034   -0.034
##     0.681    0.681
##     0.085    0.085
##                   
##    -0.035   -0.035
##     0.750    0.750
##     0.087    0.087
##                   
##     0.256    0.256
##    -0.020   -0.020
##                   
##     0.533    0.533
##    -0.015   -0.015
##    -0.020   -0.020
##                   
##     0.464    0.464
##    -0.015   -0.015
##    -0.020   -0.020
##                   
##     0.494    0.494
##    -0.016   -0.016
##    -0.020   -0.020
##                   
##    -0.028   -0.028
##     0.042    0.042
##     0.526    0.526
##                   
##    -0.028   -0.028
##     0.042    0.042
##     0.711    0.711
##                   
##    -0.028   -0.028
##     0.043    0.043
##     0.739    0.739
##                   
##    -0.028   -0.028
##     0.044    0.044
##     0.718    0.718
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.055    0.046    1.203    0.229   -0.034    0.144
##     wm1              -0.007    0.047   -0.157    0.875   -0.099    0.084
##   wy1 ~~                                                                
##     wm1               0.304    0.047    6.404    0.000    0.211    0.397
##  .wx2 ~~                                                                
##    .wy2              -0.006    0.045   -0.143    0.886   -0.095    0.082
##  .wx3 ~~                                                                
##    .wy3              -0.038    0.042   -0.898    0.369   -0.121    0.045
##  .wx4 ~~                                                                
##    .wy4              -0.019    0.045   -0.414    0.679   -0.107    0.070
##  .wx5 ~~                                                                
##    .wy5               0.084    0.039    2.120    0.034    0.006    0.161
##  .wx2 ~~                                                                
##    .wm2              -0.011    0.049   -0.216    0.829   -0.107    0.085
##  .wx3 ~~                                                                
##    .wm3              -0.024    0.039   -0.628    0.530   -0.101    0.052
##  .wx4 ~~                                                                
##    .wm4               0.013    0.039    0.326    0.744   -0.064    0.090
##  .wx5 ~~                                                                
##    .wm5               0.020    0.041    0.488    0.626   -0.061    0.101
##  .wy2 ~~                                                                
##    .wm2               0.091    0.040    2.296    0.022    0.013    0.169
##  .wy3 ~~                                                                
##    .wm3               0.110    0.034    3.229    0.001    0.043    0.177
##  .wy4 ~~                                                                
##    .wm4               0.052    0.032    1.621    0.105   -0.011    0.115
##  .wy5 ~~                                                                
##    .wm5               0.030    0.029    1.019    0.308   -0.028    0.088
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.056    0.056
##    -0.007   -0.007
##                   
##     0.313    0.313
##                   
##    -0.009   -0.009
##                   
##    -0.061   -0.061
##                   
##    -0.029   -0.029
##                   
##     0.157    0.157
##                   
##    -0.013   -0.013
##                   
##    -0.042   -0.042
##                   
##     0.022    0.022
##                   
##     0.034    0.034
##                   
##     0.142    0.142
##                   
##     0.219    0.219
##                   
##     0.113    0.113
##                   
##     0.072    0.072
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.007    0.047   -0.157    0.875   -0.099    0.085
##    .LadderDif.2       0.005    0.059    0.078    0.938   -0.110    0.119
##    .LadderDif.3       0.003    0.065    0.045    0.964   -0.124    0.129
##    .LadderDif.4       0.020    0.068    0.292    0.770   -0.113    0.153
##    .LadderDif.5       0.009    0.069    0.134    0.893   -0.127    0.145
##    .gSleep.1          3.022    0.045   66.811    0.000    2.933    3.110
##    .gSleep.2          3.036    0.054   56.636    0.000    2.931    3.141
##    .gSleep.3          3.188    0.061   52.180    0.000    3.068    3.307
##    .gSleep.4          3.275    0.066   49.577    0.000    3.146    3.405
##    .gSleep.5          3.269    0.066   49.597    0.000    3.140    3.398
##    .posEmo.1         -0.002    0.046   -0.039    0.969   -0.093    0.089
##    .posEmo.2         -0.008    0.056   -0.141    0.888   -0.117    0.101
##    .posEmo.3         -0.006    0.061   -0.092    0.926   -0.124    0.113
##    .posEmo.4         -0.010    0.063   -0.165    0.869   -0.135    0.114
##    .posEmo.5         -0.014    0.067   -0.212    0.832   -0.145    0.117
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.007   -0.007
##     0.005    0.005
##     0.003    0.003
##     0.020    0.020
##     0.009    0.009
##     3.022    3.107
##     3.036    3.098
##     3.188    3.184
##     3.275    3.206
##     3.269    3.305
##    -0.002   -0.002
##    -0.008   -0.008
##    -0.006   -0.006
##    -0.010   -0.011
##    -0.014   -0.014
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.998    0.066   15.019    0.000    0.868    1.128
##     wy1               0.946    0.062   15.174    0.000    0.824    1.068
##     wm1               0.995    0.066   15.110    0.000    0.866    1.124
##    .wx2               0.931    0.079   11.802    0.000    0.776    1.085
##    .wy2               0.591    0.051   11.590    0.000    0.491    0.691
##    .wm2               0.702    0.061   11.599    0.000    0.583    0.821
##    .wx3               0.726    0.068   10.689    0.000    0.593    0.859
##    .wy3               0.538    0.050   10.692    0.000    0.439    0.636
##    .wm3               0.471    0.044   10.686    0.000    0.385    0.557
##    .wx4               0.791    0.077   10.327    0.000    0.641    0.941
##    .wy4               0.511    0.050   10.298    0.000    0.413    0.608
##    .wm4               0.416    0.040   10.308    0.000    0.337    0.496
##    .wx5               0.752    0.075   10.087    0.000    0.606    0.898
##    .wy5               0.376    0.037   10.068    0.000    0.302    0.449
##    .wm5               0.459    0.046   10.087    0.000    0.370    0.549
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.934    0.934
##     0.616    0.616
##     0.707    0.707
##     0.715    0.715
##     0.537    0.537
##     0.475    0.475
##     0.782    0.782
##     0.489    0.489
##     0.428    0.428
##     0.754    0.754
##     0.384    0.384
##     0.460    0.460
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif, Positive Emotions, and Sleep, 2nd Order AR

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.08, p < .001
(b1) Positive emotions at time t predict sleep at time t+1, b = .047, p = .017
C’ path is still significant, b = -.05, p = .037
a2 path is also significant, and its CIs overlap with a1 CIs

PEmoSleepCLPM_2AR <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gSleep.1 + 1*gSleep.2 + 1*gSleep.3 + 1*gSleep.4 + 1*gSleep.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gSleep.1
  wy2 =~ 1*gSleep.2
  wy3 =~ 1*gSleep.3
  wy4 =~ 1*gSleep.4
  wy5 =~ 1*gSleep.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoSleepCLPM_w2AR.fit <- lavaan(PEmoSleepCLPM_2AR, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoSleepCLPM_w2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               157.477
##   Degrees of freedom                                63
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2666.889
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.963
##   Tucker-Lewis Index (TLI)                       0.939
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5367.928
##   Loglikelihood unrestricted model (H1)      -5289.189
##                                                       
##   Akaike (AIC)                               10879.855
##   Bayesian (BIC)                             11180.667
##   Sample-size adjusted Bayesian (BIC)        10952.146
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.056
##   90 Percent confidence interval - lower         0.045
##   90 Percent confidence interval - upper         0.067
##   P-value RMSEA <= 0.05                          0.183
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.046
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.000    1.000
##                   
##     1.000    1.000
##                   
##     0.996    1.000
##                   
##     1.002    1.000
##                   
##     0.986    1.000
##                   
##     0.989    1.000
##                   
##     0.994    1.000
##                   
##     0.945    1.000
##                   
##     1.018    1.000
##                   
##     1.024    1.000
##                   
##     1.004    1.000
##                   
##     0.986    1.000
##                   
##     0.986    1.000
##                   
##     0.980    1.000
##                   
##     0.991    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.783    0.034   23.015    0.000    0.716    0.850
##     wm1       (b1)    0.047    0.020    2.384    0.017    0.008    0.086
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.049    0.024   -2.088    0.037   -0.096   -0.003
##     wy2               0.389    0.063    6.133    0.000    0.265    0.514
##     wm2       (b1)    0.047    0.020    2.384    0.017    0.008    0.086
##     wy1               0.352    0.064    5.527    0.000    0.227    0.477
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.049    0.024   -2.088    0.037   -0.096   -0.003
##     wy3               0.599    0.060    9.913    0.000    0.480    0.717
##     wm3       (b1)    0.047    0.020    2.384    0.017    0.008    0.086
##     wy2               0.270    0.058    4.643    0.000    0.156    0.384
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.049    0.024   -2.088    0.037   -0.096   -0.003
##     wy4               0.570    0.061    9.400    0.000    0.451    0.689
##     wm4       (b1)    0.047    0.020    2.384    0.017    0.008    0.086
##     wy3               0.264    0.065    4.047    0.000    0.136    0.391
##   wx2 ~                                                                 
##     wx1               0.544    0.046   11.715    0.000    0.453    0.635
##     wm1       (b2)   -0.041    0.025   -1.689    0.091   -0.089    0.007
##   wx3 ~                                                                 
##     wx2               0.286    0.058    4.904    0.000    0.172    0.401
##     wy1      (cp2)   -0.042    0.029   -1.443    0.149   -0.099    0.015
##     wm2       (b2)   -0.041    0.025   -1.689    0.091   -0.089    0.007
##     wx1               0.417    0.057    7.292    0.000    0.305    0.530
##   wx4 ~                                                                 
##     wx3               0.299    0.060    4.966    0.000    0.181    0.417
##     wy2      (cp2)   -0.042    0.029   -1.443    0.149   -0.099    0.015
##     wm3       (b2)   -0.041    0.025   -1.689    0.091   -0.089    0.007
##     wx2               0.385    0.062    6.167    0.000    0.263    0.507
##   wx5 ~                                                                 
##     wx4               0.326    0.054    6.022    0.000    0.220    0.432
##     wy3      (cp2)   -0.042    0.029   -1.443    0.149   -0.099    0.015
##     wm4       (b2)   -0.041    0.025   -1.689    0.091   -0.089    0.007
##     wx3               0.443    0.053    8.285    0.000    0.338    0.548
##   wm2 ~                                                                 
##     wx1       (a1)   -0.084    0.022   -3.883    0.000   -0.127   -0.042
##     wy1       (a2)    0.067    0.022    3.024    0.002    0.023    0.110
##     wm1               0.568    0.042   13.589    0.000    0.486    0.650
##   wm3 ~                                                                 
##     wx2       (a1)   -0.084    0.022   -3.883    0.000   -0.127   -0.042
##     wy2       (a2)    0.067    0.022    3.024    0.002    0.023    0.110
##     wm2               0.519    0.056    9.322    0.000    0.410    0.628
##     wm1               0.187    0.057    3.261    0.001    0.075    0.299
##   wm4 ~                                                                 
##     wx3       (a1)   -0.084    0.022   -3.883    0.000   -0.127   -0.042
##     wy3       (a2)    0.067    0.022    3.024    0.002    0.023    0.110
##     wm3               0.505    0.055    9.149    0.000    0.397    0.613
##     wm2               0.258    0.055    4.643    0.000    0.149    0.366
##   wm5 ~                                                                 
##     wx4       (a1)   -0.084    0.022   -3.883    0.000   -0.127   -0.042
##     wy4       (a2)    0.067    0.022    3.024    0.002    0.023    0.110
##     wm4               0.341    0.057    5.996    0.000    0.230    0.453
##     wm3               0.467    0.056    8.312    0.000    0.357    0.577
##    Std.lv  Std.all
##                   
##     0.779    0.779
##     0.048    0.048
##                   
##    -0.052   -0.052
##     0.410    0.410
##     0.049    0.049
##     0.369    0.369
##                   
##    -0.049   -0.049
##     0.556    0.556
##     0.046    0.046
##     0.264    0.264
##                   
##    -0.048   -0.048
##     0.566    0.566
##     0.045    0.045
##     0.243    0.243
##                   
##     0.544    0.544
##    -0.042   -0.042
##                   
##     0.288    0.288
##    -0.042   -0.042
##    -0.041   -0.041
##     0.419    0.419
##                   
##     0.297    0.297
##    -0.042   -0.042
##    -0.041   -0.041
##     0.384    0.384
##                   
##     0.331    0.331
##    -0.040   -0.040
##    -0.041   -0.041
##     0.447    0.447
##                   
##    -0.085   -0.085
##     0.067    0.067
##     0.579    0.579
##                   
##    -0.085   -0.085
##     0.067    0.067
##     0.518    0.518
##     0.190    0.190
##                   
##    -0.085   -0.085
##     0.064    0.064
##     0.508    0.508
##     0.259    0.259
##                   
##    -0.085   -0.085
##     0.068    0.068
##     0.337    0.337
##     0.465    0.465
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.253    0.048   -5.222    0.000   -0.348   -0.158
##     wm1              -0.254    0.049   -5.159    0.000   -0.351   -0.158
##   wy1 ~~                                                                
##     wm1               0.253    0.049    5.195    0.000    0.158    0.349
##  .wx2 ~~                                                                
##    .wy2               0.011    0.028    0.392    0.695   -0.044    0.066
##  .wx3 ~~                                                                
##    .wy3               0.009    0.029    0.317    0.751   -0.047    0.065
##  .wx4 ~~                                                                
##    .wy4               0.037    0.031    1.190    0.234   -0.024    0.098
##  .wx5 ~~                                                                
##    .wy5              -0.032    0.029   -1.110    0.267   -0.088    0.024
##  .wx2 ~~                                                                
##    .wm2              -0.046    0.035   -1.301    0.193   -0.115    0.023
##  .wx3 ~~                                                                
##    .wm3               0.009    0.033    0.268    0.789   -0.056    0.073
##  .wx4 ~~                                                                
##    .wm4               0.016    0.032    0.500    0.617   -0.047    0.079
##  .wx5 ~~                                                                
##    .wm5               0.003    0.027    0.125    0.901   -0.050    0.057
##  .wy2 ~~                                                                
##    .wm2               0.001    0.027    0.053    0.958   -0.051    0.053
##  .wy3 ~~                                                                
##    .wm3               0.084    0.027    3.123    0.002    0.031    0.137
##  .wy4 ~~                                                                
##    .wm4               0.014    0.025    0.564    0.572   -0.035    0.064
##  .wy5 ~~                                                                
##    .wm5               0.010    0.025    0.414    0.679   -0.038    0.058
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.256   -0.256
##    -0.253   -0.253
##                   
##     0.255    0.255
##                   
##     0.022    0.022
##                   
##     0.020    0.020
##                   
##     0.076    0.076
##                   
##    -0.073   -0.073
##                   
##    -0.072   -0.072
##                   
##     0.016    0.016
##                   
##     0.032    0.032
##                   
##     0.008    0.008
##                   
##     0.003    0.003
##                   
##     0.195    0.195
##                   
##     0.036    0.036
##                   
##     0.027    0.027
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.005    0.047    0.107    0.915   -0.087    0.097
##    .LadderDif.2      -0.012    0.051   -0.228    0.820   -0.112    0.089
##    .LadderDif.3      -0.032    0.055   -0.591    0.555   -0.140    0.075
##    .LadderDif.4      -0.013    0.059   -0.227    0.820   -0.129    0.102
##    .LadderDif.5      -0.019    0.059   -0.326    0.744   -0.135    0.096
##    .gSleep.1          2.758    0.046   60.202    0.000    2.668    2.847
##    .gSleep.2          2.843    0.049   58.587    0.000    2.748    2.939
##    .gSleep.3          2.926    0.050   58.766    0.000    2.828    3.023
##    .gSleep.4          2.888    0.056   51.185    0.000    2.777    2.998
##    .gSleep.5          2.921    0.059   49.442    0.000    2.805    3.037
##    .posEmo.1         -0.006    0.047   -0.133    0.894   -0.099    0.086
##    .posEmo.2         -0.012    0.050   -0.247    0.805   -0.110    0.086
##    .posEmo.3          0.001    0.054    0.024    0.981   -0.105    0.107
##    .posEmo.4         -0.003    0.056   -0.055    0.956   -0.113    0.107
##    .posEmo.5          0.014    0.058    0.240    0.811   -0.099    0.127
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.005    0.005
##    -0.012   -0.012
##    -0.032   -0.033
##    -0.013   -0.013
##    -0.019   -0.020
##     2.758    2.788
##     2.843    2.860
##     2.926    3.098
##     2.888    2.838
##     2.921    2.853
##    -0.006   -0.006
##    -0.012   -0.013
##     0.001    0.001
##    -0.003   -0.003
##     0.014    0.014
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               1.000    0.067   14.907    0.000    0.869    1.132
##     wy1               0.978    0.065   14.946    0.000    0.850    1.106
##     wm1               1.009    0.068   14.822    0.000    0.876    1.142
##    .wx2               0.692    0.053   12.938    0.000    0.587    0.796
##    .wy2               0.368    0.029   12.477    0.000    0.310    0.426
##    .wm2               0.588    0.047   12.571    0.000    0.496    0.680
##    .wx3               0.573    0.050   11.532    0.000    0.475    0.670
##    .wy3               0.370    0.032   11.479    0.000    0.307    0.433
##    .wm3               0.501    0.043   11.673    0.000    0.417    0.585
##    .wx4               0.620    0.055   11.182    0.000    0.511    0.728
##    .wy4               0.384    0.034   11.180    0.000    0.317    0.452
##    .wm4               0.413    0.037   11.193    0.000    0.340    0.485
##    .wx5               0.495    0.045   10.997    0.000    0.407    0.583
##    .wy5               0.386    0.035   10.966    0.000    0.317    0.455
##    .wm5               0.366    0.033   10.991    0.000    0.301    0.431
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.691    0.691
##     0.372    0.372
##     0.605    0.605
##     0.578    0.578
##     0.414    0.414
##     0.515    0.515
##     0.618    0.618
##     0.371    0.371
##     0.430    0.430
##     0.509    0.509
##     0.368    0.368
##     0.373    0.373
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(PEmoSleepCLPM_w2AR.fit, PEmoSleepCLPM_w.fit)
## Chi-Squared Difference Test
## 
##                        Df   AIC   BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## PEmoSleepCLPM_w2AR.fit 63 10880 11181 157.48                                  
## PEmoSleepCLPM_w.fit    72 11155 11418 450.82     293.34       9  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Black Participants

(a1) Perceived status difference at time t does not predict positive emotions at time t+1
(b1) Positive emotions at time t predict sleep at time t+1, b = .07, p = .001

# Same model as above code, but fit with d_black dataset this time
PEmoSleepCLPM_b2AR.fit <- lavaan(PEmoSleepCLPM_2AR, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoSleepCLPM_b2AR.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    16
##                                                       
##   Number of observations                           482
##   Number of missing patterns                        11
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               140.842
##   Degrees of freedom                                63
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1880.801
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.956
##   Tucker-Lewis Index (TLI)                       0.927
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4996.378
##   Loglikelihood unrestricted model (H1)      -4925.956
##                                                       
##   Akaike (AIC)                               10136.755
##   Bayesian (BIC)                             10437.567
##   Sample-size adjusted Bayesian (BIC)        10209.046
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.051
##   90 Percent confidence interval - lower         0.039
##   90 Percent confidence interval - upper         0.062
##   P-value RMSEA <= 0.05                          0.446
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.047
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     1.000    1.000
##                   
##     0.999    1.000
##                   
##     1.011    1.000
##                   
##     1.011    1.000
##                   
##     1.014    1.000
##                   
##     0.973    1.000
##                   
##     0.978    1.000
##                   
##     0.986    1.000
##                   
##     1.007    1.000
##                   
##     0.976    1.000
##                   
##     0.996    1.000
##                   
##     0.996    1.000
##                   
##     0.986    1.000
##                   
##     0.974    1.000
##                   
##     0.986    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wy2 ~                                                                 
##     wy1               0.592    0.046   12.847    0.000    0.502    0.682
##     wm1       (b1)    0.077    0.024    3.263    0.001    0.031    0.123
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.031    0.027   -1.150    0.250   -0.083    0.022
##     wy2               0.505    0.060    8.426    0.000    0.388    0.623
##     wm2       (b1)    0.077    0.024    3.263    0.001    0.031    0.123
##     wy1               0.251    0.059    4.221    0.000    0.134    0.367
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.031    0.027   -1.150    0.250   -0.083    0.022
##     wy3               0.457    0.062    7.372    0.000    0.336    0.579
##     wm3       (b1)    0.077    0.024    3.263    0.001    0.031    0.123
##     wy2               0.353    0.061    5.835    0.000    0.235    0.472
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.031    0.027   -1.150    0.250   -0.083    0.022
##     wy4               0.483    0.056    8.684    0.000    0.374    0.593
##     wm4       (b1)    0.077    0.024    3.263    0.001    0.031    0.123
##     wy3               0.349    0.057    6.160    0.000    0.238    0.461
##   wx2 ~                                                                 
##     wx1               0.265    0.061    4.368    0.000    0.146    0.384
##     wm1       (b2)   -0.006    0.029   -0.220    0.826   -0.064    0.051
##   wx3 ~                                                                 
##     wx2               0.499    0.060    8.301    0.000    0.381    0.617
##     wy1      (cp2)   -0.005    0.034   -0.145    0.885   -0.071    0.061
##     wm2       (b2)   -0.006    0.029   -0.220    0.826   -0.064    0.051
##     wx1               0.175    0.062    2.810    0.005    0.053    0.297
##   wx4 ~                                                                 
##     wx3               0.321    0.072    4.472    0.000    0.180    0.462
##     wy2      (cp2)   -0.005    0.034   -0.145    0.885   -0.071    0.061
##     wm3       (b2)   -0.006    0.029   -0.220    0.826   -0.064    0.051
##     wx2               0.279    0.072    3.870    0.000    0.138    0.421
##   wx5 ~                                                                 
##     wx4               0.303    0.061    4.947    0.000    0.183    0.423
##     wy3      (cp2)   -0.005    0.034   -0.145    0.885   -0.071    0.061
##     wm4       (b2)   -0.006    0.029   -0.220    0.826   -0.064    0.051
##     wx3               0.430    0.065    6.658    0.000    0.303    0.556
##   wm2 ~                                                                 
##     wx1       (a1)   -0.028    0.023   -1.213    0.225   -0.072    0.017
##     wy1       (a2)    0.023    0.023    0.997    0.319   -0.023    0.069
##     wm1               0.527    0.051   10.248    0.000    0.426    0.628
##   wm3 ~                                                                 
##     wx2       (a1)   -0.028    0.023   -1.213    0.225   -0.072    0.017
##     wy2       (a2)    0.023    0.023    0.997    0.319   -0.023    0.069
##     wm2               0.579    0.053   10.987    0.000    0.475    0.682
##     wm1               0.237    0.054    4.420    0.000    0.132    0.342
##   wm4 ~                                                                 
##     wx3       (a1)   -0.028    0.023   -1.213    0.225   -0.072    0.017
##     wy3       (a2)    0.023    0.023    0.997    0.319   -0.023    0.069
##     wm3               0.501    0.064    7.856    0.000    0.376    0.626
##     wm2               0.311    0.062    4.998    0.000    0.189    0.433
##   wm5 ~                                                                 
##     wx4       (a1)   -0.028    0.023   -1.213    0.225   -0.072    0.017
##     wy4       (a2)    0.023    0.023    0.997    0.319   -0.023    0.069
##     wm4               0.367    0.066    5.595    0.000    0.239    0.496
##     wm3               0.473    0.064    7.373    0.000    0.347    0.599
##    Std.lv  Std.all
##                   
##     0.589    0.589
##     0.078    0.078
##                   
##    -0.031   -0.031
##     0.501    0.501
##     0.078    0.078
##     0.247    0.247
##                   
##    -0.030   -0.030
##     0.448    0.448
##     0.075    0.075
##     0.343    0.343
##                   
##    -0.032   -0.032
##     0.499    0.499
##     0.077    0.077
##     0.353    0.353
##                   
##     0.266    0.266
##    -0.006   -0.006
##                   
##     0.493    0.493
##    -0.005   -0.005
##    -0.006   -0.006
##     0.173    0.173
##                   
##     0.321    0.321
##    -0.005   -0.005
##    -0.006   -0.006
##     0.276    0.276
##                   
##     0.302    0.302
##    -0.005   -0.005
##    -0.006   -0.006
##     0.429    0.429
##                   
##    -0.028   -0.028
##     0.023    0.023
##     0.527    0.527
##                   
##    -0.028   -0.028
##     0.023    0.023
##     0.584    0.584
##     0.239    0.239
##                   
##    -0.029   -0.029
##     0.024    0.024
##     0.507    0.507
##     0.318    0.318
##                   
##    -0.028   -0.028
##     0.024    0.024
##     0.363    0.363
##     0.473    0.473
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.058    0.046    1.260    0.208   -0.032    0.147
##     wm1              -0.006    0.047   -0.137    0.891   -0.098    0.085
##   wy1 ~~                                                                
##     wm1               0.302    0.047    6.394    0.000    0.210    0.395
##  .wx2 ~~                                                                
##    .wy2              -0.008    0.045   -0.167    0.867   -0.096    0.081
##  .wx3 ~~                                                                
##    .wy3              -0.037    0.039   -0.959    0.338   -0.114    0.039
##  .wx4 ~~                                                                
##    .wy4              -0.037    0.040   -0.907    0.364   -0.115    0.042
##  .wx5 ~~                                                                
##    .wy5               0.071    0.032    2.247    0.025    0.009    0.134
##  .wx2 ~~                                                                
##    .wm2              -0.012    0.049   -0.244    0.807   -0.108    0.084
##  .wx3 ~~                                                                
##    .wm3              -0.012    0.036   -0.320    0.749   -0.083    0.060
##  .wx4 ~~                                                                
##    .wm4               0.017    0.036    0.456    0.648   -0.055    0.088
##  .wx5 ~~                                                                
##    .wm5              -0.043    0.034   -1.260    0.208   -0.109    0.024
##  .wy2 ~~                                                                
##    .wm2               0.094    0.040    2.362    0.018    0.016    0.172
##  .wy3 ~~                                                                
##    .wm3               0.079    0.031    2.508    0.012    0.017    0.140
##  .wy4 ~~                                                                
##    .wm4               0.040    0.029    1.388    0.165   -0.016    0.096
##  .wy5 ~~                                                                
##    .wm5              -0.009    0.024   -0.369    0.712   -0.057    0.039
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.059    0.059
##    -0.006   -0.006
##                   
##     0.312    0.312
##                   
##    -0.010   -0.010
##                   
##    -0.064   -0.064
##                   
##    -0.064   -0.064
##                   
##     0.161    0.161
##                   
##    -0.015   -0.015
##                   
##    -0.021   -0.021
##                   
##     0.031    0.031
##                   
##    -0.090   -0.090
##                   
##     0.146    0.146
##                   
##     0.172    0.172
##                   
##     0.097    0.097
##                   
##    -0.026   -0.026
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.009    0.047   -0.182    0.855   -0.101    0.084
##    .LadderDif.2       0.005    0.059    0.081    0.935   -0.110    0.120
##    .LadderDif.3      -0.001    0.064   -0.017    0.986   -0.126    0.124
##    .LadderDif.4       0.019    0.067    0.277    0.782   -0.113    0.150
##    .LadderDif.5       0.018    0.068    0.263    0.792   -0.116    0.152
##    .gSleep.1          3.020    0.045   66.852    0.000    2.932    3.109
##    .gSleep.2          3.037    0.053   56.772    0.000    2.932    3.142
##    .gSleep.3          3.184    0.058   54.617    0.000    3.070    3.299
##    .gSleep.4          3.264    0.062   52.606    0.000    3.143    3.386
##    .gSleep.5          3.252    0.062   52.842    0.000    3.132    3.373
##    .posEmo.1         -0.003    0.046   -0.075    0.941   -0.094    0.087
##    .posEmo.2         -0.007    0.056   -0.118    0.906   -0.116    0.103
##    .posEmo.3         -0.010    0.058   -0.172    0.863   -0.124    0.104
##    .posEmo.4         -0.015    0.060   -0.252    0.801   -0.133    0.102
##    .posEmo.5         -0.022    0.062   -0.351    0.725   -0.144    0.100
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.009   -0.009
##     0.005    0.005
##    -0.001   -0.001
##     0.019    0.018
##     0.018    0.018
##     3.020    3.105
##     3.037    3.107
##     3.184    3.230
##     3.264    3.242
##     3.252    3.333
##    -0.003   -0.003
##    -0.007   -0.007
##    -0.010   -0.010
##    -0.015   -0.016
##    -0.022   -0.022
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               1.000    0.067   14.987    0.000    0.869    1.131
##     wy1               0.946    0.062   15.182    0.000    0.824    1.068
##     wm1               0.992    0.065   15.147    0.000    0.863    1.120
##    .wx2               0.927    0.079   11.801    0.000    0.773    1.081
##    .wy2               0.591    0.051   11.604    0.000    0.491    0.691
##    .wm2               0.707    0.061   11.595    0.000    0.587    0.826
##    .wx3               0.697    0.065   10.646    0.000    0.569    0.826
##    .wy3               0.490    0.046   10.609    0.000    0.399    0.581
##    .wm3               0.427    0.041   10.540    0.000    0.348    0.507
##    .wx4               0.742    0.072   10.321    0.000    0.601    0.883
##    .wy4               0.442    0.043   10.283    0.000    0.358    0.527
##    .wm4               0.376    0.037   10.295    0.000    0.304    0.447
##    .wx5               0.619    0.061   10.089    0.000    0.499    0.739
##    .wy5               0.318    0.032   10.073    0.000    0.257    0.380
##    .wm5               0.365    0.036   10.080    0.000    0.294    0.435
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.929    0.929
##     0.618    0.618
##     0.713    0.713
##     0.682    0.682
##     0.504    0.504
##     0.440    0.440
##     0.725    0.725
##     0.436    0.436
##     0.396    0.396
##     0.602    0.602
##     0.334    0.334
##     0.375    0.375
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Likelihood ratio test suggests the model with additional autoregressive paths has better fit

lavTestLRT(PEmoSleepCLPM_b2AR.fit, PEmoSleepCLPM_b.fit)
## Chi-Squared Difference Test
## 
##                        Df   AIC   BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## PEmoSleepCLPM_b2AR.fit 63 10137 10438 140.84                                  
## PEmoSleepCLPM_b.fit    72 10350 10613 371.55      230.7       9  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3-variable models, 2nd order ARs, and control variables

Adding in income, age, gender, and education as time-invariant predictors to control for their effects. Because these models have control variables, there’s a lot of output and a lot to scroll past before you get to the results of interest. Just a heads up to scroll down until you start seeing “b1” and “cp1” for each model.

LadderDif, Positive Emotions, and Depression, 2nd Order AR, controls

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.053, p = .03
(b1) Positive emotions at time t predict less depression at time t+1, b = -.04, p = .05
c’1 path is nonsignificant
a2 path is also significant, and its CIs overlap with a1 CIs

PEmoDepCLPM_2AR_controls <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*dep.1 + 1*dep.2 + 1*dep.3 + 1*dep.4 + 1*dep.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*dep.1
  wy2 =~ 1*dep.2
  wy3 =~ 1*dep.3
  wy4 =~ 1*dep.4
  wy5 =~ 1*dep.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5
  
  # Regression of observed variables on controls (constrained). 
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Gen1*GenderBinary
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Gen2*GenderBinary
  dep.1 + dep.2 + dep.3 + dep.4 + dep.5 ~ Gen3*GenderBinary
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Edu1*Edu
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Edu2*Edu
  dep.1 + dep.2 + dep.3 + dep.4 + dep.5 ~ Edu3*Edu
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Inc1*Income
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Inc2*Income
  dep.1 + dep.2 + dep.3 + dep.4 + dep.5  ~ Inc3*Income
    LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Age1*Age
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Age2*Age
  dep.1 + dep.2 + dep.3 + dep.4 + dep.5  ~ Age3*Age
  

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1 
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2 
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3 
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'
options(max.print=1000000)
PEmoDepCLPM_w2AR_controls.fit <- lavaan(PEmoDepCLPM_2AR_controls, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoDepCLPM_w2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 62 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           433         482
##   Number of missing patterns                         7            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               202.401
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2760.968
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.965
##   Tucker-Lewis Index (TLI)                       0.948
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4680.018
##   Loglikelihood unrestricted model (H1)      -4578.817
##                                                       
##   Akaike (AIC)                                9528.035
##   Bayesian (BIC)                              9869.977
##   Sample-size adjusted Bayesian (BIC)         9603.408
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.044
##   90 Percent confidence interval - lower         0.034
##   90 Percent confidence interval - upper         0.053
##   P-value RMSEA <= 0.05                          0.863
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.041
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.956    0.956
##                   
##     0.973    0.958
##                   
##     0.951    0.956
##                   
##     0.949    0.956
##                   
##     0.916    0.953
##                   
##     0.945    0.953
##                   
##     0.943    0.953
##                   
##     0.923    0.951
##                   
##     0.922    0.951
##                   
##     0.944    0.953
##                   
##     0.977    0.980
##                   
##     0.946    0.979
##                   
##     0.949    0.979
##                   
##     0.957    0.979
##                   
##     0.966    0.980
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)    0.317    0.077    4.122    0.000    0.166    0.467
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)    0.317    0.077    4.122    0.000    0.166    0.467
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)    0.317    0.077    4.122    0.000    0.166    0.467
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)    0.317    0.077    4.122    0.000    0.166    0.467
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)    0.317    0.077    4.122    0.000    0.166    0.467
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.155    0.081   -1.914    0.056   -0.314    0.004
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.155    0.081   -1.914    0.056   -0.314    0.004
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.155    0.081   -1.914    0.056   -0.314    0.004
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.155    0.081   -1.914    0.056   -0.314    0.004
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.155    0.081   -1.914    0.056   -0.314    0.004
##   dep.1 ~                                                               
##     GndrBnr (Gen3)    0.069    0.084    0.830    0.406   -0.095    0.234
##   dep.2 ~                                                               
##     GndrBnr (Gen3)    0.069    0.084    0.830    0.406   -0.095    0.234
##   dep.3 ~                                                               
##     GndrBnr (Gen3)    0.069    0.084    0.830    0.406   -0.095    0.234
##   dep.4 ~                                                               
##     GndrBnr (Gen3)    0.069    0.084    0.830    0.406   -0.095    0.234
##   dep.5 ~                                                               
##     GndrBnr (Gen3)    0.069    0.084    0.830    0.406   -0.095    0.234
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.476    0.634   -0.061    0.099
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.476    0.634   -0.061    0.099
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.476    0.634   -0.061    0.099
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.476    0.634   -0.061    0.099
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.476    0.634   -0.061    0.099
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.064    0.043   -1.467    0.142   -0.148    0.021
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.064    0.043   -1.467    0.142   -0.148    0.021
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.064    0.043   -1.467    0.142   -0.148    0.021
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.064    0.043   -1.467    0.142   -0.148    0.021
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.064    0.043   -1.467    0.142   -0.148    0.021
##   dep.1 ~                                                               
##     Edu     (Edu3)   -0.134    0.045   -3.013    0.003   -0.222   -0.047
##   dep.2 ~                                                               
##     Edu     (Edu3)   -0.134    0.045   -3.013    0.003   -0.222   -0.047
##   dep.3 ~                                                               
##     Edu     (Edu3)   -0.134    0.045   -3.013    0.003   -0.222   -0.047
##   dep.4 ~                                                               
##     Edu     (Edu3)   -0.134    0.045   -3.013    0.003   -0.222   -0.047
##   dep.5 ~                                                               
##     Edu     (Edu3)   -0.134    0.045   -3.013    0.003   -0.222   -0.047
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.106    0.000   -0.328   -0.169
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.106    0.000   -0.328   -0.169
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.106    0.000   -0.328   -0.169
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.106    0.000   -0.328   -0.169
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.106    0.000   -0.328   -0.169
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.651    0.000    0.073    0.241
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.651    0.000    0.073    0.241
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.651    0.000    0.073    0.241
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.651    0.000    0.073    0.241
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.651    0.000    0.073    0.241
##   dep.1 ~                                                               
##     Income  (Inc3)   -0.163    0.044   -3.674    0.000   -0.250   -0.076
##   dep.2 ~                                                               
##     Income  (Inc3)   -0.163    0.044   -3.674    0.000   -0.250   -0.076
##   dep.3 ~                                                               
##     Income  (Inc3)   -0.163    0.044   -3.674    0.000   -0.250   -0.076
##   dep.4 ~                                                               
##     Income  (Inc3)   -0.163    0.044   -3.674    0.000   -0.250   -0.076
##   dep.5 ~                                                               
##     Income  (Inc3)   -0.163    0.044   -3.674    0.000   -0.250   -0.076
##   LadderDif.1 ~                                                         
##     Age     (Age1)   -0.014    0.039   -0.352    0.725   -0.090    0.062
##   LadderDif.2 ~                                                         
##     Age     (Age1)   -0.014    0.039   -0.352    0.725   -0.090    0.062
##   LadderDif.3 ~                                                         
##     Age     (Age1)   -0.014    0.039   -0.352    0.725   -0.090    0.062
##   LadderDif.4 ~                                                         
##     Age     (Age1)   -0.014    0.039   -0.352    0.725   -0.090    0.062
##   LadderDif.5 ~                                                         
##     Age     (Age1)   -0.014    0.039   -0.352    0.725   -0.090    0.062
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.097    0.041    2.378    0.017    0.017    0.177
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.097    0.041    2.378    0.017    0.017    0.177
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.097    0.041    2.378    0.017    0.017    0.177
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.097    0.041    2.378    0.017    0.017    0.177
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.097    0.041    2.378    0.017    0.017    0.177
##   dep.1 ~                                                               
##     Age     (Age3)   -0.136    0.042   -3.242    0.001   -0.219   -0.054
##   dep.2 ~                                                               
##     Age     (Age3)   -0.136    0.042   -3.242    0.001   -0.219   -0.054
##   dep.3 ~                                                               
##     Age     (Age3)   -0.136    0.042   -3.242    0.001   -0.219   -0.054
##   dep.4 ~                                                               
##     Age     (Age3)   -0.136    0.042   -3.242    0.001   -0.219   -0.054
##   dep.5 ~                                                               
##     Age     (Age3)   -0.136    0.042   -3.242    0.001   -0.219   -0.054
##   wy2 ~                                                                 
##     wy1               0.782    0.037   21.155    0.000    0.709    0.854
##     wm1       (b1)   -0.038    0.019   -1.962    0.050   -0.076   -0.000
##   wy3 ~                                                                 
##     wx1      (cp1)    0.038    0.022    1.691    0.091   -0.006    0.082
##     wy2               0.510    0.063    8.151    0.000    0.387    0.633
##     wm2       (b1)   -0.038    0.019   -1.962    0.050   -0.076   -0.000
##     wy1               0.296    0.063    4.705    0.000    0.173    0.420
##   wy4 ~                                                                 
##     wx2      (cp1)    0.038    0.022    1.691    0.091   -0.006    0.082
##     wy3               0.469    0.069    6.763    0.000    0.333    0.604
##     wm3       (b1)   -0.038    0.019   -1.962    0.050   -0.076   -0.000
##     wy2               0.329    0.068    4.819    0.000    0.195    0.463
##   wy5 ~                                                                 
##     wx3      (cp1)    0.038    0.022    1.691    0.091   -0.006    0.082
##     wy4               0.535    0.056    9.593    0.000    0.426    0.645
##     wm4       (b1)   -0.038    0.019   -1.962    0.050   -0.076   -0.000
##     wy3               0.366    0.057    6.471    0.000    0.255    0.477
##   wx2 ~                                                                 
##     wx1               0.517    0.051   10.232    0.000    0.418    0.616
##     wm1       (b2)   -0.033    0.027   -1.228    0.219   -0.085    0.020
##   wx3 ~                                                                 
##     wx2               0.282    0.062    4.577    0.000    0.161    0.402
##     wy1      (cp2)    0.007    0.034    0.219    0.827   -0.059    0.073
##     wm2       (b2)   -0.033    0.027   -1.228    0.219   -0.085    0.020
##     wx1               0.403    0.059    6.840    0.000    0.287    0.518
##   wx4 ~                                                                 
##     wx3               0.257    0.064    3.999    0.000    0.131    0.382
##     wy2      (cp2)    0.007    0.034    0.219    0.827   -0.059    0.073
##     wm3       (b2)   -0.033    0.027   -1.228    0.219   -0.085    0.020
##     wx2               0.375    0.068    5.534    0.000    0.242    0.507
##   wx5 ~                                                                 
##     wx4               0.270    0.057    4.749    0.000    0.159    0.382
##     wy3      (cp2)    0.007    0.034    0.219    0.827   -0.059    0.073
##     wm4       (b2)   -0.033    0.027   -1.228    0.219   -0.085    0.020
##     wx3               0.444    0.056    7.977    0.000    0.335    0.554
##   wm2 ~                                                                 
##     wx1       (a1)   -0.053    0.023   -2.239    0.025   -0.099   -0.007
##     wy1       (a2)   -0.121    0.026   -4.698    0.000   -0.171   -0.070
##     wm1               0.530    0.043   12.252    0.000    0.445    0.614
##   wm3 ~                                                                 
##     wx2       (a1)   -0.053    0.023   -2.239    0.025   -0.099   -0.007
##     wy2       (a2)   -0.121    0.026   -4.698    0.000   -0.171   -0.070
##     wm2               0.518    0.057    9.007    0.000    0.405    0.630
##     wm1               0.163    0.056    2.891    0.004    0.052    0.273
##   wm4 ~                                                                 
##     wx3       (a1)   -0.053    0.023   -2.239    0.025   -0.099   -0.007
##     wy3       (a2)   -0.121    0.026   -4.698    0.000   -0.171   -0.070
##     wm3               0.494    0.062    7.949    0.000    0.373    0.616
##     wm2               0.240    0.063    3.813    0.000    0.117    0.364
##   wm5 ~                                                                 
##     wx4       (a1)   -0.053    0.023   -2.239    0.025   -0.099   -0.007
##     wy4       (a2)   -0.121    0.026   -4.698    0.000   -0.171   -0.070
##     wm4               0.359    0.058    6.144    0.000    0.244    0.473
##     wm3               0.443    0.059    7.554    0.000    0.328    0.558
##    Std.lv  Std.all
##                   
##     0.317    0.158
##                   
##     0.317    0.156
##                   
##     0.317    0.159
##                   
##     0.317    0.159
##                   
##     0.317    0.165
##                   
##    -0.155   -0.078
##                   
##    -0.155   -0.080
##                   
##    -0.155   -0.080
##                   
##    -0.155   -0.079
##                   
##    -0.155   -0.079
##                   
##     0.069    0.035
##                   
##     0.069    0.035
##                   
##     0.069    0.036
##                   
##     0.069    0.036
##                   
##     0.069    0.035
##                   
##     0.019    0.019
##                   
##     0.019    0.019
##                   
##     0.019    0.019
##                   
##     0.019    0.020
##                   
##     0.019    0.020
##                   
##    -0.064   -0.064
##                   
##    -0.064   -0.066
##                   
##    -0.064   -0.065
##                   
##    -0.064   -0.065
##                   
##    -0.064   -0.064
##                   
##    -0.134   -0.135
##                   
##    -0.134   -0.136
##                   
##    -0.134   -0.138
##                   
##    -0.134   -0.139
##                   
##    -0.134   -0.136
##                   
##    -0.248   -0.249
##                   
##    -0.248   -0.245
##                   
##    -0.248   -0.250
##                   
##    -0.248   -0.250
##                   
##    -0.248   -0.258
##                   
##     0.157    0.157
##                   
##     0.157    0.162
##                   
##     0.157    0.162
##                   
##     0.157    0.161
##                   
##     0.157    0.159
##                   
##    -0.163   -0.164
##                   
##    -0.163   -0.165
##                   
##    -0.163   -0.168
##                   
##    -0.163   -0.168
##                   
##    -0.163   -0.165
##                   
##    -0.014   -0.014
##                   
##    -0.014   -0.013
##                   
##    -0.014   -0.014
##                   
##    -0.014   -0.014
##                   
##    -0.014   -0.014
##                   
##     0.097    0.097
##                   
##     0.097    0.100
##                   
##     0.097    0.100
##                   
##     0.097    0.099
##                   
##     0.097    0.098
##                   
##    -0.136   -0.137
##                   
##    -0.136   -0.137
##                   
##    -0.136   -0.140
##                   
##    -0.136   -0.140
##                   
##    -0.136   -0.137
##                   
##     0.784    0.784
##    -0.040   -0.040
##                   
##     0.039    0.039
##     0.521    0.521
##    -0.039   -0.039
##     0.303    0.303
##                   
##     0.040    0.040
##     0.469    0.469
##    -0.039   -0.039
##     0.337    0.337
##                   
##     0.038    0.038
##     0.523    0.523
##    -0.039   -0.039
##     0.358    0.358
##                   
##     0.508    0.508
##    -0.033   -0.033
##                   
##     0.288    0.288
##     0.007    0.007
##    -0.033   -0.033
##     0.405    0.405
##                   
##     0.257    0.257
##     0.007    0.007
##    -0.033   -0.033
##     0.384    0.384
##                   
##     0.280    0.280
##     0.007    0.007
##    -0.034   -0.034
##     0.461    0.461
##                   
##    -0.053   -0.053
##    -0.120   -0.120
##     0.547    0.547
##                   
##    -0.054   -0.054
##    -0.120   -0.120
##     0.516    0.516
##     0.168    0.168
##                   
##    -0.052   -0.052
##    -0.116   -0.116
##     0.491    0.491
##     0.238    0.238
##                   
##    -0.052   -0.052
##    -0.115   -0.115
##     0.356    0.356
##     0.435    0.435
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.224    0.045    5.000    0.000    0.136    0.312
##     wm1              -0.182    0.046   -3.972    0.000   -0.272   -0.092
##   wy1 ~~                                                                
##     wm1              -0.260    0.046   -5.642    0.000   -0.351   -0.170
##  .wx2 ~~                                                                
##    .wy2              -0.031    0.028   -1.121    0.262   -0.086    0.023
##  .wx3 ~~                                                                
##    .wy3              -0.026    0.026   -0.992    0.321   -0.078    0.026
##  .wx4 ~~                                                                
##    .wy4               0.016    0.030    0.513    0.608   -0.044    0.075
##  .wx5 ~~                                                                
##    .wy5               0.052    0.025    2.098    0.036    0.003    0.100
##  .wx2 ~~                                                                
##    .wm2              -0.031    0.036   -0.861    0.389   -0.102    0.040
##  .wx3 ~~                                                                
##    .wm3               0.007    0.034    0.212    0.832   -0.059    0.073
##  .wx4 ~~                                                                
##    .wm4               0.001    0.035    0.036    0.971   -0.066    0.069
##  .wx5 ~~                                                                
##    .wm5              -0.013    0.029   -0.453    0.651   -0.070    0.044
##  .wy2 ~~                                                                
##    .wm2              -0.035    0.025   -1.401    0.161   -0.084    0.014
##  .wy3 ~~                                                                
##    .wm3              -0.074    0.025   -2.975    0.003   -0.123   -0.025
##  .wy4 ~~                                                                
##    .wm4               0.041    0.025    1.598    0.110   -0.009    0.091
##  .wy5 ~~                                                                
##    .wm5              -0.046    0.021   -2.184    0.029   -0.087   -0.005
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.248    0.248
##    -0.195   -0.195
##                   
##    -0.282   -0.282
##                   
##    -0.065   -0.065
##                   
##    -0.064   -0.064
##                   
##     0.035    0.035
##                   
##     0.147    0.147
##                   
##    -0.050   -0.050
##                   
##     0.014    0.014
##                   
##     0.002    0.002
##                   
##    -0.031   -0.031
##                   
##    -0.081   -0.081
##                   
##    -0.197   -0.197
##                   
##     0.109    0.109
##                   
##    -0.152   -0.152
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.153    0.061   -2.534    0.011   -0.272   -0.035
##    .LadderDif.2      -0.160    0.067   -2.412    0.016   -0.291   -0.030
##    .LadderDif.3      -0.193    0.069   -2.800    0.005   -0.328   -0.058
##    .LadderDif.4      -0.173    0.072   -2.403    0.016   -0.315   -0.032
##    .LadderDif.5      -0.196    0.071   -2.748    0.006   -0.336   -0.056
##    .dep.1            -0.036    0.063   -0.578    0.563   -0.159    0.086
##    .dep.2            -0.001    0.065   -0.022    0.982   -0.129    0.126
##    .dep.3             0.029    0.067    0.441    0.659   -0.101    0.160
##    .dep.4            -0.000    0.069   -0.002    0.998   -0.136    0.135
##    .dep.5             0.027    0.071    0.384    0.701   -0.112    0.166
##    .posEmo.1          0.079    0.063    1.262    0.207   -0.044    0.202
##    .posEmo.2          0.070    0.066    1.065    0.287   -0.059    0.200
##    .posEmo.3          0.092    0.070    1.328    0.184   -0.044    0.229
##    .posEmo.4          0.084    0.072    1.168    0.243   -0.057    0.225
##    .posEmo.5          0.095    0.073    1.301    0.193   -0.048    0.238
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.153   -0.154
##    -0.160   -0.158
##    -0.193   -0.194
##    -0.173   -0.175
##    -0.196   -0.204
##    -0.036   -0.036
##    -0.001   -0.001
##     0.029    0.030
##    -0.000   -0.000
##     0.027    0.027
##     0.079    0.079
##     0.070    0.073
##     0.092    0.095
##     0.084    0.086
##     0.095    0.097
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.914    0.062   14.668    0.000    0.792    1.036
##     wy1               0.893    0.061   14.693    0.000    0.774    1.012
##     wm1               0.954    0.065   14.704    0.000    0.827    1.081
##    .wx2               0.695    0.057   12.261    0.000    0.584    0.806
##    .wy2               0.326    0.027   12.271    0.000    0.274    0.378
##    .wm2               0.566    0.046   12.282    0.000    0.476    0.657
##    .wx3               0.562    0.051   10.990    0.000    0.461    0.662
##    .wy3               0.298    0.027   10.945    0.000    0.244    0.351
##    .wm3               0.476    0.043   10.986    0.000    0.391    0.561
##    .wx4               0.611    0.058   10.465    0.000    0.497    0.726
##    .wy4               0.329    0.031   10.434    0.000    0.267    0.390
##    .wm4               0.423    0.040   10.473    0.000    0.344    0.503
##    .wx5               0.488    0.047   10.291    0.000    0.395    0.581
##    .wy5               0.253    0.025   10.310    0.000    0.205    0.302
##    .wm5               0.359    0.035   10.301    0.000    0.291    0.428
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.734    0.734
##     0.367    0.367
##     0.632    0.632
##     0.621    0.621
##     0.349    0.349
##     0.528    0.528
##     0.679    0.679
##     0.387    0.387
##     0.463    0.463
##     0.581    0.581
##     0.284    0.284
##     0.385    0.385
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

(a1) Perceived status difference at time t does not predict positive emotions at time t+1
(b2) Positive emotions at time t predict less depression at time t+1, b = -.09, p < .001

# Same model as above code, but fit with d_black dataset this time
PEmoDepCLPM_b2AR_controls.fit <- lavaan(PEmoDepCLPM_2AR_controls, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoDepCLPM_b2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 53 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           451         482
##   Number of missing patterns                         7            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               200.305
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1938.603
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.950
##   Tucker-Lewis Index (TLI)                       0.925
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4533.102
##   Loglikelihood unrestricted model (H1)      -4432.949
##                                                       
##   Akaike (AIC)                                9234.204
##   Bayesian (BIC)                              9579.567
##   Sample-size adjusted Bayesian (BIC)         9312.982
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.042
##   90 Percent confidence interval - lower         0.033
##   90 Percent confidence interval - upper         0.052
##   P-value RMSEA <= 0.05                          0.914
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.049
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     dep.1             1.000                               1.000    1.000
##     dep.2             1.000                               1.000    1.000
##     dep.3             1.000                               1.000    1.000
##     dep.4             1.000                               1.000    1.000
##     dep.5             1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     dep.1             1.000                               1.000    1.000
##   wy2 =~                                                                
##     dep.2             1.000                               1.000    1.000
##   wy3 =~                                                                
##     dep.3             1.000                               1.000    1.000
##   wy4 =~                                                                
##     dep.4             1.000                               1.000    1.000
##   wy5 =~                                                                
##     dep.5             1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.994    0.985
##                   
##     0.968    0.984
##                   
##     0.971    0.984
##                   
##     0.978    0.984
##                   
##     0.953    0.984
##                   
##     0.973    0.978
##                   
##     0.992    0.979
##                   
##     0.992    0.979
##                   
##     0.972    0.978
##                   
##     0.996    0.979
##                   
##     0.997    0.994
##                   
##     0.985    0.993
##                   
##     0.966    0.993
##                   
##     0.946    0.993
##                   
##     0.957    0.993
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.686    0.092   -0.275    0.021
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.686    0.092   -0.275    0.021
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.686    0.092   -0.275    0.021
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.686    0.092   -0.275    0.021
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.686    0.092   -0.275    0.021
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.209    0.085   -2.468    0.014   -0.375   -0.043
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.209    0.085   -2.468    0.014   -0.375   -0.043
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.209    0.085   -2.468    0.014   -0.375   -0.043
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.209    0.085   -2.468    0.014   -0.375   -0.043
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.209    0.085   -2.468    0.014   -0.375   -0.043
##   dep.1 ~                                                               
##     GndrBnr (Gen3)   -0.049    0.088   -0.557    0.578   -0.221    0.123
##   dep.2 ~                                                               
##     GndrBnr (Gen3)   -0.049    0.088   -0.557    0.578   -0.221    0.123
##   dep.3 ~                                                               
##     GndrBnr (Gen3)   -0.049    0.088   -0.557    0.578   -0.221    0.123
##   dep.4 ~                                                               
##     GndrBnr (Gen3)   -0.049    0.088   -0.557    0.578   -0.221    0.123
##   dep.5 ~                                                               
##     GndrBnr (Gen3)   -0.049    0.088   -0.557    0.578   -0.221    0.123
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.005    0.044   -0.113    0.910   -0.092    0.082
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.005    0.044   -0.113    0.910   -0.092    0.082
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.005    0.044   -0.113    0.910   -0.092    0.082
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.005    0.044   -0.113    0.910   -0.092    0.082
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.005    0.044   -0.113    0.910   -0.092    0.082
##   dep.1 ~                                                               
##     Edu     (Edu3)   -0.075    0.046   -1.639    0.101   -0.165    0.015
##   dep.2 ~                                                               
##     Edu     (Edu3)   -0.075    0.046   -1.639    0.101   -0.165    0.015
##   dep.3 ~                                                               
##     Edu     (Edu3)   -0.075    0.046   -1.639    0.101   -0.165    0.015
##   dep.4 ~                                                               
##     Edu     (Edu3)   -0.075    0.046   -1.639    0.101   -0.165    0.015
##   dep.5 ~                                                               
##     Edu     (Edu3)   -0.075    0.046   -1.639    0.101   -0.165    0.015
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.914    0.004   -0.188   -0.037
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.914    0.004   -0.188   -0.037
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.914    0.004   -0.188   -0.037
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.914    0.004   -0.188   -0.037
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.914    0.004   -0.188   -0.037
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.044    0.043    1.003    0.316   -0.042    0.129
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.044    0.043    1.003    0.316   -0.042    0.129
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.044    0.043    1.003    0.316   -0.042    0.129
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.044    0.043    1.003    0.316   -0.042    0.129
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.044    0.043    1.003    0.316   -0.042    0.129
##   dep.1 ~                                                               
##     Income  (Inc3)   -0.092    0.045   -2.052    0.040   -0.179   -0.004
##   dep.2 ~                                                               
##     Income  (Inc3)   -0.092    0.045   -2.052    0.040   -0.179   -0.004
##   dep.3 ~                                                               
##     Income  (Inc3)   -0.092    0.045   -2.052    0.040   -0.179   -0.004
##   dep.4 ~                                                               
##     Income  (Inc3)   -0.092    0.045   -2.052    0.040   -0.179   -0.004
##   dep.5 ~                                                               
##     Income  (Inc3)   -0.092    0.045   -2.052    0.040   -0.179   -0.004
##   LadderDif.1 ~                                                         
##     Age     (Age1)    0.044    0.038    1.172    0.241   -0.030    0.118
##   LadderDif.2 ~                                                         
##     Age     (Age1)    0.044    0.038    1.172    0.241   -0.030    0.118
##   LadderDif.3 ~                                                         
##     Age     (Age1)    0.044    0.038    1.172    0.241   -0.030    0.118
##   LadderDif.4 ~                                                         
##     Age     (Age1)    0.044    0.038    1.172    0.241   -0.030    0.118
##   LadderDif.5 ~                                                         
##     Age     (Age1)    0.044    0.038    1.172    0.241   -0.030    0.118
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.039    0.042    0.913    0.361   -0.044    0.122
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.039    0.042    0.913    0.361   -0.044    0.122
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.039    0.042    0.913    0.361   -0.044    0.122
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.039    0.042    0.913    0.361   -0.044    0.122
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.039    0.042    0.913    0.361   -0.044    0.122
##   dep.1 ~                                                               
##     Age     (Age3)   -0.126    0.044   -2.874    0.004   -0.211   -0.040
##   dep.2 ~                                                               
##     Age     (Age3)   -0.126    0.044   -2.874    0.004   -0.211   -0.040
##   dep.3 ~                                                               
##     Age     (Age3)   -0.126    0.044   -2.874    0.004   -0.211   -0.040
##   dep.4 ~                                                               
##     Age     (Age3)   -0.126    0.044   -2.874    0.004   -0.211   -0.040
##   dep.5 ~                                                               
##     Age     (Age3)   -0.126    0.044   -2.874    0.004   -0.211   -0.040
##   wy2 ~                                                                 
##     wy1               0.658    0.049   13.515    0.000    0.563    0.754
##     wm1       (b1)   -0.086    0.023   -3.722    0.000   -0.132   -0.041
##   wy3 ~                                                                 
##     wx1      (cp1)    0.051    0.026    1.955    0.051   -0.000    0.103
##     wy2               0.502    0.058    8.641    0.000    0.388    0.616
##     wm2       (b1)   -0.086    0.023   -3.722    0.000   -0.132   -0.041
##     wy1               0.368    0.058    6.345    0.000    0.254    0.482
##   wy4 ~                                                                 
##     wx2      (cp1)    0.051    0.026    1.955    0.051   -0.000    0.103
##     wy3               0.566    0.066    8.624    0.000    0.437    0.695
##     wm3       (b1)   -0.086    0.023   -3.722    0.000   -0.132   -0.041
##     wy2               0.233    0.066    3.505    0.000    0.102    0.363
##   wy5 ~                                                                 
##     wx3      (cp1)    0.051    0.026    1.955    0.051   -0.000    0.103
##     wy4               0.555    0.073    7.605    0.000    0.412    0.699
##     wm4       (b1)   -0.086    0.023   -3.722    0.000   -0.132   -0.041
##     wy3               0.293    0.073    4.012    0.000    0.150    0.436
##   wx2 ~                                                                 
##     wx1               0.216    0.061    3.528    0.000    0.096    0.336
##     wm1       (b2)   -0.045    0.032   -1.406    0.160   -0.108    0.018
##   wx3 ~                                                                 
##     wx2               0.440    0.066    6.674    0.000    0.311    0.569
##     wy1      (cp2)   -0.017    0.037   -0.449    0.654   -0.090    0.056
##     wm2       (b2)   -0.045    0.032   -1.406    0.160   -0.108    0.018
##     wx1               0.166    0.064    2.612    0.009    0.042    0.291
##   wx4 ~                                                                 
##     wx3               0.291    0.077    3.799    0.000    0.141    0.441
##     wy2      (cp2)   -0.017    0.037   -0.449    0.654   -0.090    0.056
##     wm3       (b2)   -0.045    0.032   -1.406    0.160   -0.108    0.018
##     wx2               0.230    0.078    2.940    0.003    0.077    0.384
##   wx5 ~                                                                 
##     wx4               0.243    0.065    3.764    0.000    0.116    0.369
##     wy3      (cp2)   -0.017    0.037   -0.449    0.654   -0.090    0.056
##     wm4       (b2)   -0.045    0.032   -1.406    0.160   -0.108    0.018
##     wx3               0.417    0.070    5.992    0.000    0.281    0.553
##   wm2 ~                                                                 
##     wx1       (a1)   -0.039    0.025   -1.544    0.122   -0.088    0.010
##     wy1       (a2)   -0.106    0.026   -4.094    0.000   -0.156   -0.055
##     wm1               0.505    0.052    9.670    0.000    0.403    0.608
##   wm3 ~                                                                 
##     wx2       (a1)   -0.039    0.025   -1.544    0.122   -0.088    0.010
##     wy2       (a2)   -0.106    0.026   -4.094    0.000   -0.156   -0.055
##     wm2               0.560    0.053   10.509    0.000    0.456    0.665
##     wm1               0.223    0.052    4.302    0.000    0.121    0.325
##   wm4 ~                                                                 
##     wx3       (a1)   -0.039    0.025   -1.544    0.122   -0.088    0.010
##     wy3       (a2)   -0.106    0.026   -4.094    0.000   -0.156   -0.055
##     wm3               0.420    0.071    5.948    0.000    0.282    0.558
##     wm2               0.317    0.068    4.672    0.000    0.184    0.450
##   wm5 ~                                                                 
##     wx4       (a1)   -0.039    0.025   -1.544    0.122   -0.088    0.010
##     wy4       (a2)   -0.106    0.026   -4.094    0.000   -0.156   -0.055
##     wm4               0.330    0.069    4.754    0.000    0.194    0.466
##     wm3               0.444    0.067    6.622    0.000    0.313    0.576
##    Std.lv  Std.all
##                   
##    -0.127   -0.063
##                   
##    -0.127   -0.065
##                   
##    -0.127   -0.064
##                   
##    -0.127   -0.064
##                   
##    -0.127   -0.065
##                   
##    -0.209   -0.104
##                   
##    -0.209   -0.105
##                   
##    -0.209   -0.108
##                   
##    -0.209   -0.110
##                   
##    -0.209   -0.108
##                   
##    -0.049   -0.025
##                   
##    -0.049   -0.024
##                   
##    -0.049   -0.024
##                   
##    -0.049   -0.025
##                   
##    -0.049   -0.024
##                   
##    -0.074   -0.073
##                   
##    -0.074   -0.075
##                   
##    -0.074   -0.075
##                   
##    -0.074   -0.074
##                   
##    -0.074   -0.076
##                   
##    -0.005   -0.005
##                   
##    -0.005   -0.005
##                   
##    -0.005   -0.005
##                   
##    -0.005   -0.005
##                   
##    -0.005   -0.005
##                   
##    -0.075   -0.076
##                   
##    -0.075   -0.074
##                   
##    -0.075   -0.074
##                   
##    -0.075   -0.076
##                   
##    -0.075   -0.074
##                   
##    -0.112   -0.111
##                   
##    -0.112   -0.114
##                   
##    -0.112   -0.114
##                   
##    -0.112   -0.113
##                   
##    -0.112   -0.116
##                   
##     0.044    0.043
##                   
##     0.044    0.044
##                   
##     0.044    0.045
##                   
##     0.044    0.046
##                   
##     0.044    0.045
##                   
##    -0.092   -0.092
##                   
##    -0.092   -0.091
##                   
##    -0.092   -0.091
##                   
##    -0.092   -0.092
##                   
##    -0.092   -0.090
##                   
##     0.044    0.044
##                   
##     0.044    0.045
##                   
##     0.044    0.045
##                   
##     0.044    0.044
##                   
##     0.044    0.045
##                   
##     0.039    0.038
##                   
##     0.039    0.039
##                   
##     0.039    0.040
##                   
##     0.039    0.041
##                   
##     0.039    0.040
##                   
##    -0.126   -0.126
##                   
##    -0.126   -0.124
##                   
##    -0.126   -0.124
##                   
##    -0.126   -0.126
##                   
##    -0.126   -0.123
##                   
##     0.646    0.646
##    -0.087   -0.087
##                   
##     0.051    0.051
##     0.502    0.502
##    -0.086   -0.086
##     0.361    0.361
##                   
##     0.051    0.051
##     0.577    0.577
##    -0.086   -0.086
##     0.237    0.237
##                   
##     0.050    0.050
##     0.543    0.543
##    -0.082   -0.082
##     0.292    0.292
##                   
##     0.222    0.222
##    -0.047   -0.047
##                   
##     0.438    0.438
##    -0.017   -0.017
##    -0.046   -0.046
##     0.170    0.170
##                   
##     0.289    0.289
##    -0.017   -0.017
##    -0.045   -0.045
##     0.228    0.228
##                   
##     0.249    0.249
##    -0.017   -0.017
##    -0.045   -0.045
##     0.425    0.425
##                   
##    -0.039   -0.039
##    -0.104   -0.104
##     0.512    0.512
##                   
##    -0.039   -0.039
##    -0.108   -0.108
##     0.571    0.571
##     0.230    0.230
##                   
##    -0.040   -0.040
##    -0.111   -0.111
##     0.429    0.429
##     0.330    0.330
##                   
##    -0.039   -0.039
##    -0.107   -0.107
##     0.326    0.326
##     0.448    0.448
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.008    0.046   -0.186    0.853   -0.098    0.081
##     wm1              -0.012    0.047   -0.256    0.798   -0.104    0.080
##   wy1 ~~                                                                
##     wm1              -0.223    0.047   -4.747    0.000   -0.315   -0.131
##  .wx2 ~~                                                                
##    .wy2              -0.026    0.044   -0.600    0.548   -0.112    0.060
##  .wx3 ~~                                                                
##    .wy3               0.042    0.034    1.227    0.220   -0.025    0.108
##  .wx4 ~~                                                                
##    .wy4               0.063    0.037    1.710    0.087   -0.009    0.135
##  .wx5 ~~                                                                
##    .wy5              -0.040    0.032   -1.225    0.221   -0.103    0.024
##  .wx2 ~~                                                                
##    .wm2              -0.028    0.049   -0.567    0.571   -0.124    0.068
##  .wx3 ~~                                                                
##    .wm3              -0.015    0.037   -0.389    0.697   -0.088    0.059
##  .wx4 ~~                                                                
##    .wm4               0.010    0.040    0.251    0.802   -0.068    0.088
##  .wx5 ~~                                                                
##    .wm5              -0.052    0.036   -1.424    0.155   -0.123    0.020
##  .wy2 ~~                                                                
##    .wm2              -0.003    0.039   -0.071    0.943   -0.078    0.073
##  .wy3 ~~                                                                
##    .wm3              -0.067    0.026   -2.588    0.010   -0.118   -0.016
##  .wy4 ~~                                                                
##    .wm4              -0.021    0.026   -0.814    0.416   -0.073    0.030
##  .wy5 ~~                                                                
##    .wm5              -0.037    0.026   -1.437    0.151   -0.087    0.013
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.009   -0.009
##    -0.012   -0.012
##                   
##    -0.230   -0.230
##                   
##    -0.038   -0.038
##                   
##     0.087    0.087
##                   
##     0.127    0.127
##                   
##    -0.093   -0.093
##                   
##    -0.036   -0.036
##                   
##    -0.028   -0.028
##                   
##     0.019    0.019
##                   
##    -0.109   -0.109
##                   
##    -0.005   -0.005
##                   
##    -0.186   -0.186
##                   
##    -0.060   -0.060
##                   
##    -0.110   -0.110
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.067    0.061    1.092    0.275   -0.053    0.187
##    .LadderDif.2       0.125    0.073    1.718    0.086   -0.018    0.267
##    .LadderDif.3       0.105    0.077    1.358    0.175   -0.046    0.256
##    .LadderDif.4       0.146    0.081    1.804    0.071   -0.013    0.305
##    .LadderDif.5       0.122    0.081    1.519    0.129   -0.036    0.280
##    .dep.1             0.027    0.065    0.420    0.674   -0.100    0.154
##    .dep.2             0.070    0.073    0.962    0.336   -0.072    0.212
##    .dep.3             0.108    0.074    1.459    0.145   -0.037    0.253
##    .dep.4             0.116    0.077    1.518    0.129   -0.034    0.267
##    .dep.5             0.131    0.080    1.648    0.099   -0.025    0.288
##    .posEmo.1          0.109    0.065    1.691    0.091   -0.017    0.236
##    .posEmo.2          0.102    0.073    1.394    0.163   -0.041    0.245
##    .posEmo.3          0.102    0.075    1.366    0.172   -0.044    0.248
##    .posEmo.4          0.080    0.077    1.049    0.294   -0.070    0.230
##    .posEmo.5          0.073    0.079    0.930    0.352   -0.081    0.228
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.067    0.066
##     0.125    0.127
##     0.105    0.106
##     0.146    0.147
##     0.122    0.126
##     0.027    0.027
##     0.070    0.069
##     0.108    0.107
##     0.116    0.117
##     0.131    0.129
##     0.109    0.109
##     0.102    0.103
##     0.102    0.105
##     0.080    0.084
##     0.073    0.076
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.989    0.066   14.941    0.000    0.859    1.119
##     wy1               0.946    0.063   15.005    0.000    0.823    1.070
##     wm1               0.994    0.066   14.999    0.000    0.865    1.124
##    .wx2               0.888    0.079   11.180    0.000    0.732    1.043
##    .wy2               0.541    0.048   11.217    0.000    0.446    0.635
##    .wm2               0.679    0.061   11.200    0.000    0.560    0.798
##    .wx3               0.698    0.070   10.034    0.000    0.562    0.834
##    .wy3               0.331    0.033   10.037    0.000    0.266    0.395
##    .wm3               0.398    0.040   10.030    0.000    0.320    0.476
##    .wx4               0.760    0.079    9.647    0.000    0.606    0.914
##    .wy4               0.326    0.034    9.637    0.000    0.260    0.393
##    .wm4               0.386    0.040    9.639    0.000    0.307    0.464
##    .wx5               0.605    0.064    9.418    0.000    0.479    0.731
##    .wy5               0.304    0.032    9.398    0.000    0.241    0.367
##    .wm5               0.373    0.039    9.445    0.000    0.295    0.450
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .dep.1             0.000                               0.000    0.000
##    .dep.2             0.000                               0.000    0.000
##    .dep.3             0.000                               0.000    0.000
##    .dep.4             0.000                               0.000    0.000
##    .dep.5             0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.948    0.948
##     0.550    0.550
##     0.701    0.701
##     0.740    0.740
##     0.336    0.336
##     0.427    0.427
##     0.795    0.795
##     0.345    0.345
##     0.431    0.431
##     0.666    0.666
##     0.307    0.307
##     0.407    0.407
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif, Positive Emotions, and Health, 2nd Order AR, controls

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.06, p < .008
(b1) Positive emotions at time t do not predict health at time t+1

PEmoHealthCLPM_2AR_controls <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gHealth.1 + 1*gHealth.2 + 1*gHealth.3 + 1*gHealth.4 + 1*gHealth.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gHealth.1
  wy2 =~ 1*gHealth.2
  wy3 =~ 1*gHealth.3
  wy4 =~ 1*gHealth.4
  wy5 =~ 1*gHealth.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5
  
  # Regression of observed variables on controls (constrained). 
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Gen1*GenderBinary
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Gen2*GenderBinary
  gHealth.1 + gHealth.2 + gHealth.3 + gHealth.4 + gHealth.5 ~ Gen3*GenderBinary
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Edu1*Edu
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Edu2*Edu
  gHealth.1 + gHealth.2 + gHealth.3 + gHealth.4 + gHealth.5 ~ Edu3*Edu
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Inc1*Income
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Inc2*Income
  gHealth.1 + gHealth.2 + gHealth.3 + gHealth.4 + gHealth.5  ~ Inc3*Income
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Age1*Age
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Age2*Age
  gHealth.1 + gHealth.2 + gHealth.3 + gHealth.4 + gHealth.5  ~ Age3*Age

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoHealthCLPM_w2AR_controls.fit <- lavaan(PEmoHealthCLPM_2AR_controls, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoHealthCLPM_w2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 52 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           433         482
##   Number of missing patterns                         8            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               198.085
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2808.382
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.967
##   Tucker-Lewis Index (TLI)                       0.951
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4697.753
##   Loglikelihood unrestricted model (H1)      -4598.710
##                                                       
##   Akaike (AIC)                                9563.505
##   Bayesian (BIC)                              9905.447
##   Sample-size adjusted Bayesian (BIC)         9638.878
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.043
##   90 Percent confidence interval - lower         0.033
##   90 Percent confidence interval - upper         0.052
##   P-value RMSEA <= 0.05                          0.898
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.956    0.957
##                   
##     0.971    0.958
##                   
##     0.951    0.956
##                   
##     0.950    0.956
##                   
##     0.920    0.953
##                   
##     0.936    0.938
##                   
##     0.914    0.935
##                   
##     0.941    0.938
##                   
##     0.934    0.937
##                   
##     0.916    0.935
##                   
##     0.977    0.981
##                   
##     0.951    0.980
##                   
##     0.960    0.980
##                   
##     0.972    0.981
##                   
##     0.971    0.981
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)    0.315    0.077    4.104    0.000    0.164    0.465
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)    0.315    0.077    4.104    0.000    0.164    0.465
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)    0.315    0.077    4.104    0.000    0.164    0.465
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)    0.315    0.077    4.104    0.000    0.164    0.465
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)    0.315    0.077    4.104    0.000    0.164    0.465
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.156    0.082   -1.906    0.057   -0.316    0.004
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.156    0.082   -1.906    0.057   -0.316    0.004
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.156    0.082   -1.906    0.057   -0.316    0.004
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.156    0.082   -1.906    0.057   -0.316    0.004
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.156    0.082   -1.906    0.057   -0.316    0.004
##   gHealth.1 ~                                                           
##     GndrBnr (Gen3)   -0.282    0.083   -3.408    0.001   -0.444   -0.120
##   gHealth.2 ~                                                           
##     GndrBnr (Gen3)   -0.282    0.083   -3.408    0.001   -0.444   -0.120
##   gHealth.3 ~                                                           
##     GndrBnr (Gen3)   -0.282    0.083   -3.408    0.001   -0.444   -0.120
##   gHealth.4 ~                                                           
##     GndrBnr (Gen3)   -0.282    0.083   -3.408    0.001   -0.444   -0.120
##   gHealth.5 ~                                                           
##     GndrBnr (Gen3)   -0.282    0.083   -3.408    0.001   -0.444   -0.120
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.548    0.584   -0.057    0.102
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.548    0.584   -0.057    0.102
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.548    0.584   -0.057    0.102
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.548    0.584   -0.057    0.102
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.548    0.584   -0.057    0.102
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.443    0.149   -0.149    0.023
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.443    0.149   -0.149    0.023
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.443    0.149   -0.149    0.023
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.443    0.149   -0.149    0.023
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.443    0.149   -0.149    0.023
##   gHealth.1 ~                                                           
##     Edu     (Edu3)    0.178    0.044    4.054    0.000    0.092    0.264
##   gHealth.2 ~                                                           
##     Edu     (Edu3)    0.178    0.044    4.054    0.000    0.092    0.264
##   gHealth.3 ~                                                           
##     Edu     (Edu3)    0.178    0.044    4.054    0.000    0.092    0.264
##   gHealth.4 ~                                                           
##     Edu     (Edu3)    0.178    0.044    4.054    0.000    0.092    0.264
##   gHealth.5 ~                                                           
##     Edu     (Edu3)    0.178    0.044    4.054    0.000    0.092    0.264
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.154    0.000   -0.330   -0.170
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.154    0.000   -0.330   -0.170
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.154    0.000   -0.330   -0.170
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.154    0.000   -0.330   -0.170
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.154    0.000   -0.330   -0.170
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.153    0.043    3.529    0.000    0.068    0.239
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.153    0.043    3.529    0.000    0.068    0.239
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.153    0.043    3.529    0.000    0.068    0.239
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.153    0.043    3.529    0.000    0.068    0.239
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.153    0.043    3.529    0.000    0.068    0.239
##   gHealth.1 ~                                                           
##     Income  (Inc3)    0.198    0.044    4.511    0.000    0.112    0.283
##   gHealth.2 ~                                                           
##     Income  (Inc3)    0.198    0.044    4.511    0.000    0.112    0.283
##   gHealth.3 ~                                                           
##     Income  (Inc3)    0.198    0.044    4.511    0.000    0.112    0.283
##   gHealth.4 ~                                                           
##     Income  (Inc3)    0.198    0.044    4.511    0.000    0.112    0.283
##   gHealth.5 ~                                                           
##     Income  (Inc3)    0.198    0.044    4.511    0.000    0.112    0.283
##   LadderDif.1 ~                                                         
##     Age     (Age1)   -0.008    0.039   -0.195    0.846   -0.083    0.068
##   LadderDif.2 ~                                                         
##     Age     (Age1)   -0.008    0.039   -0.195    0.846   -0.083    0.068
##   LadderDif.3 ~                                                         
##     Age     (Age1)   -0.008    0.039   -0.195    0.846   -0.083    0.068
##   LadderDif.4 ~                                                         
##     Age     (Age1)   -0.008    0.039   -0.195    0.846   -0.083    0.068
##   LadderDif.5 ~                                                         
##     Age     (Age1)   -0.008    0.039   -0.195    0.846   -0.083    0.068
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.094    0.041    2.276    0.023    0.013    0.175
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.094    0.041    2.276    0.023    0.013    0.175
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.094    0.041    2.276    0.023    0.013    0.175
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.094    0.041    2.276    0.023    0.013    0.175
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.094    0.041    2.276    0.023    0.013    0.175
##   gHealth.1 ~                                                           
##     Age     (Age3)   -0.073    0.042   -1.750    0.080   -0.155    0.009
##   gHealth.2 ~                                                           
##     Age     (Age3)   -0.073    0.042   -1.750    0.080   -0.155    0.009
##   gHealth.3 ~                                                           
##     Age     (Age3)   -0.073    0.042   -1.750    0.080   -0.155    0.009
##   gHealth.4 ~                                                           
##     Age     (Age3)   -0.073    0.042   -1.750    0.080   -0.155    0.009
##   gHealth.5 ~                                                           
##     Age     (Age3)   -0.073    0.042   -1.750    0.080   -0.155    0.009
##   wy2 ~                                                                 
##     wy1               0.748    0.035   21.258    0.000    0.679    0.817
##     wm1       (b1)    0.014    0.018    0.770    0.441   -0.022    0.050
##   wy3 ~                                                                 
##     wx1      (cp1)    0.020    0.023    0.884    0.376   -0.025    0.065
##     wy2               0.386    0.059    6.492    0.000    0.270    0.503
##     wm2       (b1)    0.014    0.018    0.770    0.441   -0.022    0.050
##     wy1               0.504    0.058    8.748    0.000    0.391    0.617
##   wy4 ~                                                                 
##     wx2      (cp1)    0.020    0.023    0.884    0.376   -0.025    0.065
##     wy3               0.616    0.062    9.904    0.000    0.494    0.738
##     wm3       (b1)    0.014    0.018    0.770    0.441   -0.022    0.050
##     wy2               0.227    0.065    3.512    0.000    0.100    0.353
##   wy5 ~                                                                 
##     wx3      (cp1)    0.020    0.023    0.884    0.376   -0.025    0.065
##     wy4               0.412    0.062    6.673    0.000    0.291    0.533
##     wm4       (b1)    0.014    0.018    0.770    0.441   -0.022    0.050
##     wy3               0.439    0.061    7.149    0.000    0.319    0.559
##   wx2 ~                                                                 
##     wx1               0.513    0.050   10.177    0.000    0.414    0.612
##     wm1       (b2)   -0.031    0.025   -1.234    0.217   -0.081    0.018
##   wx3 ~                                                                 
##     wx2               0.284    0.061    4.622    0.000    0.164    0.404
##     wy1      (cp2)   -0.010    0.032   -0.320    0.749   -0.073    0.053
##     wm2       (b2)   -0.031    0.025   -1.234    0.217   -0.081    0.018
##     wx1               0.402    0.059    6.764    0.000    0.286    0.518
##   wx4 ~                                                                 
##     wx3               0.250    0.064    3.916    0.000    0.125    0.375
##     wy2      (cp2)   -0.010    0.032   -0.320    0.749   -0.073    0.053
##     wm3       (b2)   -0.031    0.025   -1.234    0.217   -0.081    0.018
##     wx2               0.383    0.068    5.671    0.000    0.251    0.515
##   wx5 ~                                                                 
##     wx4               0.294    0.057    5.124    0.000    0.182    0.407
##     wy3      (cp2)   -0.010    0.032   -0.320    0.749   -0.073    0.053
##     wm4       (b2)   -0.031    0.025   -1.234    0.217   -0.081    0.018
##     wx3               0.431    0.056    7.671    0.000    0.321    0.541
##   wm2 ~                                                                 
##     wx1       (a1)   -0.063    0.024   -2.641    0.008   -0.110   -0.016
##     wy1       (a2)    0.045    0.024    1.860    0.063   -0.002    0.092
##     wm1               0.557    0.043   12.960    0.000    0.473    0.642
##   wm3 ~                                                                 
##     wx2       (a1)   -0.063    0.024   -2.641    0.008   -0.110   -0.016
##     wy2       (a2)    0.045    0.024    1.860    0.063   -0.002    0.092
##     wm2               0.537    0.059    9.157    0.000    0.422    0.652
##     wm1               0.196    0.058    3.382    0.001    0.082    0.310
##   wm4 ~                                                                 
##     wx3       (a1)   -0.063    0.024   -2.641    0.008   -0.110   -0.016
##     wy3       (a2)    0.045    0.024    1.860    0.063   -0.002    0.092
##     wm3               0.532    0.063    8.447    0.000    0.409    0.655
##     wm2               0.251    0.064    3.892    0.000    0.124    0.377
##   wm5 ~                                                                 
##     wx4       (a1)   -0.063    0.024   -2.641    0.008   -0.110   -0.016
##     wy4       (a2)    0.045    0.024    1.860    0.063   -0.002    0.092
##     wm4               0.380    0.059    6.414    0.000    0.264    0.496
##     wm3               0.451    0.059    7.622    0.000    0.335    0.568
##    Std.lv  Std.all
##                   
##     0.315    0.157
##                   
##     0.315    0.155
##                   
##     0.315    0.158
##                   
##     0.315    0.158
##                   
##     0.315    0.163
##                   
##    -0.156   -0.078
##                   
##    -0.156   -0.080
##                   
##    -0.156   -0.079
##                   
##    -0.156   -0.078
##                   
##    -0.156   -0.079
##                   
##    -0.282   -0.141
##                   
##    -0.282   -0.144
##                   
##    -0.282   -0.140
##                   
##    -0.282   -0.141
##                   
##    -0.282   -0.144
##                   
##     0.022    0.022
##                   
##     0.022    0.022
##                   
##     0.022    0.022
##                   
##     0.022    0.022
##                   
##     0.022    0.023
##                   
##    -0.063   -0.063
##                   
##    -0.063   -0.065
##                   
##    -0.063   -0.065
##                   
##    -0.063   -0.064
##                   
##    -0.063   -0.064
##                   
##     0.178    0.178
##                   
##     0.178    0.182
##                   
##     0.178    0.177
##                   
##     0.178    0.178
##                   
##     0.178    0.182
##                   
##    -0.250   -0.250
##                   
##    -0.250   -0.247
##                   
##    -0.250   -0.251
##                   
##    -0.250   -0.251
##                   
##    -0.250   -0.259
##                   
##     0.153    0.154
##                   
##     0.153    0.158
##                   
##     0.153    0.157
##                   
##     0.153    0.155
##                   
##     0.153    0.155
##                   
##     0.198    0.198
##                   
##     0.198    0.202
##                   
##     0.198    0.197
##                   
##     0.198    0.198
##                   
##     0.198    0.202
##                   
##    -0.008   -0.007
##                   
##    -0.008   -0.007
##                   
##    -0.008   -0.008
##                   
##    -0.008   -0.008
##                   
##    -0.008   -0.008
##                   
##     0.094    0.094
##                   
##     0.094    0.097
##                   
##     0.094    0.096
##                   
##     0.094    0.095
##                   
##     0.094    0.095
##                   
##    -0.073   -0.073
##                   
##    -0.073   -0.074
##                   
##    -0.073   -0.072
##                   
##    -0.073   -0.073
##                   
##    -0.073   -0.074
##                   
##     0.765    0.765
##     0.015    0.015
##                   
##     0.021    0.021
##     0.375    0.375
##     0.014    0.014
##     0.502    0.502
##                   
##     0.021    0.021
##     0.620    0.620
##     0.014    0.014
##     0.222    0.222
##                   
##     0.021    0.021
##     0.420    0.420
##     0.015    0.015
##     0.451    0.451
##                   
##     0.505    0.505
##    -0.032   -0.032
##                   
##     0.290    0.290
##    -0.010   -0.010
##    -0.031   -0.031
##     0.404    0.404
##                   
##     0.250    0.250
##    -0.010   -0.010
##    -0.032   -0.032
##     0.391    0.391
##                   
##     0.304    0.304
##    -0.010   -0.010
##    -0.033   -0.033
##     0.445    0.445
##                   
##    -0.063   -0.063
##     0.044    0.044
##     0.573    0.573
##                   
##    -0.064   -0.064
##     0.043    0.043
##     0.531    0.531
##     0.199    0.199
##                   
##    -0.062   -0.062
##     0.044    0.044
##     0.525    0.525
##     0.245    0.245
##                   
##    -0.062   -0.062
##     0.043    0.043
##     0.380    0.380
##     0.447    0.447
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.273    0.045   -6.060    0.000   -0.362   -0.185
##     wm1              -0.182    0.046   -3.971    0.000   -0.272   -0.092
##   wy1 ~~                                                                
##     wm1               0.148    0.045    3.329    0.001    0.061    0.236
##  .wx2 ~~                                                                
##    .wy2              -0.034    0.028   -1.186    0.236   -0.089    0.022
##  .wx3 ~~                                                                
##    .wy3              -0.022    0.026   -0.853    0.393   -0.073    0.029
##  .wx4 ~~                                                                
##    .wy4               0.040    0.030    1.349    0.177   -0.018    0.099
##  .wx5 ~~                                                                
##    .wy5               0.028    0.025    1.097    0.273   -0.022    0.077
##  .wx2 ~~                                                                
##    .wm2              -0.040    0.037   -1.095    0.273   -0.112    0.032
##  .wx3 ~~                                                                
##    .wm3               0.008    0.034    0.234    0.815   -0.058    0.074
##  .wx4 ~~                                                                
##    .wm4               0.003    0.035    0.079    0.937   -0.066    0.071
##  .wx5 ~~                                                                
##    .wm5              -0.009    0.029   -0.321    0.748   -0.066    0.048
##  .wy2 ~~                                                                
##    .wm2               0.062    0.026    2.409    0.016    0.012    0.113
##  .wy3 ~~                                                                
##    .wm3              -0.011    0.024   -0.471    0.637   -0.059    0.036
##  .wy4 ~~                                                                
##    .wm4               0.003    0.025    0.137    0.891   -0.045    0.052
##  .wy5 ~~                                                                
##    .wm5               0.037    0.022    1.693    0.090   -0.006    0.080
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.305   -0.305
##    -0.195   -0.195
##                   
##     0.162    0.162
##                   
##    -0.069   -0.069
##                   
##    -0.055   -0.055
##                   
##     0.092    0.092
##                   
##     0.076    0.076
##                   
##    -0.063   -0.063
##                   
##     0.015    0.015
##                   
##     0.005    0.005
##                   
##    -0.022   -0.022
##                   
##     0.140    0.140
##                   
##    -0.031   -0.031
##                   
##     0.009    0.009
##                   
##     0.119    0.119
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.152    0.060   -2.519    0.012   -0.271   -0.034
##    .LadderDif.2      -0.160    0.066   -2.404    0.016   -0.290   -0.029
##    .LadderDif.3      -0.193    0.069   -2.803    0.005   -0.328   -0.058
##    .LadderDif.4      -0.174    0.072   -2.414    0.016   -0.315   -0.033
##    .LadderDif.5      -0.197    0.071   -2.759    0.006   -0.337   -0.057
##    .gHealth.1         0.148    0.062    2.389    0.017    0.027    0.269
##    .gHealth.2         0.130    0.064    2.046    0.041    0.005    0.255
##    .gHealth.3         0.137    0.066    2.062    0.039    0.007    0.267
##    .gHealth.4         0.167    0.069    2.418    0.016    0.032    0.302
##    .gHealth.5         0.156    0.069    2.252    0.024    0.020    0.291
##    .posEmo.1          0.080    0.063    1.264    0.206   -0.044    0.203
##    .posEmo.2          0.077    0.066    1.157    0.247   -0.053    0.207
##    .posEmo.3          0.106    0.070    1.512    0.131   -0.031    0.244
##    .posEmo.4          0.099    0.073    1.359    0.174   -0.044    0.242
##    .posEmo.5          0.112    0.074    1.515    0.130   -0.033    0.256
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.152   -0.152
##    -0.160   -0.157
##    -0.193   -0.194
##    -0.174   -0.175
##    -0.197   -0.204
##     0.148    0.148
##     0.130    0.133
##     0.137    0.137
##     0.167    0.168
##     0.156    0.159
##     0.080    0.080
##     0.077    0.079
##     0.106    0.108
##     0.099    0.100
##     0.112    0.113
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.914    0.062   14.664    0.000    0.792    1.036
##     wy1               0.876    0.060   14.692    0.000    0.759    0.992
##     wm1               0.954    0.065   14.703    0.000    0.827    1.081
##    .wx2               0.695    0.057   12.262    0.000    0.584    0.806
##    .wy2               0.343    0.028   12.278    0.000    0.288    0.398
##    .wm2               0.580    0.047   12.286    0.000    0.488    0.673
##    .wx3               0.562    0.051   10.988    0.000    0.461    0.662
##    .wy3               0.286    0.026   11.011    0.000    0.235    0.337
##    .wm3               0.480    0.044   10.973    0.000    0.394    0.565
##    .wx4               0.611    0.058   10.466    0.000    0.496    0.725
##    .wy4               0.312    0.030   10.477    0.000    0.254    0.370
##    .wm4               0.436    0.042   10.479    0.000    0.354    0.517
##    .wx5               0.488    0.047   10.296    0.000    0.395    0.580
##    .wy5               0.270    0.026   10.275    0.000    0.219    0.322
##    .wm5               0.364    0.035   10.279    0.000    0.294    0.433
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.737    0.737
##     0.410    0.410
##     0.642    0.642
##     0.621    0.621
##     0.323    0.323
##     0.520    0.520
##     0.676    0.676
##     0.358    0.358
##     0.461    0.461
##     0.576    0.576
##     0.322    0.322
##     0.386    0.386
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

(a1) Perceived status difference at time t does not predict positive emotions at time t+1
(b1) Positive emotions at time t do not predict health at time t+1

# Same model as above code, but fit with d_black dataset this time
PEmoHealthCLPM_b2AR_controls.fit <- lavaan(PEmoHealthCLPM_2AR_controls, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoHealthCLPM_b2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           451         482
##   Number of missing patterns                         7            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               217.777
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1934.944
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.940
##   Tucker-Lewis Index (TLI)                       0.910
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4544.524
##   Loglikelihood unrestricted model (H1)      -4435.635
##                                                       
##   Akaike (AIC)                                9257.047
##   Bayesian (BIC)                              9602.410
##   Sample-size adjusted Bayesian (BIC)         9335.825
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.046
##   90 Percent confidence interval - lower         0.037
##   90 Percent confidence interval - upper         0.055
##   P-value RMSEA <= 0.05                          0.747
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.053
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##     gHealth.2         1.000                               1.000    1.000
##     gHealth.3         1.000                               1.000    1.000
##     gHealth.4         1.000                               1.000    1.000
##     gHealth.5         1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gHealth.1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     gHealth.2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     gHealth.3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     gHealth.4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     gHealth.5         1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.995    0.985
##                   
##     0.967    0.984
##                   
##     0.966    0.984
##                   
##     0.973    0.984
##                   
##     0.949    0.983
##                   
##     0.978    0.979
##                   
##     0.998    0.980
##                   
##     0.965    0.979
##                   
##     0.995    0.980
##                   
##     1.005    0.981
##                   
##     0.997    0.994
##                   
##     0.991    0.994
##                   
##     0.980    0.994
##                   
##     0.944    0.993
##                   
##     0.966    0.994
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)   -0.129    0.076   -1.704    0.088   -0.277    0.019
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)   -0.129    0.076   -1.704    0.088   -0.277    0.019
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)   -0.129    0.076   -1.704    0.088   -0.277    0.019
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)   -0.129    0.076   -1.704    0.088   -0.277    0.019
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)   -0.129    0.076   -1.704    0.088   -0.277    0.019
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.205    0.086   -2.383    0.017   -0.373   -0.036
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.205    0.086   -2.383    0.017   -0.373   -0.036
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.205    0.086   -2.383    0.017   -0.373   -0.036
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.205    0.086   -2.383    0.017   -0.373   -0.036
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.205    0.086   -2.383    0.017   -0.373   -0.036
##   gHealth.1 ~                                                           
##     GndrBnr (Gen3)   -0.050    0.089   -0.559    0.576   -0.225    0.125
##   gHealth.2 ~                                                           
##     GndrBnr (Gen3)   -0.050    0.089   -0.559    0.576   -0.225    0.125
##   gHealth.3 ~                                                           
##     GndrBnr (Gen3)   -0.050    0.089   -0.559    0.576   -0.225    0.125
##   gHealth.4 ~                                                           
##     GndrBnr (Gen3)   -0.050    0.089   -0.559    0.576   -0.225    0.125
##   gHealth.5 ~                                                           
##     GndrBnr (Gen3)   -0.050    0.089   -0.559    0.576   -0.225    0.125
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)   -0.077    0.039   -1.944    0.052   -0.154    0.001
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)   -0.077    0.039   -1.944    0.052   -0.154    0.001
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)   -0.077    0.039   -1.944    0.052   -0.154    0.001
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)   -0.077    0.039   -1.944    0.052   -0.154    0.001
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)   -0.077    0.039   -1.944    0.052   -0.154    0.001
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.002    0.045   -0.050    0.960   -0.091    0.086
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.002    0.045   -0.050    0.960   -0.091    0.086
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.002    0.045   -0.050    0.960   -0.091    0.086
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.002    0.045   -0.050    0.960   -0.091    0.086
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.002    0.045   -0.050    0.960   -0.091    0.086
##   gHealth.1 ~                                                           
##     Edu     (Edu3)    0.097    0.047    2.068    0.039    0.005    0.188
##   gHealth.2 ~                                                           
##     Edu     (Edu3)    0.097    0.047    2.068    0.039    0.005    0.188
##   gHealth.3 ~                                                           
##     Edu     (Edu3)    0.097    0.047    2.068    0.039    0.005    0.188
##   gHealth.4 ~                                                           
##     Edu     (Edu3)    0.097    0.047    2.068    0.039    0.005    0.188
##   gHealth.5 ~                                                           
##     Edu     (Edu3)    0.097    0.047    2.068    0.039    0.005    0.188
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.113    0.039   -2.908    0.004   -0.188   -0.037
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.113    0.039   -2.908    0.004   -0.188   -0.037
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.113    0.039   -2.908    0.004   -0.188   -0.037
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.113    0.039   -2.908    0.004   -0.188   -0.037
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.113    0.039   -2.908    0.004   -0.188   -0.037
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.911    0.363   -0.046    0.127
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.911    0.363   -0.046    0.127
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.911    0.363   -0.046    0.127
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.911    0.363   -0.046    0.127
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.911    0.363   -0.046    0.127
##   gHealth.1 ~                                                           
##     Income  (Inc3)    0.152    0.046    3.334    0.001    0.063    0.241
##   gHealth.2 ~                                                           
##     Income  (Inc3)    0.152    0.046    3.334    0.001    0.063    0.241
##   gHealth.3 ~                                                           
##     Income  (Inc3)    0.152    0.046    3.334    0.001    0.063    0.241
##   gHealth.4 ~                                                           
##     Income  (Inc3)    0.152    0.046    3.334    0.001    0.063    0.241
##   gHealth.5 ~                                                           
##     Income  (Inc3)    0.152    0.046    3.334    0.001    0.063    0.241
##   LadderDif.1 ~                                                         
##     Age     (Age1)    0.045    0.038    1.187    0.235   -0.029    0.118
##   LadderDif.2 ~                                                         
##     Age     (Age1)    0.045    0.038    1.187    0.235   -0.029    0.118
##   LadderDif.3 ~                                                         
##     Age     (Age1)    0.045    0.038    1.187    0.235   -0.029    0.118
##   LadderDif.4 ~                                                         
##     Age     (Age1)    0.045    0.038    1.187    0.235   -0.029    0.118
##   LadderDif.5 ~                                                         
##     Age     (Age1)    0.045    0.038    1.187    0.235   -0.029    0.118
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.031    0.043    0.718    0.473   -0.053    0.115
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.031    0.043    0.718    0.473   -0.053    0.115
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.031    0.043    0.718    0.473   -0.053    0.115
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.031    0.043    0.718    0.473   -0.053    0.115
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.031    0.043    0.718    0.473   -0.053    0.115
##   gHealth.1 ~                                                           
##     Age     (Age3)    0.010    0.044    0.228    0.820   -0.077    0.097
##   gHealth.2 ~                                                           
##     Age     (Age3)    0.010    0.044    0.228    0.820   -0.077    0.097
##   gHealth.3 ~                                                           
##     Age     (Age3)    0.010    0.044    0.228    0.820   -0.077    0.097
##   gHealth.4 ~                                                           
##     Age     (Age3)    0.010    0.044    0.228    0.820   -0.077    0.097
##   gHealth.5 ~                                                           
##     Age     (Age3)    0.010    0.044    0.228    0.820   -0.077    0.097
##   wy2 ~                                                                 
##     wy1               0.732    0.047   15.641    0.000    0.640    0.824
##     wm1       (b1)    0.014    0.023    0.616    0.538   -0.031    0.059
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.031    0.027   -1.118    0.264   -0.085    0.023
##     wy2               0.478    0.063    7.635    0.000    0.355    0.601
##     wm2       (b1)    0.014    0.023    0.616    0.538   -0.031    0.059
##     wy1               0.321    0.062    5.157    0.000    0.199    0.443
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.031    0.027   -1.118    0.264   -0.085    0.023
##     wy3               0.452    0.068    6.623    0.000    0.318    0.586
##     wm3       (b1)    0.014    0.023    0.616    0.538   -0.031    0.059
##     wy2               0.412    0.066    6.264    0.000    0.283    0.541
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.031    0.027   -1.118    0.264   -0.085    0.023
##     wy4               0.473    0.064    7.403    0.000    0.348    0.598
##     wm4       (b1)    0.014    0.023    0.616    0.538   -0.031    0.059
##     wy3               0.444    0.067    6.645    0.000    0.313    0.575
##   wx2 ~                                                                 
##     wx1               0.217    0.061    3.528    0.000    0.096    0.337
##     wm1       (b2)   -0.041    0.032   -1.299    0.194   -0.103    0.021
##   wx3 ~                                                                 
##     wx2               0.432    0.067    6.466    0.000    0.301    0.563
##     wy1      (cp2)    0.022    0.037    0.587    0.557   -0.051    0.095
##     wm2       (b2)   -0.041    0.032   -1.299    0.194   -0.103    0.021
##     wx1               0.160    0.064    2.520    0.012    0.036    0.285
##   wx4 ~                                                                 
##     wx3               0.267    0.078    3.428    0.001    0.114    0.420
##     wy2      (cp2)    0.022    0.037    0.587    0.557   -0.051    0.095
##     wm3       (b2)   -0.041    0.032   -1.299    0.194   -0.103    0.021
##     wx2               0.247    0.079    3.134    0.002    0.093    0.402
##   wx5 ~                                                                 
##     wx4               0.241    0.065    3.734    0.000    0.115    0.368
##     wy3      (cp2)    0.022    0.037    0.587    0.557   -0.051    0.095
##     wm4       (b2)   -0.041    0.032   -1.299    0.194   -0.103    0.021
##     wx3               0.419    0.070    6.005    0.000    0.282    0.555
##   wm2 ~                                                                 
##     wx1       (a1)   -0.037    0.025   -1.457    0.145   -0.086    0.013
##     wy1       (a2)    0.048    0.026    1.898    0.058   -0.002    0.099
##     wm1               0.517    0.053    9.768    0.000    0.413    0.620
##   wm3 ~                                                                 
##     wx2       (a1)   -0.037    0.025   -1.457    0.145   -0.086    0.013
##     wy2       (a2)    0.048    0.026    1.898    0.058   -0.002    0.099
##     wm2               0.597    0.054   11.052    0.000    0.491    0.703
##     wm1               0.215    0.053    4.090    0.000    0.112    0.319
##   wm4 ~                                                                 
##     wx3       (a1)   -0.037    0.025   -1.457    0.145   -0.086    0.013
##     wy3       (a2)    0.048    0.026    1.898    0.058   -0.002    0.099
##     wm3               0.431    0.070    6.204    0.000    0.295    0.567
##     wm2               0.332    0.067    4.984    0.000    0.202    0.463
##   wm5 ~                                                                 
##     wx4       (a1)   -0.037    0.025   -1.457    0.145   -0.086    0.013
##     wy4       (a2)    0.048    0.026    1.898    0.058   -0.002    0.099
##     wm4               0.338    0.071    4.769    0.000    0.199    0.477
##     wm3               0.471    0.068    6.952    0.000    0.338    0.604
##    Std.lv  Std.all
##                   
##    -0.129   -0.064
##                   
##    -0.129   -0.065
##                   
##    -0.129   -0.065
##                   
##    -0.129   -0.065
##                   
##    -0.129   -0.067
##                   
##    -0.205   -0.102
##                   
##    -0.205   -0.103
##                   
##    -0.205   -0.104
##                   
##    -0.205   -0.108
##                   
##    -0.205   -0.105
##                   
##    -0.050   -0.025
##                   
##    -0.050   -0.024
##                   
##    -0.050   -0.025
##                   
##    -0.050   -0.025
##                   
##    -0.050   -0.024
##                   
##    -0.077   -0.076
##                   
##    -0.077   -0.078
##                   
##    -0.077   -0.078
##                   
##    -0.077   -0.078
##                   
##    -0.077   -0.079
##                   
##    -0.002   -0.002
##                   
##    -0.002   -0.002
##                   
##    -0.002   -0.002
##                   
##    -0.002   -0.002
##                   
##    -0.002   -0.002
##                   
##     0.097    0.097
##                   
##     0.097    0.095
##                   
##     0.097    0.098
##                   
##     0.097    0.095
##                   
##     0.097    0.094
##                   
##    -0.113   -0.111
##                   
##    -0.113   -0.114
##                   
##    -0.113   -0.115
##                   
##    -0.113   -0.114
##                   
##    -0.113   -0.117
##                   
##     0.040    0.040
##                   
##     0.040    0.040
##                   
##     0.040    0.041
##                   
##     0.040    0.042
##                   
##     0.040    0.041
##                   
##     0.152    0.152
##                   
##     0.152    0.149
##                   
##     0.152    0.154
##                   
##     0.152    0.149
##                   
##     0.152    0.148
##                   
##     0.045    0.044
##                   
##     0.045    0.045
##                   
##     0.045    0.045
##                   
##     0.045    0.045
##                   
##     0.045    0.046
##                   
##     0.031    0.031
##                   
##     0.031    0.031
##                   
##     0.031    0.031
##                   
##     0.031    0.032
##                   
##     0.031    0.032
##                   
##     0.010    0.010
##                   
##     0.010    0.010
##                   
##     0.010    0.010
##                   
##     0.010    0.010
##                   
##     0.010    0.010
##                   
##     0.717    0.717
##     0.014    0.014
##                   
##    -0.032   -0.032
##     0.495    0.495
##     0.015    0.015
##     0.325    0.325
##                   
##    -0.030   -0.030
##     0.438    0.438
##     0.014    0.014
##     0.413    0.413
##                   
##    -0.030   -0.030
##     0.468    0.468
##     0.013    0.013
##     0.426    0.426
##                   
##     0.223    0.223
##    -0.042   -0.042
##                   
##     0.433    0.433
##     0.022    0.022
##    -0.042   -0.042
##     0.165    0.165
##                   
##     0.265    0.265
##     0.023    0.023
##    -0.041   -0.041
##     0.246    0.246
##                   
##     0.247    0.247
##     0.022    0.022
##    -0.041   -0.041
##     0.426    0.426
##                   
##    -0.037   -0.037
##     0.048    0.048
##     0.520    0.520
##                   
##    -0.036   -0.036
##     0.049    0.049
##     0.604    0.604
##     0.219    0.219
##                   
##    -0.038   -0.038
##     0.050    0.050
##     0.448    0.448
##     0.349    0.349
##                   
##    -0.037   -0.037
##     0.050    0.050
##     0.330    0.330
##     0.477    0.477
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.038    0.046   -0.824    0.410   -0.128    0.052
##     wm1              -0.012    0.047   -0.260    0.795   -0.104    0.080
##   wy1 ~~                                                                
##     wm1               0.259    0.048    5.440    0.000    0.165    0.352
##  .wx2 ~~                                                                
##    .wy2              -0.003    0.042   -0.080    0.937   -0.086    0.079
##  .wx3 ~~                                                                
##    .wy3               0.057    0.037    1.536    0.125   -0.016    0.129
##  .wx4 ~~                                                                
##    .wy4              -0.053    0.039   -1.345    0.179   -0.130    0.024
##  .wx5 ~~                                                                
##    .wy5               0.026    0.032    0.818    0.414   -0.037    0.089
##  .wx2 ~~                                                                
##    .wm2              -0.027    0.050   -0.536    0.592   -0.125    0.071
##  .wx3 ~~                                                                
##    .wm3              -0.011    0.038   -0.288    0.773   -0.085    0.063
##  .wx4 ~~                                                                
##    .wm4               0.016    0.040    0.395    0.693   -0.062    0.093
##  .wx5 ~~                                                                
##    .wm5              -0.055    0.037   -1.493    0.135   -0.128    0.017
##  .wy2 ~~                                                                
##    .wm2               0.014    0.036    0.378    0.705   -0.058    0.085
##  .wy3 ~~                                                                
##    .wm3               0.070    0.028    2.470    0.013    0.015    0.126
##  .wy4 ~~                                                                
##    .wm4               0.051    0.028    1.840    0.066   -0.003    0.106
##  .wy5 ~~                                                                
##    .wm5               0.031    0.026    1.216    0.224   -0.019    0.082
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.039   -0.039
##    -0.012   -0.012
##                   
##     0.265    0.265
##                   
##    -0.005   -0.005
##                   
##     0.110    0.110
##                   
##    -0.101   -0.101
##                   
##     0.062    0.062
##                   
##    -0.034   -0.034
##                   
##    -0.020   -0.020
##                   
##     0.029    0.029
##                   
##    -0.115   -0.115
##                   
##     0.024    0.024
##                   
##     0.178    0.178
##                   
##     0.139    0.139
##                   
##     0.093    0.093
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.068    0.061    1.105    0.269   -0.052    0.188
##    .LadderDif.2       0.126    0.073    1.732    0.083   -0.017    0.268
##    .LadderDif.3       0.105    0.077    1.360    0.174   -0.046    0.256
##    .LadderDif.4       0.145    0.081    1.798    0.072   -0.013    0.304
##    .LadderDif.5       0.122    0.081    1.508    0.131   -0.036    0.280
##    .gHealth.1         0.029    0.066    0.437    0.662   -0.100    0.157
##    .gHealth.2        -0.057    0.073   -0.780    0.435   -0.199    0.086
##    .gHealth.3        -0.042    0.074   -0.570    0.569   -0.188    0.103
##    .gHealth.4        -0.051    0.078   -0.655    0.513   -0.204    0.102
##    .gHealth.5        -0.077    0.080   -0.956    0.339   -0.234    0.081
##    .posEmo.1          0.107    0.065    1.645    0.100   -0.021    0.234
##    .posEmo.2          0.098    0.074    1.319    0.187   -0.047    0.243
##    .posEmo.3          0.101    0.076    1.327    0.185   -0.048    0.250
##    .posEmo.4          0.080    0.077    1.043    0.297   -0.071    0.231
##    .posEmo.5          0.073    0.080    0.906    0.365   -0.084    0.229
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.068    0.067
##     0.126    0.128
##     0.105    0.107
##     0.145    0.147
##     0.122    0.126
##     0.029    0.029
##    -0.057   -0.056
##    -0.042   -0.043
##    -0.051   -0.050
##    -0.077   -0.075
##     0.107    0.107
##     0.098    0.098
##     0.101    0.102
##     0.080    0.085
##     0.073    0.075
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.989    0.066   14.939    0.000    0.859    1.119
##     wy1               0.956    0.064   14.999    0.000    0.831    1.080
##     wm1               0.994    0.066   15.001    0.000    0.864    1.124
##    .wx2               0.887    0.079   11.181    0.000    0.732    1.043
##    .wy2               0.478    0.043   11.233    0.000    0.394    0.561
##    .wm2               0.700    0.062   11.219    0.000    0.578    0.822
##    .wx3               0.700    0.070   10.035    0.000    0.563    0.836
##    .wy3               0.382    0.038   10.024    0.000    0.307    0.456
##    .wm3               0.408    0.041   10.031    0.000    0.328    0.488
##    .wx4               0.760    0.079    9.645    0.000    0.605    0.914
##    .wy4               0.362    0.038    9.634    0.000    0.288    0.435
##    .wm4               0.378    0.039    9.637    0.000    0.301    0.455
##    .wx5               0.603    0.064    9.435    0.000    0.477    0.728
##    .wy5               0.301    0.032    9.425    0.000    0.238    0.363
##    .wm5               0.384    0.041    9.417    0.000    0.304    0.464
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gHealth.1         0.000                               0.000    0.000
##    .gHealth.2         0.000                               0.000    0.000
##    .gHealth.3         0.000                               0.000    0.000
##    .gHealth.4         0.000                               0.000    0.000
##    .gHealth.5         0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.948    0.948
##     0.480    0.480
##     0.712    0.712
##     0.750    0.750
##     0.410    0.410
##     0.425    0.425
##     0.803    0.803
##     0.365    0.365
##     0.425    0.425
##     0.669    0.669
##     0.297    0.297
##     0.411    0.411
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif, Positive Emotions, and Sleep, 2nd Order AR, controls

White Participants

(a1) Perceived status difference at time t predicts fewer positive emotions at time t+1, b = -.071, p = .003
(b1) Positive emotions at time t predict sleep at time t+1, b = .06, p = .003
c’1 path is nonsignificant
a2 path is also significant, and its CIs overlap with a1 CIs

PEmoSleepCLPM_2AR_controls <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*gSleep.1 + 1*gSleep.2 + 1*gSleep.3 + 1*gSleep.4 + 1*gSleep.5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*gSleep.1
  wy2 =~ 1*gSleep.2
  wy3 =~ 1*gSleep.3
  wy4 =~ 1*gSleep.4
  wy5 =~ 1*gSleep.5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5
  
  # Regression of observed variables on controls (constrained). 
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Gen1*GenderBinary
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Gen2*GenderBinary
  gSleep.1 + gSleep.2 + gSleep.3 + gSleep.4 + gSleep.5 ~ Gen3*GenderBinary
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Edu1*Edu
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Edu2*Edu
  gSleep.1 + gSleep.2 + gSleep.3 + gSleep.4 + gSleep.5 ~ Edu3*Edu
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Inc1*Income
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Inc2*Income
  gSleep.1 + gSleep.2 + gSleep.3 + gSleep.4 + gSleep.5  ~ Inc3*Income
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Age1*Age
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Age2*Age
  gSleep.1 + gSleep.2 + gSleep.3 + gSleep.4 + gSleep.5  ~ Age3*Age

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoSleepCLPM_w2AR_controls.fit <- lavaan(PEmoSleepCLPM_2AR_controls, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoSleepCLPM_w2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 53 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           433         482
##   Number of missing patterns                         7            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               196.898
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2540.661
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.964
##   Tucker-Lewis Index (TLI)                       0.946
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4806.157
##   Loglikelihood unrestricted model (H1)      -4707.708
##                                                       
##   Akaike (AIC)                                9780.314
##   Bayesian (BIC)                             10122.256
##   Sample-size adjusted Bayesian (BIC)         9855.686
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.042
##   90 Percent confidence interval - lower         0.032
##   90 Percent confidence interval - upper         0.052
##   P-value RMSEA <= 0.05                          0.906
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.042
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.956    0.957
##                   
##     0.972    0.958
##                   
##     0.950    0.956
##                   
##     0.950    0.956
##                   
##     0.915    0.953
##                   
##     0.950    0.973
##                   
##     0.957    0.973
##                   
##     0.893    0.970
##                   
##     0.971    0.974
##                   
##     0.982    0.975
##                   
##     0.977    0.981
##                   
##     0.949    0.980
##                   
##     0.956    0.980
##                   
##     0.973    0.981
##                   
##     0.967    0.980
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)    0.312    0.077    4.059    0.000    0.161    0.463
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)    0.312    0.077    4.059    0.000    0.161    0.463
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)    0.312    0.077    4.059    0.000    0.161    0.463
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)    0.312    0.077    4.059    0.000    0.161    0.463
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)    0.312    0.077    4.059    0.000    0.161    0.463
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.153    0.082   -1.875    0.061   -0.313    0.007
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.153    0.082   -1.875    0.061   -0.313    0.007
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.153    0.082   -1.875    0.061   -0.313    0.007
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.153    0.082   -1.875    0.061   -0.313    0.007
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.153    0.082   -1.875    0.061   -0.313    0.007
##   gSleep.1 ~                                                            
##     GndrBnr (Gen3)   -0.261    0.083   -3.144    0.002   -0.424   -0.098
##   gSleep.2 ~                                                            
##     GndrBnr (Gen3)   -0.261    0.083   -3.144    0.002   -0.424   -0.098
##   gSleep.3 ~                                                            
##     GndrBnr (Gen3)   -0.261    0.083   -3.144    0.002   -0.424   -0.098
##   gSleep.4 ~                                                            
##     GndrBnr (Gen3)   -0.261    0.083   -3.144    0.002   -0.424   -0.098
##   gSleep.5 ~                                                            
##     GndrBnr (Gen3)   -0.261    0.083   -3.144    0.002   -0.424   -0.098
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.541    0.588   -0.058    0.102
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.541    0.588   -0.058    0.102
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.541    0.588   -0.058    0.102
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.541    0.588   -0.058    0.102
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)    0.022    0.041    0.541    0.588   -0.058    0.102
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.062    0.044   -1.412    0.158   -0.148    0.024
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.062    0.044   -1.412    0.158   -0.148    0.024
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.062    0.044   -1.412    0.158   -0.148    0.024
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.062    0.044   -1.412    0.158   -0.148    0.024
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.062    0.044   -1.412    0.158   -0.148    0.024
##   gSleep.1 ~                                                            
##     Edu     (Edu3)    0.060    0.045    1.346    0.178   -0.027    0.148
##   gSleep.2 ~                                                            
##     Edu     (Edu3)    0.060    0.045    1.346    0.178   -0.027    0.148
##   gSleep.3 ~                                                            
##     Edu     (Edu3)    0.060    0.045    1.346    0.178   -0.027    0.148
##   gSleep.4 ~                                                            
##     Edu     (Edu3)    0.060    0.045    1.346    0.178   -0.027    0.148
##   gSleep.5 ~                                                            
##     Edu     (Edu3)    0.060    0.045    1.346    0.178   -0.027    0.148
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.091    0.000   -0.328   -0.168
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.091    0.000   -0.328   -0.168
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.091    0.000   -0.328   -0.168
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.091    0.000   -0.328   -0.168
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.248    0.041   -6.091    0.000   -0.328   -0.168
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.155    0.043    3.579    0.000    0.070    0.240
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.155    0.043    3.579    0.000    0.070    0.240
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.155    0.043    3.579    0.000    0.070    0.240
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.155    0.043    3.579    0.000    0.070    0.240
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.155    0.043    3.579    0.000    0.070    0.240
##   gSleep.1 ~                                                            
##     Income  (Inc3)    0.150    0.044    3.405    0.001    0.064    0.236
##   gSleep.2 ~                                                            
##     Income  (Inc3)    0.150    0.044    3.405    0.001    0.064    0.236
##   gSleep.3 ~                                                            
##     Income  (Inc3)    0.150    0.044    3.405    0.001    0.064    0.236
##   gSleep.4 ~                                                            
##     Income  (Inc3)    0.150    0.044    3.405    0.001    0.064    0.236
##   gSleep.5 ~                                                            
##     Income  (Inc3)    0.150    0.044    3.405    0.001    0.064    0.236
##   LadderDif.1 ~                                                         
##     Age     (Age1)   -0.018    0.039   -0.467    0.640   -0.094    0.058
##   LadderDif.2 ~                                                         
##     Age     (Age1)   -0.018    0.039   -0.467    0.640   -0.094    0.058
##   LadderDif.3 ~                                                         
##     Age     (Age1)   -0.018    0.039   -0.467    0.640   -0.094    0.058
##   LadderDif.4 ~                                                         
##     Age     (Age1)   -0.018    0.039   -0.467    0.640   -0.094    0.058
##   LadderDif.5 ~                                                         
##     Age     (Age1)   -0.018    0.039   -0.467    0.640   -0.094    0.058
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.095    0.041    2.302    0.021    0.014    0.175
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.095    0.041    2.302    0.021    0.014    0.175
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.095    0.041    2.302    0.021    0.014    0.175
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.095    0.041    2.302    0.021    0.014    0.175
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.095    0.041    2.302    0.021    0.014    0.175
##   gSleep.1 ~                                                            
##     Age     (Age3)   -0.032    0.042   -0.757    0.449   -0.113    0.050
##   gSleep.2 ~                                                            
##     Age     (Age3)   -0.032    0.042   -0.757    0.449   -0.113    0.050
##   gSleep.3 ~                                                            
##     Age     (Age3)   -0.032    0.042   -0.757    0.449   -0.113    0.050
##   gSleep.4 ~                                                            
##     Age     (Age3)   -0.032    0.042   -0.757    0.449   -0.113    0.050
##   gSleep.5 ~                                                            
##     Age     (Age3)   -0.032    0.042   -0.757    0.449   -0.113    0.050
##   wy2 ~                                                                 
##     wy1               0.761    0.037   20.488    0.000    0.688    0.834
##     wm1       (b1)    0.061    0.021    2.955    0.003    0.021    0.102
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.042    0.025   -1.643    0.100   -0.091    0.008
##     wy2               0.384    0.063    6.078    0.000    0.260    0.508
##     wm2       (b1)    0.061    0.021    2.955    0.003    0.021    0.102
##     wy1               0.337    0.063    5.375    0.000    0.214    0.460
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.042    0.025   -1.643    0.100   -0.091    0.008
##     wy3               0.588    0.067    8.796    0.000    0.457    0.719
##     wm3       (b1)    0.061    0.021    2.955    0.003    0.021    0.102
##     wy2               0.265    0.063    4.209    0.000    0.142    0.388
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.042    0.025   -1.643    0.100   -0.091    0.008
##     wy4               0.578    0.066    8.801    0.000    0.449    0.706
##     wm4       (b1)    0.061    0.021    2.955    0.003    0.021    0.102
##     wy3               0.235    0.071    3.320    0.001    0.096    0.374
##   wx2 ~                                                                 
##     wx1               0.516    0.051   10.202    0.000    0.417    0.615
##     wm1       (b2)   -0.033    0.026   -1.286    0.198   -0.084    0.018
##   wx3 ~                                                                 
##     wx2               0.282    0.061    4.584    0.000    0.161    0.402
##     wy1      (cp2)   -0.009    0.031   -0.297    0.766   -0.071    0.052
##     wm2       (b2)   -0.033    0.026   -1.286    0.198   -0.084    0.018
##     wx1               0.401    0.059    6.812    0.000    0.286    0.517
##   wx4 ~                                                                 
##     wx3               0.248    0.064    3.856    0.000    0.122    0.374
##     wy2      (cp2)   -0.009    0.031   -0.297    0.766   -0.071    0.052
##     wm3       (b2)   -0.033    0.026   -1.286    0.198   -0.084    0.018
##     wx2               0.383    0.068    5.669    0.000    0.251    0.516
##   wx5 ~                                                                 
##     wx4               0.271    0.058    4.704    0.000    0.158    0.384
##     wy3      (cp2)   -0.009    0.031   -0.297    0.766   -0.071    0.052
##     wm4       (b2)   -0.033    0.026   -1.286    0.198   -0.084    0.018
##     wx3               0.441    0.056    7.913    0.000    0.332    0.550
##   wm2 ~                                                                 
##     wx1       (a1)   -0.071    0.024   -3.004    0.003   -0.117   -0.025
##     wy1       (a2)    0.079    0.024    3.308    0.001    0.032    0.127
##     wm1               0.546    0.043   12.660    0.000    0.462    0.631
##   wm3 ~                                                                 
##     wx2       (a1)   -0.071    0.024   -3.004    0.003   -0.117   -0.025
##     wy2       (a2)    0.079    0.024    3.308    0.001    0.032    0.127
##     wm2               0.534    0.058    9.187    0.000    0.420    0.648
##     wm1               0.175    0.057    3.066    0.002    0.063    0.287
##   wm4 ~                                                                 
##     wx3       (a1)   -0.071    0.024   -3.004    0.003   -0.117   -0.025
##     wy3       (a2)    0.079    0.024    3.308    0.001    0.032    0.127
##     wm3               0.520    0.064    8.188    0.000    0.396    0.645
##     wm2               0.242    0.065    3.736    0.000    0.115    0.369
##   wm5 ~                                                                 
##     wx4       (a1)   -0.071    0.024   -3.004    0.003   -0.117   -0.025
##     wy4       (a2)    0.079    0.024    3.308    0.001    0.032    0.127
##     wm4               0.369    0.059    6.301    0.000    0.254    0.484
##     wm3               0.442    0.059    7.497    0.000    0.327    0.558
##    Std.lv  Std.all
##                   
##     0.312    0.156
##                   
##     0.312    0.154
##                   
##     0.312    0.157
##                   
##     0.312    0.157
##                   
##     0.312    0.163
##                   
##    -0.153   -0.077
##                   
##    -0.153   -0.079
##                   
##    -0.153   -0.078
##                   
##    -0.153   -0.077
##                   
##    -0.153   -0.077
##                   
##    -0.261   -0.134
##                   
##    -0.261   -0.133
##                   
##    -0.261   -0.142
##                   
##    -0.261   -0.131
##                   
##    -0.261   -0.129
##                   
##     0.022    0.022
##                   
##     0.022    0.022
##                   
##     0.022    0.022
##                   
##     0.022    0.022
##                   
##     0.022    0.023
##                   
##    -0.062   -0.062
##                   
##    -0.062   -0.064
##                   
##    -0.062   -0.063
##                   
##    -0.062   -0.062
##                   
##    -0.062   -0.063
##                   
##     0.060    0.061
##                   
##     0.060    0.061
##                   
##     0.060    0.065
##                   
##     0.060    0.060
##                   
##     0.060    0.060
##                   
##    -0.248   -0.248
##                   
##    -0.248   -0.244
##                   
##    -0.248   -0.250
##                   
##    -0.248   -0.250
##                   
##    -0.248   -0.259
##                   
##     0.155    0.156
##                   
##     0.155    0.160
##                   
##     0.155    0.159
##                   
##     0.155    0.156
##                   
##     0.155    0.157
##                   
##     0.150    0.154
##                   
##     0.150    0.153
##                   
##     0.150    0.163
##                   
##     0.150    0.150
##                   
##     0.150    0.149
##                   
##    -0.018   -0.018
##                   
##    -0.018   -0.018
##                   
##    -0.018   -0.018
##                   
##    -0.018   -0.018
##                   
##    -0.018   -0.019
##                   
##     0.095    0.095
##                   
##     0.095    0.097
##                   
##     0.095    0.097
##                   
##     0.095    0.095
##                   
##     0.095    0.096
##                   
##    -0.032   -0.032
##                   
##    -0.032   -0.032
##                   
##    -0.032   -0.034
##                   
##    -0.032   -0.031
##                   
##    -0.032   -0.031
##                   
##     0.756    0.756
##     0.063    0.063
##                   
##    -0.045   -0.045
##     0.412    0.412
##     0.065    0.065
##     0.359    0.359
##                   
##    -0.042   -0.042
##     0.540    0.540
##     0.060    0.060
##     0.261    0.261
##                   
##    -0.040   -0.040
##     0.571    0.571
##     0.061    0.061
##     0.214    0.214
##                   
##     0.507    0.507
##    -0.034   -0.034
##                   
##     0.288    0.288
##    -0.009   -0.009
##    -0.033   -0.033
##     0.404    0.404
##                   
##     0.248    0.248
##    -0.009   -0.009
##    -0.034   -0.034
##     0.393    0.393
##                   
##     0.281    0.281
##    -0.009   -0.009
##    -0.036   -0.036
##     0.458    0.458
##                   
##    -0.071   -0.071
##     0.080    0.080
##     0.563    0.563
##                   
##    -0.072   -0.072
##     0.080    0.080
##     0.530    0.530
##     0.179    0.179
##                   
##    -0.069   -0.069
##     0.073    0.073
##     0.511    0.511
##     0.236    0.236
##                   
##    -0.070   -0.070
##     0.080    0.080
##     0.371    0.371
##     0.438    0.438
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.177    0.045   -3.984    0.000   -0.265   -0.090
##     wm1              -0.182    0.046   -3.975    0.000   -0.272   -0.092
##   wy1 ~~                                                                
##     wm1               0.211    0.046    4.598    0.000    0.121    0.300
##  .wx2 ~~                                                                
##    .wy2               0.025    0.029    0.839    0.402   -0.033    0.082
##  .wx3 ~~                                                                
##    .wy3               0.019    0.029    0.674    0.500   -0.037    0.076
##  .wx4 ~~                                                                
##    .wy4               0.028    0.033    0.864    0.388   -0.036    0.093
##  .wx5 ~~                                                                
##    .wy5              -0.045    0.031   -1.473    0.141   -0.106    0.015
##  .wx2 ~~                                                                
##    .wm2              -0.039    0.036   -1.078    0.281   -0.110    0.032
##  .wx3 ~~                                                                
##    .wm3               0.010    0.034    0.289    0.773   -0.057    0.076
##  .wx4 ~~                                                                
##    .wm4               0.003    0.035    0.072    0.943   -0.067    0.072
##  .wx5 ~~                                                                
##    .wm5              -0.012    0.029   -0.402    0.688   -0.068    0.045
##  .wy2 ~~                                                                
##    .wm2              -0.009    0.027   -0.347    0.729   -0.061    0.043
##  .wy3 ~~                                                                
##    .wm3               0.048    0.027    1.811    0.070   -0.004    0.100
##  .wy4 ~~                                                                
##    .wm4               0.008    0.028    0.289    0.773   -0.047    0.063
##  .wy5 ~~                                                                
##    .wm5              -0.006    0.026   -0.233    0.815   -0.057    0.045
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.195   -0.195
##    -0.195   -0.195
##                   
##     0.227    0.227
##                   
##     0.049    0.049
##                   
##     0.044    0.044
##                   
##     0.059    0.059
##                   
##    -0.104   -0.104
##                   
##    -0.062   -0.062
##                   
##     0.019    0.019
##                   
##     0.005    0.005
##                   
##    -0.028   -0.028
##                   
##    -0.020   -0.020
##                   
##     0.118    0.118
##                   
##     0.020    0.020
##                   
##    -0.016   -0.016
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.151    0.061   -2.494    0.013   -0.270   -0.032
##    .LadderDif.2      -0.158    0.067   -2.376    0.017   -0.288   -0.028
##    .LadderDif.3      -0.190    0.069   -2.764    0.006   -0.325   -0.055
##    .LadderDif.4      -0.172    0.072   -2.380    0.017   -0.313   -0.030
##    .LadderDif.5      -0.194    0.071   -2.731    0.006   -0.334   -0.055
##    .gSleep.1          2.901    0.062   46.440    0.000    2.779    3.023
##    .gSleep.2          2.984    0.066   45.440    0.000    2.855    3.113
##    .gSleep.3          3.092    0.066   46.871    0.000    2.962    3.221
##    .gSleep.4          3.063    0.072   42.607    0.000    2.922    3.204
##    .gSleep.5          3.067    0.074   41.184    0.000    2.921    3.213
##    .posEmo.1          0.078    0.063    1.242    0.214   -0.045    0.201
##    .posEmo.2          0.071    0.066    1.067    0.286   -0.059    0.201
##    .posEmo.3          0.101    0.070    1.443    0.149   -0.036    0.238
##    .posEmo.4          0.094    0.073    1.281    0.200   -0.050    0.237
##    .posEmo.5          0.108    0.073    1.476    0.140   -0.035    0.252
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.151   -0.151
##    -0.158   -0.156
##    -0.190   -0.192
##    -0.172   -0.173
##    -0.194   -0.202
##     2.901    2.971
##     2.984    3.036
##     3.092    3.358
##     3.063    3.072
##     3.067    3.044
##     0.078    0.078
##     0.071    0.073
##     0.101    0.104
##     0.094    0.094
##     0.108    0.110
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.913    0.062   14.674    0.000    0.791    1.035
##     wy1               0.903    0.061   14.693    0.000    0.782    1.023
##     wm1               0.954    0.065   14.704    0.000    0.827    1.081
##    .wx2               0.695    0.057   12.261    0.000    0.584    0.807
##    .wy2               0.369    0.030   12.252    0.000    0.310    0.428
##    .wm2               0.570    0.046   12.276    0.000    0.479    0.661
##    .wx3               0.562    0.051   10.981    0.000    0.462    0.662
##    .wy3               0.345    0.031   10.971    0.000    0.284    0.407
##    .wm3               0.478    0.044   10.985    0.000    0.393    0.564
##    .wx4               0.611    0.058   10.458    0.000    0.496    0.725
##    .wy4               0.380    0.036   10.459    0.000    0.309    0.451
##    .wm4               0.443    0.042   10.461    0.000    0.360    0.525
##    .wx5               0.488    0.047   10.292    0.000    0.395    0.581
##    .wy5               0.392    0.038   10.294    0.000    0.318    0.467
##    .wm5               0.355    0.035   10.273    0.000    0.287    0.423
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.735    0.735
##     0.404    0.404
##     0.634    0.634
##     0.623    0.623
##     0.434    0.434
##     0.524    0.524
##     0.677    0.677
##     0.403    0.403
##     0.467    0.467
##     0.583    0.583
##     0.407    0.407
##     0.380    0.380
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

Perceived status difference at time t does not predict positive emotions at time t+1
Positive emotions at time t predict sleep at time t+1, b = .07, p = .005

# Same model as above code, but fit with d_black dataset this time
PEmoSleepCLPM_b2AR_controls.fit <- lavaan(PEmoSleepCLPM_2AR_controls, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoSleepCLPM_b2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 59 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           451         482
##   Number of missing patterns                         7            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               182.009
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1768.041
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.956
##   Tucker-Lewis Index (TLI)                       0.934
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4609.890
##   Loglikelihood unrestricted model (H1)      -4518.885
##                                                       
##   Akaike (AIC)                                9387.779
##   Bayesian (BIC)                              9733.142
##   Sample-size adjusted Bayesian (BIC)         9466.558
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.038
##   90 Percent confidence interval - lower         0.028
##   90 Percent confidence interval - upper         0.047
##   P-value RMSEA <= 0.05                          0.984
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.047
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##     gSleep.2          1.000                               1.000    1.000
##     gSleep.3          1.000                               1.000    1.000
##     gSleep.4          1.000                               1.000    1.000
##     gSleep.5          1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     gSleep.1          1.000                               1.000    1.000
##   wy2 =~                                                                
##     gSleep.2          1.000                               1.000    1.000
##   wy3 =~                                                                
##     gSleep.3          1.000                               1.000    1.000
##   wy4 =~                                                                
##     gSleep.4          1.000                               1.000    1.000
##   wy5 =~                                                                
##     gSleep.5          1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.994    0.985
##                   
##     0.968    0.984
##                   
##     0.968    0.984
##                   
##     0.977    0.985
##                   
##     0.952    0.984
##                   
##     0.967    0.993
##                   
##     0.988    0.993
##                   
##     0.987    0.993
##                   
##     1.004    0.993
##                   
##     0.975    0.993
##                   
##     0.997    0.994
##                   
##     0.992    0.994
##                   
##     0.980    0.994
##                   
##     0.949    0.993
##                   
##     0.965    0.993
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)   -0.135    0.076   -1.781    0.075   -0.283    0.014
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)   -0.135    0.076   -1.781    0.075   -0.283    0.014
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)   -0.135    0.076   -1.781    0.075   -0.283    0.014
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)   -0.135    0.076   -1.781    0.075   -0.283    0.014
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)   -0.135    0.076   -1.781    0.075   -0.283    0.014
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.210    0.086   -2.446    0.014   -0.379   -0.042
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.210    0.086   -2.446    0.014   -0.379   -0.042
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.210    0.086   -2.446    0.014   -0.379   -0.042
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.210    0.086   -2.446    0.014   -0.379   -0.042
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.210    0.086   -2.446    0.014   -0.379   -0.042
##   gSleep.1 ~                                                            
##     GndrBnr (Gen3)   -0.150    0.086   -1.746    0.081   -0.318    0.018
##   gSleep.2 ~                                                            
##     GndrBnr (Gen3)   -0.150    0.086   -1.746    0.081   -0.318    0.018
##   gSleep.3 ~                                                            
##     GndrBnr (Gen3)   -0.150    0.086   -1.746    0.081   -0.318    0.018
##   gSleep.4 ~                                                            
##     GndrBnr (Gen3)   -0.150    0.086   -1.746    0.081   -0.318    0.018
##   gSleep.5 ~                                                            
##     GndrBnr (Gen3)   -0.150    0.086   -1.746    0.081   -0.318    0.018
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)   -0.075    0.040   -1.893    0.058   -0.152    0.003
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)   -0.075    0.040   -1.893    0.058   -0.152    0.003
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)   -0.075    0.040   -1.893    0.058   -0.152    0.003
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)   -0.075    0.040   -1.893    0.058   -0.152    0.003
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)   -0.075    0.040   -1.893    0.058   -0.152    0.003
##   posEmo.1 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.002    0.999   -0.088    0.088
##   posEmo.2 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.002    0.999   -0.088    0.088
##   posEmo.3 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.002    0.999   -0.088    0.088
##   posEmo.4 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.002    0.999   -0.088    0.088
##   posEmo.5 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.002    0.999   -0.088    0.088
##   gSleep.1 ~                                                            
##     Edu     (Edu3)   -0.016    0.045   -0.366    0.714   -0.105    0.072
##   gSleep.2 ~                                                            
##     Edu     (Edu3)   -0.016    0.045   -0.366    0.714   -0.105    0.072
##   gSleep.3 ~                                                            
##     Edu     (Edu3)   -0.016    0.045   -0.366    0.714   -0.105    0.072
##   gSleep.4 ~                                                            
##     Edu     (Edu3)   -0.016    0.045   -0.366    0.714   -0.105    0.072
##   gSleep.5 ~                                                            
##     Edu     (Edu3)   -0.016    0.045   -0.366    0.714   -0.105    0.072
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.789    0.005   -0.184   -0.032
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.789    0.005   -0.184   -0.032
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.789    0.005   -0.184   -0.032
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.789    0.005   -0.184   -0.032
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.789    0.005   -0.184   -0.032
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.903    0.366   -0.047    0.126
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.903    0.366   -0.047    0.126
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.903    0.366   -0.047    0.126
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.903    0.366   -0.047    0.126
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.040    0.044    0.903    0.366   -0.047    0.126
##   gSleep.1 ~                                                            
##     Income  (Inc3)    0.095    0.044    2.176    0.030    0.009    0.181
##   gSleep.2 ~                                                            
##     Income  (Inc3)    0.095    0.044    2.176    0.030    0.009    0.181
##   gSleep.3 ~                                                            
##     Income  (Inc3)    0.095    0.044    2.176    0.030    0.009    0.181
##   gSleep.4 ~                                                            
##     Income  (Inc3)    0.095    0.044    2.176    0.030    0.009    0.181
##   gSleep.5 ~                                                            
##     Income  (Inc3)    0.095    0.044    2.176    0.030    0.009    0.181
##   LadderDif.1 ~                                                         
##     Age     (Age1)    0.040    0.038    1.051    0.293   -0.034    0.113
##   LadderDif.2 ~                                                         
##     Age     (Age1)    0.040    0.038    1.051    0.293   -0.034    0.113
##   LadderDif.3 ~                                                         
##     Age     (Age1)    0.040    0.038    1.051    0.293   -0.034    0.113
##   LadderDif.4 ~                                                         
##     Age     (Age1)    0.040    0.038    1.051    0.293   -0.034    0.113
##   LadderDif.5 ~                                                         
##     Age     (Age1)    0.040    0.038    1.051    0.293   -0.034    0.113
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.032    0.043    0.749    0.454   -0.052    0.116
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.032    0.043    0.749    0.454   -0.052    0.116
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.032    0.043    0.749    0.454   -0.052    0.116
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.032    0.043    0.749    0.454   -0.052    0.116
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.032    0.043    0.749    0.454   -0.052    0.116
##   gSleep.1 ~                                                            
##     Age     (Age3)   -0.038    0.043   -0.885    0.376   -0.121    0.046
##   gSleep.2 ~                                                            
##     Age     (Age3)   -0.038    0.043   -0.885    0.376   -0.121    0.046
##   gSleep.3 ~                                                            
##     Age     (Age3)   -0.038    0.043   -0.885    0.376   -0.121    0.046
##   gSleep.4 ~                                                            
##     Age     (Age3)   -0.038    0.043   -0.885    0.376   -0.121    0.046
##   gSleep.5 ~                                                            
##     Age     (Age3)   -0.038    0.043   -0.885    0.376   -0.121    0.046
##   wy2 ~                                                                 
##     wy1               0.605    0.048   12.661    0.000    0.511    0.698
##     wm1       (b1)    0.070    0.025    2.788    0.005    0.021    0.120
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.045    0.030   -1.533    0.125   -0.104    0.013
##     wy2               0.493    0.063    7.865    0.000    0.370    0.616
##     wm2       (b1)    0.070    0.025    2.788    0.005    0.021    0.120
##     wy1               0.254    0.061    4.137    0.000    0.134    0.374
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.045    0.030   -1.533    0.125   -0.104    0.013
##     wy3               0.453    0.064    7.095    0.000    0.328    0.578
##     wm3       (b1)    0.070    0.025    2.788    0.005    0.021    0.120
##     wy2               0.372    0.061    6.044    0.000    0.251    0.492
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.045    0.030   -1.533    0.125   -0.104    0.013
##     wy4               0.500    0.061    8.269    0.000    0.382    0.619
##     wm4       (b1)    0.070    0.025    2.788    0.005    0.021    0.120
##     wy3               0.328    0.061    5.347    0.000    0.208    0.449
##   wx2 ~                                                                 
##     wx1               0.218    0.061    3.556    0.000    0.098    0.339
##     wm1       (b2)   -0.039    0.031   -1.236    0.216   -0.101    0.023
##   wx3 ~                                                                 
##     wx2               0.432    0.066    6.561    0.000    0.303    0.561
##     wy1      (cp2)   -0.004    0.035   -0.118    0.906   -0.073    0.065
##     wm2       (b2)   -0.039    0.031   -1.236    0.216   -0.101    0.023
##     wx1               0.167    0.064    2.619    0.009    0.042    0.292
##   wx4 ~                                                                 
##     wx3               0.281    0.078    3.589    0.000    0.127    0.434
##     wy2      (cp2)   -0.004    0.035   -0.118    0.906   -0.073    0.065
##     wm3       (b2)   -0.039    0.031   -1.236    0.216   -0.101    0.023
##     wx2               0.239    0.079    3.018    0.003    0.084    0.394
##   wx5 ~                                                                 
##     wx4               0.253    0.064    3.931    0.000    0.127    0.380
##     wy3      (cp2)   -0.004    0.035   -0.118    0.906   -0.073    0.065
##     wm4       (b2)   -0.039    0.031   -1.236    0.216   -0.101    0.023
##     wx3               0.411    0.069    5.924    0.000    0.275    0.547
##   wm2 ~                                                                 
##     wx1       (a1)   -0.037    0.025   -1.472    0.141   -0.087    0.012
##     wy1       (a2)    0.032    0.025    1.315    0.188   -0.016    0.081
##     wm1               0.518    0.053    9.825    0.000    0.415    0.622
##   wm3 ~                                                                 
##     wx2       (a1)   -0.037    0.025   -1.472    0.141   -0.087    0.012
##     wy2       (a2)    0.032    0.025    1.315    0.188   -0.016    0.081
##     wm2               0.588    0.054   10.841    0.000    0.482    0.694
##     wm1               0.228    0.053    4.320    0.000    0.124    0.331
##   wm4 ~                                                                 
##     wx3       (a1)   -0.037    0.025   -1.472    0.141   -0.087    0.012
##     wy3       (a2)    0.032    0.025    1.315    0.188   -0.016    0.081
##     wm3               0.446    0.070    6.401    0.000    0.310    0.583
##     wm2               0.325    0.067    4.821    0.000    0.193    0.456
##   wm5 ~                                                                 
##     wx4       (a1)   -0.037    0.025   -1.472    0.141   -0.087    0.012
##     wy4       (a2)    0.032    0.025    1.315    0.188   -0.016    0.081
##     wm4               0.332    0.071    4.663    0.000    0.192    0.471
##     wm3               0.476    0.068    6.995    0.000    0.343    0.610
##    Std.lv  Std.all
##                   
##    -0.135   -0.067
##                   
##    -0.135   -0.068
##                   
##    -0.135   -0.068
##                   
##    -0.135   -0.068
##                   
##    -0.135   -0.070
##                   
##    -0.210   -0.105
##                   
##    -0.210   -0.105
##                   
##    -0.210   -0.106
##                   
##    -0.210   -0.110
##                   
##    -0.210   -0.108
##                   
##    -0.150   -0.077
##                   
##    -0.150   -0.075
##                   
##    -0.150   -0.075
##                   
##    -0.150   -0.074
##                   
##    -0.150   -0.076
##                   
##    -0.075   -0.074
##                   
##    -0.075   -0.076
##                   
##    -0.075   -0.076
##                   
##    -0.075   -0.075
##                   
##    -0.075   -0.077
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##    -0.016   -0.017
##                   
##    -0.016   -0.017
##                   
##    -0.016   -0.017
##                   
##    -0.016   -0.016
##                   
##    -0.016   -0.017
##                   
##    -0.108   -0.107
##                   
##    -0.108   -0.110
##                   
##    -0.108   -0.110
##                   
##    -0.108   -0.109
##                   
##    -0.108   -0.111
##                   
##     0.040    0.040
##                   
##     0.040    0.040
##                   
##     0.040    0.040
##                   
##     0.040    0.042
##                   
##     0.040    0.041
##                   
##     0.095    0.098
##                   
##     0.095    0.096
##                   
##     0.095    0.096
##                   
##     0.095    0.094
##                   
##     0.095    0.097
##                   
##     0.040    0.039
##                   
##     0.040    0.040
##                   
##     0.040    0.040
##                   
##     0.040    0.040
##                   
##     0.040    0.041
##                   
##     0.032    0.032
##                   
##     0.032    0.032
##                   
##     0.032    0.032
##                   
##     0.032    0.034
##                   
##     0.032    0.033
##                   
##    -0.038   -0.039
##                   
##    -0.038   -0.038
##                   
##    -0.038   -0.038
##                   
##    -0.038   -0.037
##                   
##    -0.038   -0.038
##                   
##     0.592    0.592
##     0.071    0.071
##                   
##    -0.046   -0.046
##     0.493    0.493
##     0.071    0.071
##     0.249    0.249
##                   
##    -0.044   -0.044
##     0.445    0.445
##     0.069    0.069
##     0.365    0.365
##                   
##    -0.045   -0.045
##     0.516    0.516
##     0.069    0.069
##     0.332    0.332
##                   
##     0.224    0.224
##    -0.040   -0.040
##                   
##     0.432    0.432
##    -0.004   -0.004
##    -0.040   -0.040
##     0.171    0.171
##                   
##     0.278    0.278
##    -0.004   -0.004
##    -0.039   -0.039
##     0.237    0.237
##                   
##     0.260    0.260
##    -0.004   -0.004
##    -0.039   -0.039
##     0.418    0.418
##                   
##    -0.037   -0.037
##     0.032    0.032
##     0.521    0.521
##                   
##    -0.037   -0.037
##     0.033    0.033
##     0.595    0.595
##     0.232    0.232
##                   
##    -0.038   -0.038
##     0.034    0.034
##     0.461    0.461
##     0.339    0.339
##                   
##    -0.038   -0.038
##     0.034    0.034
##     0.326    0.326
##     0.484    0.484
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.053    0.045    1.164    0.245   -0.036    0.142
##     wm1              -0.012    0.047   -0.260    0.795   -0.104    0.080
##   wy1 ~~                                                                
##     wm1               0.300    0.048    6.301    0.000    0.207    0.393
##  .wx2 ~~                                                                
##    .wy2              -0.010    0.046   -0.209    0.834   -0.100    0.081
##  .wx3 ~~                                                                
##    .wy3              -0.059    0.042   -1.406    0.160   -0.141    0.023
##  .wx4 ~~                                                                
##    .wy4              -0.023    0.042   -0.543    0.587   -0.105    0.060
##  .wx5 ~~                                                                
##    .wy5               0.063    0.034    1.882    0.060   -0.003    0.129
##  .wx2 ~~                                                                
##    .wm2              -0.034    0.050   -0.677    0.499   -0.132    0.064
##  .wx3 ~~                                                                
##    .wm3              -0.010    0.038   -0.256    0.798   -0.084    0.065
##  .wx4 ~~                                                                
##    .wm4               0.014    0.040    0.341    0.733   -0.064    0.092
##  .wx5 ~~                                                                
##    .wm5              -0.058    0.037   -1.565    0.118   -0.130    0.015
##  .wy2 ~~                                                                
##    .wm2               0.094    0.041    2.273    0.023    0.013    0.175
##  .wy3 ~~                                                                
##    .wm3               0.073    0.033    2.212    0.027    0.008    0.137
##  .wy4 ~~                                                                
##    .wm4               0.035    0.030    1.175    0.240   -0.023    0.093
##  .wy5 ~~                                                                
##    .wm5              -0.007    0.027   -0.266    0.790   -0.059    0.045
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.055    0.055
##    -0.012   -0.012
##                   
##     0.311    0.311
##                   
##    -0.013   -0.013
##                   
##    -0.100   -0.100
##                   
##    -0.040   -0.040
##                   
##     0.144    0.144
##                   
##    -0.043   -0.043
##                   
##    -0.018   -0.018
##                   
##     0.025    0.025
##                   
##    -0.120   -0.120
##                   
##     0.145    0.145
##                   
##     0.160    0.160
##                   
##     0.087    0.087
##                   
##    -0.020   -0.020
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.071    0.061    1.155    0.248   -0.049    0.191
##    .LadderDif.2       0.129    0.073    1.782    0.075   -0.013    0.272
##    .LadderDif.3       0.111    0.077    1.440    0.150   -0.040    0.262
##    .LadderDif.4       0.152    0.081    1.872    0.061   -0.007    0.310
##    .LadderDif.5       0.130    0.081    1.609    0.108   -0.028    0.288
##    .gSleep.1          3.109    0.064   48.563    0.000    2.984    3.235
##    .gSleep.2          3.132    0.073   43.156    0.000    2.990    3.275
##    .gSleep.3          3.287    0.077   42.807    0.000    3.136    3.437
##    .gSleep.4          3.366    0.080   42.223    0.000    3.209    3.522
##    .gSleep.5          3.348    0.080   41.916    0.000    3.191    3.504
##    .posEmo.1          0.110    0.065    1.687    0.092   -0.018    0.237
##    .posEmo.2          0.105    0.074    1.411    0.158   -0.041    0.250
##    .posEmo.3          0.107    0.076    1.408    0.159   -0.042    0.256
##    .posEmo.4          0.087    0.077    1.121    0.262   -0.065    0.238
##    .posEmo.5          0.080    0.080    0.996    0.319   -0.077    0.236
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.071    0.070
##     0.129    0.132
##     0.111    0.113
##     0.152    0.153
##     0.130    0.134
##     3.109    3.190
##     3.132    3.149
##     3.287    3.305
##     3.366    3.328
##     3.348    3.409
##     0.110    0.109
##     0.105    0.105
##     0.107    0.108
##     0.087    0.091
##     0.080    0.082
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.988    0.066   14.949    0.000    0.858    1.118
##     wy1               0.936    0.062   15.002    0.000    0.814    1.058
##     wm1               0.994    0.066   14.999    0.000    0.864    1.124
##    .wx2               0.889    0.080   11.178    0.000    0.733    1.045
##    .wy2               0.603    0.054   11.232    0.000    0.498    0.708
##    .wm2               0.703    0.063   11.223    0.000    0.580    0.826
##    .wx3               0.699    0.070   10.038    0.000    0.563    0.836
##    .wy3               0.503    0.050   10.031    0.000    0.404    0.601
##    .wm3               0.410    0.041   10.031    0.000    0.330    0.490
##    .wx4               0.762    0.079    9.649    0.000    0.607    0.917
##    .wy4               0.418    0.043    9.648    0.000    0.333    0.503
##    .wm4               0.381    0.039    9.644    0.000    0.303    0.458
##    .wx5               0.603    0.064    9.435    0.000    0.478    0.728
##    .wy5               0.319    0.034    9.433    0.000    0.253    0.386
##    .wm5               0.381    0.040    9.438    0.000    0.302    0.460
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .gSleep.1          0.000                               0.000    0.000
##    .gSleep.2          0.000                               0.000    0.000
##    .gSleep.3          0.000                               0.000    0.000
##    .gSleep.4          0.000                               0.000    0.000
##    .gSleep.5          0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.948    0.948
##     0.618    0.618
##     0.715    0.715
##     0.746    0.746
##     0.515    0.515
##     0.427    0.427
##     0.799    0.799
##     0.415    0.415
##     0.423    0.423
##     0.665    0.665
##     0.336    0.336
##     0.409    0.409
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

BONUS Models: 2nd Order AR & Controls Models With Individual Health Items

These models look at individual health items as outcome variables: pain, fatigue, and physical ability. NOTE: I did not use the reverse scored version of the pain and fatigue variables, so higher values indicate more pain and fatigue. Higher physical ability scores indicate better physical ability.

LadderDif, Positive Emotions, and Pain, 2nd Order AR, controls

White Participants

(a1) Perceived status difference at time t predicts less positive emotions at time t+1, b = -.07, p = .004
(b1) Positive emotions at time t do not predict pain at time t+1

PEmoPainCLPM_2AR_controls <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*Pain_1 + 1*Pain_2 + 1*Pain_3 + 1*Pain_4 + 1*Pain_5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*Pain_1
  wy2 =~ 1*Pain_2
  wy3 =~ 1*Pain_3
  wy4 =~ 1*Pain_4
  wy5 =~ 1*Pain_5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5
  
  # Regression of observed variables on controls (constrained). 
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Gen1*GenderBinary
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Gen2*GenderBinary
  Pain_1 + Pain_2 + Pain_3 + Pain_4 + Pain_5 ~ Gen3*GenderBinary
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Edu1*Edu
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Edu2*Edu
  Pain_1 + Pain_2 + Pain_3 + Pain_4 + Pain_5 ~ Edu3*Edu
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Inc1*Income
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Inc2*Income
  Pain_1 + Pain_2 + Pain_3 + Pain_4 + Pain_5  ~ Inc3*Income
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Age1*Age
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Age2*Age
  Pain_1 + Pain_2 + Pain_3 + Pain_4 + Pain_5  ~ Age3*Age

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoPainCLPM_w2AR_controls.fit <- lavaan(PEmoPainCLPM_2AR_controls, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoPainCLPM_w2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 65 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           433         482
##   Number of missing patterns                         8            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               214.424
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2416.129
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.954
##   Tucker-Lewis Index (TLI)                       0.932
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4868.570
##   Loglikelihood unrestricted model (H1)      -4761.358
##                                                       
##   Akaike (AIC)                                9905.140
##   Bayesian (BIC)                             10247.082
##   Sample-size adjusted Bayesian (BIC)         9980.512
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.046
##   90 Percent confidence interval - lower         0.037
##   90 Percent confidence interval - upper         0.056
##   P-value RMSEA <= 0.05                          0.729
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.046
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     Pain_1            1.000                               1.000    1.000
##     Pain_2            1.000                               1.000    1.000
##     Pain_3            1.000                               1.000    1.000
##     Pain_4            1.000                               1.000    1.000
##     Pain_5            1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     Pain_1            1.000                               1.000    1.000
##   wy2 =~                                                                
##     Pain_2            1.000                               1.000    1.000
##   wy3 =~                                                                
##     Pain_3            1.000                               1.000    1.000
##   wy4 =~                                                                
##     Pain_4            1.000                               1.000    1.000
##   wy5 =~                                                                
##     Pain_5            1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.956    0.955
##                   
##     0.969    0.956
##                   
##     0.950    0.955
##                   
##     0.952    0.955
##                   
##     0.921    0.952
##                   
##     0.969    0.956
##                   
##     0.925    0.952
##                   
##     0.855    0.945
##                   
##     0.894    0.949
##                   
##     0.893    0.949
##                   
##     0.977    0.981
##                   
##     0.950    0.979
##                   
##     0.958    0.980
##                   
##     0.971    0.980
##                   
##     0.972    0.980
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)    0.319    0.077    4.144    0.000    0.168    0.469
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)    0.319    0.077    4.144    0.000    0.168    0.469
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)    0.319    0.077    4.144    0.000    0.168    0.469
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)    0.319    0.077    4.144    0.000    0.168    0.469
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)    0.319    0.077    4.144    0.000    0.168    0.469
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.154    0.082   -1.880    0.060   -0.314    0.007
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.154    0.082   -1.880    0.060   -0.314    0.007
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.154    0.082   -1.880    0.060   -0.314    0.007
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.154    0.082   -1.880    0.060   -0.314    0.007
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.154    0.082   -1.880    0.060   -0.314    0.007
##   Pain_1 ~                                                              
##     GndrBnr (Gen3)    0.148    0.080    1.857    0.063   -0.008    0.304
##   Pain_2 ~                                                              
##     GndrBnr (Gen3)    0.148    0.080    1.857    0.063   -0.008    0.304
##   Pain_3 ~                                                              
##     GndrBnr (Gen3)    0.148    0.080    1.857    0.063   -0.008    0.304
##   Pain_4 ~                                                              
##     GndrBnr (Gen3)    0.148    0.080    1.857    0.063   -0.008    0.304
##   Pain_5 ~                                                              
##     GndrBnr (Gen3)    0.148    0.080    1.857    0.063   -0.008    0.304
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)    0.021    0.041    0.516    0.606   -0.059    0.101
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)    0.021    0.041    0.516    0.606   -0.059    0.101
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)    0.021    0.041    0.516    0.606   -0.059    0.101
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)    0.021    0.041    0.516    0.606   -0.059    0.101
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)    0.021    0.041    0.516    0.606   -0.059    0.101
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.436    0.151   -0.149    0.023
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.436    0.151   -0.149    0.023
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.436    0.151   -0.149    0.023
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.436    0.151   -0.149    0.023
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.436    0.151   -0.149    0.023
##   Pain_1 ~                                                              
##     Edu     (Edu3)   -0.204    0.042   -4.847    0.000   -0.286   -0.122
##   Pain_2 ~                                                              
##     Edu     (Edu3)   -0.204    0.042   -4.847    0.000   -0.286   -0.122
##   Pain_3 ~                                                              
##     Edu     (Edu3)   -0.204    0.042   -4.847    0.000   -0.286   -0.122
##   Pain_4 ~                                                              
##     Edu     (Edu3)   -0.204    0.042   -4.847    0.000   -0.286   -0.122
##   Pain_5 ~                                                              
##     Edu     (Edu3)   -0.204    0.042   -4.847    0.000   -0.286   -0.122
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.197    0.000   -0.333   -0.173
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.197    0.000   -0.333   -0.173
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.197    0.000   -0.333   -0.173
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.197    0.000   -0.333   -0.173
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.197    0.000   -0.333   -0.173
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.154    0.043    3.535    0.000    0.068    0.239
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.154    0.043    3.535    0.000    0.068    0.239
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.154    0.043    3.535    0.000    0.068    0.239
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.154    0.043    3.535    0.000    0.068    0.239
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.154    0.043    3.535    0.000    0.068    0.239
##   Pain_1 ~                                                              
##     Income  (Inc3)   -0.109    0.042   -2.590    0.010   -0.192   -0.027
##   Pain_2 ~                                                              
##     Income  (Inc3)   -0.109    0.042   -2.590    0.010   -0.192   -0.027
##   Pain_3 ~                                                              
##     Income  (Inc3)   -0.109    0.042   -2.590    0.010   -0.192   -0.027
##   Pain_4 ~                                                              
##     Income  (Inc3)   -0.109    0.042   -2.590    0.010   -0.192   -0.027
##   Pain_5 ~                                                              
##     Income  (Inc3)   -0.109    0.042   -2.590    0.010   -0.192   -0.027
##   LadderDif.1 ~                                                         
##     Age     (Age1)   -0.015    0.039   -0.392    0.695   -0.091    0.061
##   LadderDif.2 ~                                                         
##     Age     (Age1)   -0.015    0.039   -0.392    0.695   -0.091    0.061
##   LadderDif.3 ~                                                         
##     Age     (Age1)   -0.015    0.039   -0.392    0.695   -0.091    0.061
##   LadderDif.4 ~                                                         
##     Age     (Age1)   -0.015    0.039   -0.392    0.695   -0.091    0.061
##   LadderDif.5 ~                                                         
##     Age     (Age1)   -0.015    0.039   -0.392    0.695   -0.091    0.061
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.097    0.041    2.359    0.018    0.016    0.178
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.097    0.041    2.359    0.018    0.016    0.178
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.097    0.041    2.359    0.018    0.016    0.178
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.097    0.041    2.359    0.018    0.016    0.178
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.097    0.041    2.359    0.018    0.016    0.178
##   Pain_1 ~                                                              
##     Age     (Age3)    0.136    0.040    3.419    0.001    0.058    0.215
##   Pain_2 ~                                                              
##     Age     (Age3)    0.136    0.040    3.419    0.001    0.058    0.215
##   Pain_3 ~                                                              
##     Age     (Age3)    0.136    0.040    3.419    0.001    0.058    0.215
##   Pain_4 ~                                                              
##     Age     (Age3)    0.136    0.040    3.419    0.001    0.058    0.215
##   Pain_5 ~                                                              
##     Age     (Age3)    0.136    0.040    3.419    0.001    0.058    0.215
##   wy2 ~                                                                 
##     wy1               0.614    0.041   15.001    0.000    0.534    0.695
##     wm1       (b1)    0.000    0.021    0.008    0.993   -0.041    0.041
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.012    0.026   -0.457    0.648   -0.063    0.039
##     wy2               0.432    0.052    8.377    0.000    0.331    0.533
##     wm2       (b1)    0.000    0.021    0.008    0.993   -0.041    0.041
##     wy1               0.300    0.049    6.140    0.000    0.204    0.396
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.012    0.026   -0.457    0.648   -0.063    0.039
##     wy3               0.500    0.070    7.157    0.000    0.363    0.637
##     wm3       (b1)    0.000    0.021    0.008    0.993   -0.041    0.041
##     wy2               0.280    0.064    4.376    0.000    0.154    0.405
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.012    0.026   -0.457    0.648   -0.063    0.039
##     wy4               0.375    0.065    5.768    0.000    0.248    0.503
##     wm4       (b1)    0.000    0.021    0.008    0.993   -0.041    0.041
##     wy3               0.434    0.068    6.405    0.000    0.301    0.567
##   wx2 ~                                                                 
##     wx1               0.508    0.050   10.107    0.000    0.410    0.607
##     wm1       (b2)   -0.034    0.025   -1.323    0.186   -0.083    0.016
##   wx3 ~                                                                 
##     wx2               0.288    0.061    4.699    0.000    0.168    0.408
##     wy1      (cp2)   -0.018    0.031   -0.564    0.573   -0.079    0.044
##     wm2       (b2)   -0.034    0.025   -1.323    0.186   -0.083    0.016
##     wx1               0.405    0.059    6.864    0.000    0.289    0.521
##   wx4 ~                                                                 
##     wx3               0.261    0.065    4.016    0.000    0.134    0.389
##     wy2      (cp2)   -0.018    0.031   -0.564    0.573   -0.079    0.044
##     wm3       (b2)   -0.034    0.025   -1.323    0.186   -0.083    0.016
##     wx2               0.379    0.068    5.583    0.000    0.246    0.512
##   wx5 ~                                                                 
##     wx4               0.291    0.057    5.082    0.000    0.179    0.403
##     wy3      (cp2)   -0.018    0.031   -0.564    0.573   -0.079    0.044
##     wm4       (b2)   -0.034    0.025   -1.323    0.186   -0.083    0.016
##     wx3               0.437    0.056    7.811    0.000    0.328    0.547
##   wm2 ~                                                                 
##     wx1       (a1)   -0.070    0.024   -2.906    0.004   -0.117   -0.023
##     wy1       (a2)   -0.009    0.024   -0.360    0.719   -0.056    0.039
##     wm1               0.561    0.043   13.028    0.000    0.477    0.646
##   wm3 ~                                                                 
##     wx2       (a1)   -0.070    0.024   -2.906    0.004   -0.117   -0.023
##     wy2       (a2)   -0.009    0.024   -0.360    0.719   -0.056    0.039
##     wm2               0.550    0.058    9.492    0.000    0.436    0.664
##     wm1               0.190    0.057    3.333    0.001    0.078    0.302
##   wm4 ~                                                                 
##     wx3       (a1)   -0.070    0.024   -2.906    0.004   -0.117   -0.023
##     wy3       (a2)   -0.009    0.024   -0.360    0.719   -0.056    0.039
##     wm3               0.532    0.063    8.433    0.000    0.408    0.656
##     wm2               0.256    0.065    3.953    0.000    0.129    0.383
##   wm5 ~                                                                 
##     wx4       (a1)   -0.070    0.024   -2.906    0.004   -0.117   -0.023
##     wy4       (a2)   -0.009    0.024   -0.360    0.719   -0.056    0.039
##     wm4               0.377    0.060    6.335    0.000    0.260    0.494
##     wm3               0.461    0.060    7.709    0.000    0.344    0.578
##    Std.lv  Std.all
##                   
##     0.319    0.159
##                   
##     0.319    0.157
##                   
##     0.319    0.160
##                   
##     0.319    0.160
##                   
##     0.319    0.165
##                   
##    -0.154   -0.077
##                   
##    -0.154   -0.079
##                   
##    -0.154   -0.079
##                   
##    -0.154   -0.077
##                   
##    -0.154   -0.077
##                   
##     0.148    0.073
##                   
##     0.148    0.076
##                   
##     0.148    0.082
##                   
##     0.148    0.079
##                   
##     0.148    0.079
##                   
##     0.021    0.021
##                   
##     0.021    0.021
##                   
##     0.021    0.021
##                   
##     0.021    0.021
##                   
##     0.021    0.022
##                   
##    -0.063   -0.063
##                   
##    -0.063   -0.065
##                   
##    -0.063   -0.064
##                   
##    -0.063   -0.063
##                   
##    -0.063   -0.063
##                   
##    -0.204   -0.201
##                   
##    -0.204   -0.210
##                   
##    -0.204   -0.225
##                   
##    -0.204   -0.216
##                   
##    -0.204   -0.216
##                   
##    -0.253   -0.253
##                   
##    -0.253   -0.250
##                   
##    -0.253   -0.254
##                   
##    -0.253   -0.254
##                   
##    -0.253   -0.261
##                   
##     0.154    0.154
##                   
##     0.154    0.158
##                   
##     0.154    0.157
##                   
##     0.154    0.155
##                   
##     0.154    0.155
##                   
##    -0.109   -0.108
##                   
##    -0.109   -0.113
##                   
##    -0.109   -0.121
##                   
##    -0.109   -0.116
##                   
##    -0.109   -0.116
##                   
##    -0.015   -0.015
##                   
##    -0.015   -0.015
##                   
##    -0.015   -0.015
##                   
##    -0.015   -0.015
##                   
##    -0.015   -0.016
##                   
##     0.097    0.097
##                   
##     0.097    0.100
##                   
##     0.097    0.099
##                   
##     0.097    0.098
##                   
##     0.097    0.098
##                   
##     0.136    0.134
##                   
##     0.136    0.140
##                   
##     0.136    0.150
##                   
##     0.136    0.144
##                   
##     0.136    0.144
##                   
##     0.644    0.644
##     0.000    0.000
##                   
##    -0.013   -0.013
##     0.467    0.467
##     0.000    0.000
##     0.340    0.340
##                   
##    -0.013   -0.013
##     0.478    0.478
##     0.000    0.000
##     0.289    0.289
##                   
##    -0.013   -0.013
##     0.376    0.376
##     0.000    0.000
##     0.416    0.416
##                   
##     0.502    0.502
##    -0.034   -0.034
##                   
##     0.294    0.294
##    -0.018   -0.018
##    -0.034   -0.034
##     0.407    0.407
##                   
##     0.261    0.261
##    -0.017   -0.017
##    -0.034   -0.034
##     0.386    0.386
##                   
##     0.301    0.301
##    -0.016   -0.016
##    -0.035   -0.035
##     0.452    0.452
##                   
##    -0.070   -0.070
##    -0.009   -0.009
##     0.577    0.577
##                   
##    -0.071   -0.071
##    -0.008   -0.008
##     0.546    0.546
##     0.194    0.194
##                   
##    -0.068   -0.068
##    -0.008   -0.008
##     0.525    0.525
##     0.251    0.251
##                   
##    -0.068   -0.068
##    -0.008   -0.008
##     0.377    0.377
##     0.454    0.454
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.217    0.046    4.730    0.000    0.127    0.307
##     wm1              -0.182    0.046   -3.970    0.000   -0.272   -0.092
##   wy1 ~~                                                                
##     wm1              -0.063    0.046   -1.378    0.168   -0.152    0.027
##  .wx2 ~~                                                                
##    .wy2               0.070    0.035    2.026    0.043    0.002    0.138
##  .wx3 ~~                                                                
##    .wy3               0.039    0.028    1.374    0.169   -0.017    0.094
##  .wx4 ~~                                                                
##    .wy4               0.011    0.034    0.313    0.754   -0.057    0.078
##  .wx5 ~~                                                                
##    .wy5              -0.008    0.030   -0.252    0.801   -0.066    0.051
##  .wx2 ~~                                                                
##    .wm2              -0.041    0.037   -1.128    0.260   -0.114    0.031
##  .wx3 ~~                                                                
##    .wm3               0.007    0.034    0.218    0.828   -0.059    0.073
##  .wx4 ~~                                                                
##    .wm4              -0.000    0.035   -0.005    0.996   -0.069    0.069
##  .wx5 ~~                                                                
##    .wm5              -0.011    0.029   -0.381    0.703   -0.068    0.046
##  .wy2 ~~                                                                
##    .wm2              -0.064    0.031   -2.043    0.041   -0.126   -0.003
##  .wy3 ~~                                                                
##    .wm3               0.029    0.026    1.119    0.263   -0.022    0.080
##  .wy4 ~~                                                                
##    .wm4               0.011    0.029    0.371    0.711   -0.046    0.068
##  .wy5 ~~                                                                
##    .wm5              -0.030    0.026   -1.147    0.252   -0.081    0.021
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.234    0.234
##    -0.195   -0.195
##                   
##    -0.066   -0.066
##                   
##     0.119    0.119
##                   
##     0.089    0.089
##                   
##     0.022    0.022
##                   
##    -0.018   -0.018
##                   
##    -0.065   -0.065
##                   
##     0.014    0.014
##                   
##    -0.000   -0.000
##                   
##    -0.026   -0.026
##                   
##    -0.119   -0.119
##                   
##     0.072    0.072
##                   
##     0.026    0.026
##                   
##    -0.079   -0.079
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.154    0.061   -2.549    0.011   -0.273   -0.036
##    .LadderDif.2      -0.161    0.066   -2.423    0.015   -0.291   -0.031
##    .LadderDif.3      -0.194    0.069   -2.822    0.005   -0.329   -0.059
##    .LadderDif.4      -0.174    0.072   -2.413    0.016   -0.316   -0.033
##    .LadderDif.5      -0.197    0.071   -2.764    0.006   -0.337   -0.057
##    .Pain_1            2.175    0.062   35.059    0.000    2.053    2.296
##    .Pain_2            2.158    0.064   33.578    0.000    2.032    2.284
##    .Pain_3            2.157    0.064   33.806    0.000    2.032    2.283
##    .Pain_4            2.153    0.068   31.465    0.000    2.019    2.287
##    .Pain_5            2.149    0.070   30.871    0.000    2.012    2.285
##    .posEmo.1          0.078    0.063    1.246    0.213   -0.045    0.202
##    .posEmo.2          0.076    0.066    1.142    0.253   -0.054    0.206
##    .posEmo.3          0.105    0.070    1.498    0.134   -0.032    0.243
##    .posEmo.4          0.098    0.073    1.344    0.179   -0.045    0.241
##    .posEmo.5          0.110    0.074    1.493    0.135   -0.034    0.255
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.154   -0.154
##    -0.161   -0.159
##    -0.194   -0.195
##    -0.174   -0.175
##    -0.197   -0.204
##     2.175    2.145
##     2.158    2.223
##     2.157    2.385
##     2.153    2.284
##     2.149    2.284
##     0.078    0.079
##     0.076    0.078
##     0.105    0.107
##     0.098    0.099
##     0.110    0.111
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.914    0.062   14.668    0.000    0.792    1.036
##     wy1               0.940    0.064   14.691    0.000    0.814    1.065
##     wm1               0.954    0.065   14.704    0.000    0.827    1.081
##    .wx2               0.695    0.057   12.263    0.000    0.584    0.806
##    .wy2               0.500    0.041   12.252    0.000    0.420    0.580
##    .wm2               0.582    0.047   12.273    0.000    0.489    0.675
##    .wx3               0.561    0.051   10.989    0.000    0.461    0.661
##    .wy3               0.340    0.031   10.980    0.000    0.279    0.400
##    .wm3               0.475    0.043   11.004    0.000    0.390    0.560
##    .wx4               0.613    0.059   10.465    0.000    0.498    0.727
##    .wy4               0.401    0.038   10.455    0.000    0.326    0.476
##    .wm4               0.438    0.042   10.467    0.000    0.356    0.520
##    .wx5               0.486    0.047   10.294    0.000    0.394    0.579
##    .wy5               0.380    0.037   10.280    0.000    0.308    0.453
##    .wm5               0.370    0.036   10.304    0.000    0.299    0.440
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .Pain_1            0.000                               0.000    0.000
##    .Pain_2            0.000                               0.000    0.000
##    .Pain_3            0.000                               0.000    0.000
##    .Pain_4            0.000                               0.000    0.000
##    .Pain_5            0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.741    0.741
##     0.585    0.585
##     0.645    0.645
##     0.621    0.621
##     0.465    0.465
##     0.518    0.518
##     0.676    0.676
##     0.501    0.501
##     0.464    0.464
##     0.574    0.574
##     0.477    0.477
##     0.391    0.391
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

Perceived status difference at time t does not predict positive emotions at time t+1
Positive emotions at time t do not predict pain at time t+1

# Same model as above code, but fit with d_black dataset this time
PEmoPainCLPM_b2AR_controls.fit <- lavaan(PEmoPainCLPM_2AR_controls, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoPainCLPM_b2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 50 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           451         482
##   Number of missing patterns                         7            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               197.057
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1620.779
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.941
##   Tucker-Lewis Index (TLI)                       0.912
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4713.956
##   Loglikelihood unrestricted model (H1)      -4615.427
##                                                       
##   Akaike (AIC)                                9595.911
##   Bayesian (BIC)                              9941.275
##   Sample-size adjusted Bayesian (BIC)         9674.690
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.041
##   90 Percent confidence interval - lower         0.032
##   90 Percent confidence interval - upper         0.051
##   P-value RMSEA <= 0.05                          0.933
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.047
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     Pain_1            1.000                               1.000    1.000
##     Pain_2            1.000                               1.000    1.000
##     Pain_3            1.000                               1.000    1.000
##     Pain_4            1.000                               1.000    1.000
##     Pain_5            1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     Pain_1            1.000                               1.000    1.000
##   wy2 =~                                                                
##     Pain_2            1.000                               1.000    1.000
##   wy3 =~                                                                
##     Pain_3            1.000                               1.000    1.000
##   wy4 =~                                                                
##     Pain_4            1.000                               1.000    1.000
##   wy5 =~                                                                
##     Pain_5            1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.994    0.985
##                   
##     0.968    0.984
##                   
##     0.969    0.984
##                   
##     0.978    0.985
##                   
##     0.949    0.984
##                   
##     1.052    0.987
##                   
##     1.044    0.987
##                   
##     0.929    0.984
##                   
##     0.992    0.986
##                   
##     1.001    0.986
##                   
##     0.997    0.994
##                   
##     0.993    0.994
##                   
##     0.982    0.994
##                   
##     0.955    0.994
##                   
##     0.972    0.994
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)   -0.128    0.076   -1.696    0.090   -0.276    0.020
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)   -0.128    0.076   -1.696    0.090   -0.276    0.020
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)   -0.128    0.076   -1.696    0.090   -0.276    0.020
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)   -0.128    0.076   -1.696    0.090   -0.276    0.020
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)   -0.128    0.076   -1.696    0.090   -0.276    0.020
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.208    0.086   -2.419    0.016   -0.376   -0.039
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.208    0.086   -2.419    0.016   -0.376   -0.039
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.208    0.086   -2.419    0.016   -0.376   -0.039
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.208    0.086   -2.419    0.016   -0.376   -0.039
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.208    0.086   -2.419    0.016   -0.376   -0.039
##   Pain_1 ~                                                              
##     GndrBnr (Gen3)   -0.035    0.089   -0.397    0.691   -0.210    0.139
##   Pain_2 ~                                                              
##     GndrBnr (Gen3)   -0.035    0.089   -0.397    0.691   -0.210    0.139
##   Pain_3 ~                                                              
##     GndrBnr (Gen3)   -0.035    0.089   -0.397    0.691   -0.210    0.139
##   Pain_4 ~                                                              
##     GndrBnr (Gen3)   -0.035    0.089   -0.397    0.691   -0.210    0.139
##   Pain_5 ~                                                              
##     GndrBnr (Gen3)   -0.035    0.089   -0.397    0.691   -0.210    0.139
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)   -0.077    0.040   -1.953    0.051   -0.155    0.000
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)   -0.077    0.040   -1.953    0.051   -0.155    0.000
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)   -0.077    0.040   -1.953    0.051   -0.155    0.000
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)   -0.077    0.040   -1.953    0.051   -0.155    0.000
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)   -0.077    0.040   -1.953    0.051   -0.155    0.000
##   posEmo.1 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.997   -0.088    0.089
##   posEmo.2 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.997   -0.088    0.089
##   posEmo.3 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.997   -0.088    0.089
##   posEmo.4 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.997   -0.088    0.089
##   posEmo.5 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.997   -0.088    0.089
##   Pain_1 ~                                                              
##     Edu     (Edu3)   -0.086    0.047   -1.849    0.064   -0.178    0.005
##   Pain_2 ~                                                              
##     Edu     (Edu3)   -0.086    0.047   -1.849    0.064   -0.178    0.005
##   Pain_3 ~                                                              
##     Edu     (Edu3)   -0.086    0.047   -1.849    0.064   -0.178    0.005
##   Pain_4 ~                                                              
##     Edu     (Edu3)   -0.086    0.047   -1.849    0.064   -0.178    0.005
##   Pain_5 ~                                                              
##     Edu     (Edu3)   -0.086    0.047   -1.849    0.064   -0.178    0.005
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.790    0.005   -0.184   -0.032
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.790    0.005   -0.184   -0.032
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.790    0.005   -0.184   -0.032
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.790    0.005   -0.184   -0.032
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.108    0.039   -2.790    0.005   -0.184   -0.032
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   Pain_1 ~                                                              
##     Income  (Inc3)   -0.098    0.046   -2.159    0.031   -0.188   -0.009
##   Pain_2 ~                                                              
##     Income  (Inc3)   -0.098    0.046   -2.159    0.031   -0.188   -0.009
##   Pain_3 ~                                                              
##     Income  (Inc3)   -0.098    0.046   -2.159    0.031   -0.188   -0.009
##   Pain_4 ~                                                              
##     Income  (Inc3)   -0.098    0.046   -2.159    0.031   -0.188   -0.009
##   Pain_5 ~                                                              
##     Income  (Inc3)   -0.098    0.046   -2.159    0.031   -0.188   -0.009
##   LadderDif.1 ~                                                         
##     Age     (Age1)    0.041    0.038    1.100    0.271   -0.032    0.115
##   LadderDif.2 ~                                                         
##     Age     (Age1)    0.041    0.038    1.100    0.271   -0.032    0.115
##   LadderDif.3 ~                                                         
##     Age     (Age1)    0.041    0.038    1.100    0.271   -0.032    0.115
##   LadderDif.4 ~                                                         
##     Age     (Age1)    0.041    0.038    1.100    0.271   -0.032    0.115
##   LadderDif.5 ~                                                         
##     Age     (Age1)    0.041    0.038    1.100    0.271   -0.032    0.115
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.026    0.043    0.610    0.542   -0.058    0.110
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.026    0.043    0.610    0.542   -0.058    0.110
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.026    0.043    0.610    0.542   -0.058    0.110
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.026    0.043    0.610    0.542   -0.058    0.110
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.026    0.043    0.610    0.542   -0.058    0.110
##   Pain_1 ~                                                              
##     Age     (Age3)    0.105    0.044    2.366    0.018    0.018    0.192
##   Pain_2 ~                                                              
##     Age     (Age3)    0.105    0.044    2.366    0.018    0.018    0.192
##   Pain_3 ~                                                              
##     Age     (Age3)    0.105    0.044    2.366    0.018    0.018    0.192
##   Pain_4 ~                                                              
##     Age     (Age3)    0.105    0.044    2.366    0.018    0.018    0.192
##   Pain_5 ~                                                              
##     Age     (Age3)    0.105    0.044    2.366    0.018    0.018    0.192
##   wy2 ~                                                                 
##     wy1               0.571    0.054   10.662    0.000    0.466    0.675
##     wm1       (b1)    0.028    0.025    1.101    0.271   -0.022    0.077
##   wy3 ~                                                                 
##     wx1      (cp1)    0.054    0.030    1.769    0.077   -0.006    0.114
##     wy2               0.499    0.056    8.947    0.000    0.390    0.608
##     wm2       (b1)    0.028    0.025    1.101    0.271   -0.022    0.077
##     wy1               0.189    0.054    3.516    0.000    0.084    0.295
##   wy4 ~                                                                 
##     wx2      (cp1)    0.054    0.030    1.769    0.077   -0.006    0.114
##     wy3               0.340    0.079    4.304    0.000    0.185    0.495
##     wm3       (b1)    0.028    0.025    1.101    0.271   -0.022    0.077
##     wy2               0.422    0.070    6.020    0.000    0.285    0.559
##   wy5 ~                                                                 
##     wx3      (cp1)    0.054    0.030    1.769    0.077   -0.006    0.114
##     wy4               0.376    0.061    6.208    0.000    0.258    0.495
##     wm4       (b1)    0.028    0.025    1.101    0.271   -0.022    0.077
##     wy3               0.523    0.069    7.635    0.000    0.389    0.657
##   wx2 ~                                                                 
##     wx1               0.219    0.061    3.574    0.000    0.099    0.339
##     wm1       (b2)   -0.040    0.031   -1.304    0.192   -0.100    0.020
##   wx3 ~                                                                 
##     wx2               0.434    0.066    6.540    0.000    0.304    0.564
##     wy1      (cp2)    0.003    0.037    0.093    0.926   -0.068    0.075
##     wm2       (b2)   -0.040    0.031   -1.304    0.192   -0.100    0.020
##     wx1               0.167    0.064    2.622    0.009    0.042    0.293
##   wx4 ~                                                                 
##     wx3               0.288    0.078    3.709    0.000    0.136    0.441
##     wy2      (cp2)    0.003    0.037    0.093    0.926   -0.068    0.075
##     wm3       (b2)   -0.040    0.031   -1.304    0.192   -0.100    0.020
##     wx2               0.235    0.079    2.970    0.003    0.080    0.389
##   wx5 ~                                                                 
##     wx4               0.240    0.064    3.729    0.000    0.114    0.366
##     wy3      (cp2)    0.003    0.037    0.093    0.926   -0.068    0.075
##     wm4       (b2)   -0.040    0.031   -1.304    0.192   -0.100    0.020
##     wx3               0.414    0.069    5.970    0.000    0.278    0.550
##   wm2 ~                                                                 
##     wx1       (a1)   -0.038    0.025   -1.520    0.128   -0.088    0.011
##     wy1       (a2)   -0.000    0.025   -0.019    0.985   -0.049    0.048
##     wm1               0.529    0.053   10.067    0.000    0.426    0.632
##   wm3 ~                                                                 
##     wx2       (a1)   -0.038    0.025   -1.520    0.128   -0.088    0.011
##     wy2       (a2)   -0.000    0.025   -0.019    0.985   -0.049    0.048
##     wm2               0.592    0.054   11.057    0.000    0.487    0.697
##     wm1               0.237    0.052    4.525    0.000    0.134    0.340
##   wm4 ~                                                                 
##     wx3       (a1)   -0.038    0.025   -1.520    0.128   -0.088    0.011
##     wy3       (a2)   -0.000    0.025   -0.019    0.985   -0.049    0.048
##     wm3               0.457    0.070    6.550    0.000    0.321    0.594
##     wm2               0.327    0.068    4.827    0.000    0.194    0.460
##   wm5 ~                                                                 
##     wx4       (a1)   -0.038    0.025   -1.520    0.128   -0.088    0.011
##     wy4       (a2)   -0.000    0.025   -0.019    0.985   -0.049    0.048
##     wm4               0.342    0.069    4.922    0.000    0.206    0.478
##     wm3               0.486    0.067    7.296    0.000    0.355    0.616
##    Std.lv  Std.all
##                   
##    -0.128   -0.063
##                   
##    -0.128   -0.065
##                   
##    -0.128   -0.065
##                   
##    -0.128   -0.064
##                   
##    -0.128   -0.066
##                   
##    -0.208   -0.103
##                   
##    -0.208   -0.104
##                   
##    -0.208   -0.105
##                   
##    -0.208   -0.108
##                   
##    -0.208   -0.106
##                   
##    -0.035   -0.017
##                   
##    -0.035   -0.017
##                   
##    -0.035   -0.019
##                   
##    -0.035   -0.018
##                   
##    -0.035   -0.017
##                   
##    -0.077   -0.077
##                   
##    -0.077   -0.079
##                   
##    -0.077   -0.079
##                   
##    -0.077   -0.078
##                   
##    -0.077   -0.080
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##    -0.086   -0.081
##                   
##    -0.086   -0.081
##                   
##    -0.086   -0.091
##                   
##    -0.086   -0.086
##                   
##    -0.086   -0.085
##                   
##    -0.108   -0.107
##                   
##    -0.108   -0.110
##                   
##    -0.108   -0.110
##                   
##    -0.108   -0.109
##                   
##    -0.108   -0.112
##                   
##     0.041    0.041
##                   
##     0.041    0.041
##                   
##     0.041    0.042
##                   
##     0.041    0.043
##                   
##     0.041    0.042
##                   
##    -0.098   -0.092
##                   
##    -0.098   -0.093
##                   
##    -0.098   -0.104
##                   
##    -0.098   -0.098
##                   
##    -0.098   -0.097
##                   
##     0.041    0.041
##                   
##     0.041    0.042
##                   
##     0.041    0.042
##                   
##     0.041    0.042
##                   
##     0.041    0.043
##                   
##     0.026    0.026
##                   
##     0.026    0.026
##                   
##     0.026    0.026
##                   
##     0.026    0.027
##                   
##     0.026    0.027
##                   
##     0.105    0.098
##                   
##     0.105    0.099
##                   
##     0.105    0.111
##                   
##     0.105    0.104
##                   
##     0.105    0.103
##                   
##     0.575    0.575
##     0.026    0.026
##                   
##     0.058    0.058
##     0.561    0.561
##     0.030    0.030
##     0.215    0.215
##                   
##     0.053    0.053
##     0.318    0.318
##     0.027    0.027
##     0.444    0.444
##                   
##     0.052    0.052
##     0.373    0.373
##     0.026    0.026
##     0.485    0.485
##                   
##     0.225    0.225
##    -0.041   -0.041
##                   
##     0.434    0.434
##     0.004    0.004
##    -0.041   -0.041
##     0.172    0.172
##                   
##     0.286    0.286
##     0.004    0.004
##    -0.040   -0.040
##     0.232    0.232
##                   
##     0.247    0.247
##     0.003    0.003
##    -0.040   -0.040
##     0.423    0.423
##                   
##    -0.038   -0.038
##    -0.000   -0.000
##     0.531    0.531
##                   
##    -0.038   -0.038
##    -0.000   -0.000
##     0.599    0.599
##     0.241    0.241
##                   
##    -0.039   -0.039
##    -0.000   -0.000
##     0.471    0.471
##     0.341    0.341
##                   
##    -0.039   -0.039
##    -0.000   -0.000
##     0.336    0.336
##     0.491    0.491
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.002    0.049    0.050    0.960   -0.094    0.099
##     wm1              -0.013    0.047   -0.267    0.789   -0.104    0.079
##   wy1 ~~                                                                
##     wm1              -0.064    0.050   -1.294    0.196   -0.161    0.033
##  .wx2 ~~                                                                
##    .wy2               0.034    0.051    0.667    0.505   -0.066    0.135
##  .wx3 ~~                                                                
##    .wy3              -0.020    0.039   -0.515    0.607   -0.095    0.056
##  .wx4 ~~                                                                
##    .wy4              -0.002    0.045   -0.053    0.957   -0.091    0.086
##  .wx5 ~~                                                                
##    .wy5              -0.041    0.037   -1.129    0.259   -0.113    0.031
##  .wx2 ~~                                                                
##    .wm2              -0.035    0.050   -0.707    0.479   -0.134    0.063
##  .wx3 ~~                                                                
##    .wm3              -0.009    0.038   -0.240    0.810   -0.083    0.065
##  .wx4 ~~                                                                
##    .wm4               0.014    0.040    0.343    0.732   -0.065    0.092
##  .wx5 ~~                                                                
##    .wm5              -0.058    0.037   -1.570    0.116   -0.130    0.014
##  .wy2 ~~                                                                
##    .wm2               0.075    0.045    1.650    0.099   -0.014    0.164
##  .wy3 ~~                                                                
##    .wm3              -0.077    0.030   -2.557    0.011   -0.136   -0.018
##  .wy4 ~~                                                                
##    .wm4              -0.034    0.032   -1.039    0.299   -0.097    0.030
##  .wy5 ~~                                                                
##    .wm5              -0.061    0.030   -2.049    0.041   -0.119   -0.003
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.002    0.002
##    -0.013   -0.013
##                   
##    -0.061   -0.061
##                   
##     0.042    0.042
##                   
##    -0.036   -0.036
##                   
##    -0.004   -0.004
##                   
##    -0.085   -0.085
##                   
##    -0.045   -0.045
##                   
##    -0.017   -0.017
##                   
##     0.025    0.025
##                   
##    -0.121   -0.121
##                   
##     0.104    0.104
##                   
##    -0.184   -0.184
##                   
##    -0.077   -0.077
##                   
##    -0.156   -0.156
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.068    0.061    1.100    0.271   -0.053    0.188
##    .LadderDif.2       0.126    0.073    1.734    0.083   -0.016    0.268
##    .LadderDif.3       0.107    0.077    1.391    0.164   -0.044    0.259
##    .LadderDif.4       0.148    0.081    1.823    0.068   -0.011    0.307
##    .LadderDif.5       0.126    0.080    1.565    0.118   -0.032    0.284
##    .Pain_1            2.134    0.068   31.371    0.000    2.001    2.267
##    .Pain_2            2.094    0.077   27.205    0.000    1.943    2.245
##    .Pain_3            2.007    0.075   26.679    0.000    1.860    2.155
##    .Pain_4            1.992    0.081   24.538    0.000    1.833    2.151
##    .Pain_5            1.931    0.083   23.295    0.000    1.768    2.093
##    .posEmo.1          0.108    0.065    1.668    0.095   -0.019    0.236
##    .posEmo.2          0.105    0.074    1.417    0.156   -0.040    0.250
##    .posEmo.3          0.108    0.076    1.426    0.154   -0.041    0.257
##    .posEmo.4          0.089    0.078    1.151    0.250   -0.063    0.241
##    .posEmo.5          0.083    0.080    1.040    0.298   -0.074    0.241
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.068    0.067
##     0.126    0.128
##     0.107    0.109
##     0.148    0.149
##     0.126    0.130
##     2.134    2.002
##     2.094    1.980
##     2.007    2.126
##     1.992    1.980
##     1.931    1.902
##     0.108    0.108
##     0.105    0.105
##     0.108    0.110
##     0.089    0.093
##     0.083    0.085
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.988    0.066   14.944    0.000    0.859    1.118
##     wy1               1.107    0.074   15.008    0.000    0.963    1.252
##     wm1               0.994    0.066   15.001    0.000    0.864    1.124
##    .wx2               0.888    0.079   11.179    0.000    0.732    1.044
##    .wy2               0.731    0.065   11.239    0.000    0.604    0.859
##    .wm2               0.706    0.063   11.226    0.000    0.583    0.829
##    .wx3               0.699    0.070   10.038    0.000    0.563    0.836
##    .wy3               0.427    0.043   10.041    0.000    0.343    0.510
##    .wm3               0.409    0.041   10.037    0.000    0.329    0.489
##    .wx4               0.762    0.079    9.650    0.000    0.607    0.916
##    .wy4               0.493    0.051    9.666    0.000    0.393    0.593
##    .wm4               0.384    0.040    9.635    0.000    0.306    0.463
##    .wx5               0.603    0.064    9.439    0.000    0.478    0.728
##    .wy5               0.396    0.042    9.449    0.000    0.314    0.478
##    .wm5               0.380    0.040    9.428    0.000    0.301    0.459
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .Pain_1            0.000                               0.000    0.000
##    .Pain_2            0.000                               0.000    0.000
##    .Pain_3            0.000                               0.000    0.000
##    .Pain_4            0.000                               0.000    0.000
##    .Pain_5            0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.947    0.947
##     0.671    0.671
##     0.716    0.716
##     0.744    0.744
##     0.495    0.495
##     0.424    0.424
##     0.796    0.796
##     0.501    0.501
##     0.422    0.422
##     0.670    0.670
##     0.395    0.395
##     0.402    0.402
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif, Positive Emotions, and Fatigue, 2nd Order AR, controls

White Participants

(a1) Perceived status difference at time t predicts less positive emotions at time t+1, b = -.07, p = .006
(b1) Positive emotions at time t do not predict pain at time t+1

PEmoFatigueCLPM_2AR_controls <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*Fatigue_1 + 1*Fatigue_2 + 1*Fatigue_3 + 1*Fatigue_4 + 1*Fatigue_5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*Fatigue_1
  wy2 =~ 1*Fatigue_2
  wy3 =~ 1*Fatigue_3
  wy4 =~ 1*Fatigue_4
  wy5 =~ 1*Fatigue_5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5
  
  # Regression of observed variables on controls (constrained). 
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Gen1*GenderBinary
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Gen2*GenderBinary
  Fatigue_1 + Fatigue_2 + Fatigue_3 + Fatigue_4 + Fatigue_5 ~ Gen3*GenderBinary
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Edu1*Edu
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Edu2*Edu
  Fatigue_1 + Fatigue_2 + Fatigue_3 + Fatigue_4 + Fatigue_5 ~ Edu3*Edu
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Inc1*Income
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Inc2*Income
  Fatigue_1 + Fatigue_2 + Fatigue_3 + Fatigue_4 + Fatigue_5  ~ Inc3*Income
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Age1*Age
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Age2*Age
  Fatigue_1 + Fatigue_2 + Fatigue_3 + Fatigue_4 + Fatigue_5  ~ Age3*Age

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoFatigueCLPM_w2AR_controls.fit <- lavaan(PEmoFatigueCLPM_2AR_controls, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoFatigueCLPM_w2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 55 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           433         482
##   Number of missing patterns                         8            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               201.370
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2213.080
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.956
##   Tucker-Lewis Index (TLI)                       0.934
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4904.784
##   Loglikelihood unrestricted model (H1)      -4804.099
##                                                       
##   Akaike (AIC)                                9977.567
##   Bayesian (BIC)                             10319.509
##   Sample-size adjusted Bayesian (BIC)        10052.940
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.043
##   90 Percent confidence interval - lower         0.034
##   90 Percent confidence interval - upper         0.053
##   P-value RMSEA <= 0.05                          0.872
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.044
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     Fatigue_1         1.000                               1.000    1.000
##     Fatigue_2         1.000                               1.000    1.000
##     Fatigue_3         1.000                               1.000    1.000
##     Fatigue_4         1.000                               1.000    1.000
##     Fatigue_5         1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     Fatigue_1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     Fatigue_2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     Fatigue_3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     Fatigue_4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     Fatigue_5         1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.956    0.956
##                   
##     0.972    0.957
##                   
##     0.951    0.956
##                   
##     0.948    0.955
##                   
##     0.919    0.953
##                   
##     0.901    0.969
##                   
##     0.920    0.970
##                   
##     0.830    0.963
##                   
##     0.983    0.973
##                   
##     0.913    0.969
##                   
##     0.977    0.980
##                   
##     0.952    0.979
##                   
##     0.960    0.979
##                   
##     0.972    0.980
##                   
##     0.969    0.980
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)    0.308    0.077    3.994    0.000    0.157    0.458
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)    0.308    0.077    3.994    0.000    0.157    0.458
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)    0.308    0.077    3.994    0.000    0.157    0.458
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)    0.308    0.077    3.994    0.000    0.157    0.458
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)    0.308    0.077    3.994    0.000    0.157    0.458
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.158    0.082   -1.929    0.054   -0.318    0.003
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.158    0.082   -1.929    0.054   -0.318    0.003
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.158    0.082   -1.929    0.054   -0.318    0.003
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.158    0.082   -1.929    0.054   -0.318    0.003
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.158    0.082   -1.929    0.054   -0.318    0.003
##   Fatigue_1 ~                                                           
##     GndrBnr (Gen3)    0.299    0.074    4.008    0.000    0.153    0.445
##   Fatigue_2 ~                                                           
##     GndrBnr (Gen3)    0.299    0.074    4.008    0.000    0.153    0.445
##   Fatigue_3 ~                                                           
##     GndrBnr (Gen3)    0.299    0.074    4.008    0.000    0.153    0.445
##   Fatigue_4 ~                                                           
##     GndrBnr (Gen3)    0.299    0.074    4.008    0.000    0.153    0.445
##   Fatigue_5 ~                                                           
##     GndrBnr (Gen3)    0.299    0.074    4.008    0.000    0.153    0.445
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.456    0.649   -0.061    0.099
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.456    0.649   -0.061    0.099
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.456    0.649   -0.061    0.099
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.456    0.649   -0.061    0.099
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)    0.019    0.041    0.456    0.649   -0.061    0.099
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.065    0.044   -1.488    0.137   -0.151    0.021
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.065    0.044   -1.488    0.137   -0.151    0.021
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.065    0.044   -1.488    0.137   -0.151    0.021
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.065    0.044   -1.488    0.137   -0.151    0.021
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.065    0.044   -1.488    0.137   -0.151    0.021
##   Fatigue_1 ~                                                           
##     Edu     (Edu3)   -0.077    0.040   -1.947    0.052   -0.155    0.001
##   Fatigue_2 ~                                                           
##     Edu     (Edu3)   -0.077    0.040   -1.947    0.052   -0.155    0.001
##   Fatigue_3 ~                                                           
##     Edu     (Edu3)   -0.077    0.040   -1.947    0.052   -0.155    0.001
##   Fatigue_4 ~                                                           
##     Edu     (Edu3)   -0.077    0.040   -1.947    0.052   -0.155    0.001
##   Fatigue_5 ~                                                           
##     Edu     (Edu3)   -0.077    0.040   -1.947    0.052   -0.155    0.001
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.200    0.000   -0.333   -0.173
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.200    0.000   -0.333   -0.173
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.200    0.000   -0.333   -0.173
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.200    0.000   -0.333   -0.173
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.253    0.041   -6.200    0.000   -0.333   -0.173
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.608    0.000    0.072    0.242
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.608    0.000    0.072    0.242
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.608    0.000    0.072    0.242
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.608    0.000    0.072    0.242
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.157    0.043    3.608    0.000    0.072    0.242
##   Fatigue_1 ~                                                           
##     Income  (Inc3)   -0.128    0.040   -3.236    0.001   -0.206   -0.051
##   Fatigue_2 ~                                                           
##     Income  (Inc3)   -0.128    0.040   -3.236    0.001   -0.206   -0.051
##   Fatigue_3 ~                                                           
##     Income  (Inc3)   -0.128    0.040   -3.236    0.001   -0.206   -0.051
##   Fatigue_4 ~                                                           
##     Income  (Inc3)   -0.128    0.040   -3.236    0.001   -0.206   -0.051
##   Fatigue_5 ~                                                           
##     Income  (Inc3)   -0.128    0.040   -3.236    0.001   -0.206   -0.051
##   LadderDif.1 ~                                                         
##     Age     (Age1)   -0.012    0.039   -0.304    0.761   -0.088    0.064
##   LadderDif.2 ~                                                         
##     Age     (Age1)   -0.012    0.039   -0.304    0.761   -0.088    0.064
##   LadderDif.3 ~                                                         
##     Age     (Age1)   -0.012    0.039   -0.304    0.761   -0.088    0.064
##   LadderDif.4 ~                                                         
##     Age     (Age1)   -0.012    0.039   -0.304    0.761   -0.088    0.064
##   LadderDif.5 ~                                                         
##     Age     (Age1)   -0.012    0.039   -0.304    0.761   -0.088    0.064
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.095    0.041    2.301    0.021    0.014    0.176
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.095    0.041    2.301    0.021    0.014    0.176
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.095    0.041    2.301    0.021    0.014    0.176
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.095    0.041    2.301    0.021    0.014    0.176
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.095    0.041    2.301    0.021    0.014    0.176
##   Fatigue_1 ~                                                           
##     Age     (Age3)    0.041    0.038    1.095    0.274   -0.033    0.115
##   Fatigue_2 ~                                                           
##     Age     (Age3)    0.041    0.038    1.095    0.274   -0.033    0.115
##   Fatigue_3 ~                                                           
##     Age     (Age3)    0.041    0.038    1.095    0.274   -0.033    0.115
##   Fatigue_4 ~                                                           
##     Age     (Age3)    0.041    0.038    1.095    0.274   -0.033    0.115
##   Fatigue_5 ~                                                           
##     Age     (Age3)    0.041    0.038    1.095    0.274   -0.033    0.115
##   wy2 ~                                                                 
##     wy1               0.622    0.045   13.717    0.000    0.533    0.711
##     wm1       (b1)   -0.019    0.023   -0.823    0.410   -0.063    0.026
##   wy3 ~                                                                 
##     wx1      (cp1)    0.032    0.028    1.140    0.254   -0.023    0.088
##     wy2               0.274    0.056    4.909    0.000    0.165    0.384
##     wm2       (b1)   -0.019    0.023   -0.823    0.410   -0.063    0.026
##     wy1               0.388    0.057    6.795    0.000    0.276    0.500
##   wy4 ~                                                                 
##     wx2      (cp1)    0.032    0.028    1.140    0.254   -0.023    0.088
##     wy3               0.595    0.072    8.303    0.000    0.454    0.735
##     wm3       (b1)   -0.019    0.023   -0.823    0.410   -0.063    0.026
##     wy2               0.255    0.065    3.900    0.000    0.127    0.383
##   wy5 ~                                                                 
##     wx3      (cp1)    0.032    0.028    1.140    0.254   -0.023    0.088
##     wy4               0.444    0.062    7.175    0.000    0.323    0.566
##     wm4       (b1)   -0.019    0.023   -0.823    0.410   -0.063    0.026
##     wy3               0.261    0.074    3.524    0.000    0.116    0.406
##   wx2 ~                                                                 
##     wx1               0.514    0.051   10.159    0.000    0.415    0.613
##     wm1       (b2)   -0.034    0.025   -1.338    0.181   -0.084    0.016
##   wx3 ~                                                                 
##     wx2               0.287    0.061    4.670    0.000    0.167    0.408
##     wy1      (cp2)   -0.004    0.034   -0.105    0.916   -0.070    0.063
##     wm2       (b2)   -0.034    0.025   -1.338    0.181   -0.084    0.016
##     wx1               0.402    0.059    6.759    0.000    0.285    0.519
##   wx4 ~                                                                 
##     wx3               0.252    0.064    3.924    0.000    0.126    0.377
##     wy2      (cp2)   -0.004    0.034   -0.105    0.916   -0.070    0.063
##     wm3       (b2)   -0.034    0.025   -1.338    0.181   -0.084    0.016
##     wx2               0.377    0.067    5.593    0.000    0.245    0.509
##   wx5 ~                                                                 
##     wx4               0.288    0.057    5.020    0.000    0.175    0.400
##     wy3      (cp2)   -0.004    0.034   -0.105    0.916   -0.070    0.063
##     wm4       (b2)   -0.034    0.025   -1.338    0.181   -0.084    0.016
##     wx3               0.437    0.056    7.785    0.000    0.327    0.547
##   wm2 ~                                                                 
##     wx1       (a1)   -0.065    0.024   -2.748    0.006   -0.112   -0.019
##     wy1       (a2)   -0.051    0.024   -2.092    0.036   -0.099   -0.003
##     wm1               0.562    0.043   13.033    0.000    0.477    0.646
##   wm3 ~                                                                 
##     wx2       (a1)   -0.065    0.024   -2.748    0.006   -0.112   -0.019
##     wy2       (a2)   -0.051    0.024   -2.092    0.036   -0.099   -0.003
##     wm2               0.545    0.059    9.268    0.000    0.430    0.660
##     wm1               0.184    0.059    3.135    0.002    0.069    0.299
##   wm4 ~                                                                 
##     wx3       (a1)   -0.065    0.024   -2.748    0.006   -0.112   -0.019
##     wy3       (a2)   -0.051    0.024   -2.092    0.036   -0.099   -0.003
##     wm3               0.528    0.063    8.383    0.000    0.404    0.651
##     wm2               0.256    0.064    3.989    0.000    0.130    0.382
##   wm5 ~                                                                 
##     wx4       (a1)   -0.065    0.024   -2.748    0.006   -0.112   -0.019
##     wy4       (a2)   -0.051    0.024   -2.092    0.036   -0.099   -0.003
##     wm4               0.376    0.059    6.362    0.000    0.260    0.492
##     wm3               0.450    0.059    7.581    0.000    0.334    0.566
##    Std.lv  Std.all
##                   
##     0.308    0.154
##                   
##     0.308    0.151
##                   
##     0.308    0.154
##                   
##     0.308    0.155
##                   
##     0.308    0.159
##                   
##    -0.158   -0.079
##                   
##    -0.158   -0.081
##                   
##    -0.158   -0.080
##                   
##    -0.158   -0.079
##                   
##    -0.158   -0.080
##                   
##     0.299    0.160
##                   
##     0.299    0.157
##                   
##     0.299    0.173
##                   
##     0.299    0.148
##                   
##     0.299    0.158
##                   
##     0.019    0.019
##                   
##     0.019    0.018
##                   
##     0.019    0.019
##                   
##     0.019    0.019
##                   
##     0.019    0.019
##                   
##    -0.065   -0.065
##                   
##    -0.065   -0.067
##                   
##    -0.065   -0.066
##                   
##    -0.065   -0.066
##                   
##    -0.065   -0.066
##                   
##    -0.077   -0.083
##                   
##    -0.077   -0.081
##                   
##    -0.077   -0.089
##                   
##    -0.077   -0.076
##                   
##    -0.077   -0.082
##                   
##    -0.253   -0.253
##                   
##    -0.253   -0.249
##                   
##    -0.253   -0.254
##                   
##    -0.253   -0.255
##                   
##    -0.253   -0.262
##                   
##     0.157    0.157
##                   
##     0.157    0.161
##                   
##     0.157    0.160
##                   
##     0.157    0.158
##                   
##     0.157    0.159
##                   
##    -0.128   -0.138
##                   
##    -0.128   -0.135
##                   
##    -0.128   -0.149
##                   
##    -0.128   -0.127
##                   
##    -0.128   -0.136
##                   
##    -0.012   -0.012
##                   
##    -0.012   -0.012
##                   
##    -0.012   -0.012
##                   
##    -0.012   -0.012
##                   
##    -0.012   -0.012
##                   
##     0.095    0.095
##                   
##     0.095    0.097
##                   
##     0.095    0.097
##                   
##     0.095    0.095
##                   
##     0.095    0.096
##                   
##     0.041    0.044
##                   
##     0.041    0.043
##                   
##     0.041    0.048
##                   
##     0.041    0.041
##                   
##     0.041    0.044
##                   
##     0.610    0.610
##    -0.020   -0.020
##                   
##     0.037    0.037
##     0.304    0.304
##    -0.021   -0.021
##     0.421    0.421
##                   
##     0.032    0.032
##     0.502    0.502
##    -0.018   -0.018
##     0.239    0.239
##                   
##     0.034    0.034
##     0.478    0.478
##    -0.020   -0.020
##     0.237    0.237
##                   
##     0.506    0.506
##    -0.034   -0.034
##                   
##     0.293    0.293
##    -0.003   -0.003
##    -0.034   -0.034
##     0.404    0.404
##                   
##     0.252    0.252
##    -0.003   -0.003
##    -0.035   -0.035
##     0.386    0.386
##                   
##     0.297    0.297
##    -0.003   -0.003
##    -0.036   -0.036
##     0.452    0.452
##                   
##    -0.066   -0.066
##    -0.048   -0.048
##     0.576    0.576
##                   
##    -0.066   -0.066
##    -0.049   -0.049
##     0.540    0.540
##     0.187    0.187
##                   
##    -0.064   -0.064
##    -0.044   -0.044
##     0.521    0.521
##     0.250    0.250
##                   
##    -0.064   -0.064
##    -0.052   -0.052
##     0.378    0.378
##     0.446    0.446
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.240    0.043    5.556    0.000    0.155    0.324
##     wm1              -0.182    0.046   -3.967    0.000   -0.272   -0.092
##   wy1 ~~                                                                
##     wm1              -0.106    0.043   -2.487    0.013   -0.190   -0.022
##  .wx2 ~~                                                                
##    .wy2              -0.005    0.035   -0.156    0.876   -0.074    0.063
##  .wx3 ~~                                                                
##    .wy3               0.025    0.030    0.828    0.408   -0.034    0.084
##  .wx4 ~~                                                                
##    .wy4              -0.046    0.039   -1.200    0.230   -0.122    0.029
##  .wx5 ~~                                                                
##    .wy5              -0.003    0.033   -0.098    0.922   -0.068    0.061
##  .wx2 ~~                                                                
##    .wm2              -0.041    0.037   -1.118    0.264   -0.113    0.031
##  .wx3 ~~                                                                
##    .wm3               0.010    0.034    0.291    0.771   -0.057    0.076
##  .wx4 ~~                                                                
##    .wm4               0.001    0.035    0.041    0.967   -0.067    0.070
##  .wx5 ~~                                                                
##    .wm5              -0.014    0.029   -0.470    0.638   -0.071    0.043
##  .wy2 ~~                                                                
##    .wm2              -0.034    0.032   -1.078    0.281   -0.097    0.028
##  .wy3 ~~                                                                
##    .wm3              -0.028    0.028   -0.998    0.318   -0.084    0.027
##  .wy4 ~~                                                                
##    .wm4              -0.008    0.032   -0.250    0.803   -0.071    0.055
##  .wy5 ~~                                                                
##    .wm5              -0.045    0.029   -1.553    0.120   -0.101    0.012
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.278    0.278
##    -0.195   -0.195
##                   
##    -0.121   -0.121
##                   
##    -0.009   -0.009
##                   
##     0.054    0.054
##                   
##    -0.082   -0.082
##                   
##    -0.007   -0.007
##                   
##    -0.065   -0.065
##                   
##     0.019    0.019
##                   
##     0.003    0.003
##                   
##    -0.032   -0.032
##                   
##    -0.062   -0.062
##                   
##    -0.066   -0.066
##                   
##    -0.017   -0.017
##                   
##    -0.109   -0.109
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.149    0.061   -2.454    0.014   -0.268   -0.030
##    .LadderDif.2      -0.156    0.067   -2.344    0.019   -0.286   -0.026
##    .LadderDif.3      -0.189    0.069   -2.743    0.006   -0.324   -0.054
##    .LadderDif.4      -0.169    0.072   -2.351    0.019   -0.311   -0.028
##    .LadderDif.5      -0.193    0.071   -2.698    0.007   -0.332   -0.053
##    .Fatigue_1         2.510    0.058   43.439    0.000    2.397    2.624
##    .Fatigue_2         2.516    0.063   40.092    0.000    2.393    2.639
##    .Fatigue_3         2.370    0.062   38.514    0.000    2.249    2.491
##    .Fatigue_4         2.413    0.072   33.466    0.000    2.272    2.555
##    .Fatigue_5         2.433    0.070   34.561    0.000    2.295    2.571
##    .posEmo.1          0.081    0.063    1.280    0.200   -0.043    0.204
##    .posEmo.2          0.077    0.066    1.152    0.249   -0.054    0.207
##    .posEmo.3          0.106    0.070    1.510    0.131   -0.032    0.244
##    .posEmo.4          0.099    0.073    1.359    0.174   -0.044    0.242
##    .posEmo.5          0.112    0.074    1.514    0.130   -0.033    0.256
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.149   -0.149
##    -0.156   -0.154
##    -0.189   -0.190
##    -0.169   -0.171
##    -0.193   -0.200
##     2.510    2.697
##     2.516    2.652
##     2.370    2.750
##     2.413    2.390
##     2.433    2.584
##     0.081    0.081
##     0.077    0.079
##     0.106    0.108
##     0.099    0.100
##     0.112    0.113
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.914    0.062   14.663    0.000    0.792    1.036
##     wy1               0.813    0.055   14.686    0.000    0.704    0.921
##     wm1               0.954    0.065   14.703    0.000    0.827    1.081
##    .wx2               0.695    0.057   12.261    0.000    0.584    0.806
##    .wy2               0.529    0.043   12.273    0.000    0.445    0.613
##    .wm2               0.578    0.047   12.284    0.000    0.486    0.670
##    .wx3               0.561    0.051   10.990    0.000    0.461    0.661
##    .wy3               0.382    0.035   10.996    0.000    0.314    0.450
##    .wm3               0.481    0.044   10.964    0.000    0.395    0.566
##    .wx4               0.612    0.059   10.457    0.000    0.497    0.726
##    .wy4               0.525    0.050   10.476    0.000    0.426    0.623
##    .wm4               0.435    0.042   10.480    0.000    0.354    0.517
##    .wx5               0.487    0.047   10.287    0.000    0.394    0.580
##    .wy5               0.463    0.045   10.272    0.000    0.375    0.552
##    .wm5               0.364    0.035   10.288    0.000    0.294    0.433
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .Fatigue_1         0.000                               0.000    0.000
##    .Fatigue_2         0.000                               0.000    0.000
##    .Fatigue_3         0.000                               0.000    0.000
##    .Fatigue_4         0.000                               0.000    0.000
##    .Fatigue_5         0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.736    0.736
##     0.625    0.625
##     0.638    0.638
##     0.620    0.620
##     0.554    0.554
##     0.522    0.522
##     0.681    0.681
##     0.543    0.543
##     0.460    0.460
##     0.577    0.577
##     0.556    0.556
##     0.388    0.388
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

Perceived status difference at time t does not predict positive emotions at time t+1
Positive emotions at time t do not predict fatigue at time t+1

# Same model as above code, but fit with d_black dataset this time
PEmoFatigueCLPM_b2AR_controls.fit <- lavaan(PEmoFatigueCLPM_2AR_controls, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoFatigueCLPM_b2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 46 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           451         482
##   Number of missing patterns                         7            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               215.574
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1513.744
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.922
##   Tucker-Lewis Index (TLI)                       0.885
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4761.369
##   Loglikelihood unrestricted model (H1)      -4653.582
##                                                       
##   Akaike (AIC)                                9690.739
##   Bayesian (BIC)                             10036.102
##   Sample-size adjusted Bayesian (BIC)         9769.517
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.046
##   90 Percent confidence interval - lower         0.037
##   90 Percent confidence interval - upper         0.055
##   P-value RMSEA <= 0.05                          0.774
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.054
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     Fatigue_1         1.000                               1.000    1.000
##     Fatigue_2         1.000                               1.000    1.000
##     Fatigue_3         1.000                               1.000    1.000
##     Fatigue_4         1.000                               1.000    1.000
##     Fatigue_5         1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     Fatigue_1         1.000                               1.000    1.000
##   wy2 =~                                                                
##     Fatigue_2         1.000                               1.000    1.000
##   wy3 =~                                                                
##     Fatigue_3         1.000                               1.000    1.000
##   wy4 =~                                                                
##     Fatigue_4         1.000                               1.000    1.000
##   wy5 =~                                                                
##     Fatigue_5         1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.994    0.985
##                   
##     0.968    0.985
##                   
##     0.974    0.985
##                   
##     0.980    0.985
##                   
##     0.953    0.984
##                   
##     1.030    0.993
##                   
##     0.989    0.992
##                   
##     1.008    0.992
##                   
##     1.018    0.993
##                   
##     0.976    0.992
##                   
##     0.997    0.993
##                   
##     0.993    0.993
##                   
##     0.974    0.993
##                   
##     0.945    0.993
##                   
##     0.955    0.993
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)   -0.124    0.076   -1.638    0.101   -0.273    0.024
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)   -0.124    0.076   -1.638    0.101   -0.273    0.024
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)   -0.124    0.076   -1.638    0.101   -0.273    0.024
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)   -0.124    0.076   -1.638    0.101   -0.273    0.024
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)   -0.124    0.076   -1.638    0.101   -0.273    0.024
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.218    0.086   -2.541    0.011   -0.387   -0.050
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.218    0.086   -2.541    0.011   -0.387   -0.050
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.218    0.086   -2.541    0.011   -0.387   -0.050
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.218    0.086   -2.541    0.011   -0.387   -0.050
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.218    0.086   -2.541    0.011   -0.387   -0.050
##   Fatigue_1 ~                                                           
##     GndrBnr (Gen3)    0.131    0.087    1.503    0.133   -0.040    0.302
##   Fatigue_2 ~                                                           
##     GndrBnr (Gen3)    0.131    0.087    1.503    0.133   -0.040    0.302
##   Fatigue_3 ~                                                           
##     GndrBnr (Gen3)    0.131    0.087    1.503    0.133   -0.040    0.302
##   Fatigue_4 ~                                                           
##     GndrBnr (Gen3)    0.131    0.087    1.503    0.133   -0.040    0.302
##   Fatigue_5 ~                                                           
##     GndrBnr (Gen3)    0.131    0.087    1.503    0.133   -0.040    0.302
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)   -0.074    0.040   -1.872    0.061   -0.152    0.004
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)   -0.074    0.040   -1.872    0.061   -0.152    0.004
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)   -0.074    0.040   -1.872    0.061   -0.152    0.004
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)   -0.074    0.040   -1.872    0.061   -0.152    0.004
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)   -0.074    0.040   -1.872    0.061   -0.152    0.004
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.006    0.045   -0.128    0.898   -0.094    0.082
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.006    0.045   -0.128    0.898   -0.094    0.082
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.006    0.045   -0.128    0.898   -0.094    0.082
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.006    0.045   -0.128    0.898   -0.094    0.082
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.006    0.045   -0.128    0.898   -0.094    0.082
##   Fatigue_1 ~                                                           
##     Edu     (Edu3)   -0.026    0.046   -0.576    0.565   -0.116    0.063
##   Fatigue_2 ~                                                           
##     Edu     (Edu3)   -0.026    0.046   -0.576    0.565   -0.116    0.063
##   Fatigue_3 ~                                                           
##     Edu     (Edu3)   -0.026    0.046   -0.576    0.565   -0.116    0.063
##   Fatigue_4 ~                                                           
##     Edu     (Edu3)   -0.026    0.046   -0.576    0.565   -0.116    0.063
##   Fatigue_5 ~                                                           
##     Edu     (Edu3)   -0.026    0.046   -0.576    0.565   -0.116    0.063
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.109    0.039   -2.816    0.005   -0.185   -0.033
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.109    0.039   -2.816    0.005   -0.185   -0.033
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.109    0.039   -2.816    0.005   -0.185   -0.033
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.109    0.039   -2.816    0.005   -0.185   -0.033
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.109    0.039   -2.816    0.005   -0.185   -0.033
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.931    0.352   -0.045    0.127
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.931    0.352   -0.045    0.127
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.931    0.352   -0.045    0.127
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.931    0.352   -0.045    0.127
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.931    0.352   -0.045    0.127
##   Fatigue_1 ~                                                           
##     Income  (Inc3)   -0.106    0.044   -2.410    0.016   -0.193   -0.020
##   Fatigue_2 ~                                                           
##     Income  (Inc3)   -0.106    0.044   -2.410    0.016   -0.193   -0.020
##   Fatigue_3 ~                                                           
##     Income  (Inc3)   -0.106    0.044   -2.410    0.016   -0.193   -0.020
##   Fatigue_4 ~                                                           
##     Income  (Inc3)   -0.106    0.044   -2.410    0.016   -0.193   -0.020
##   Fatigue_5 ~                                                           
##     Income  (Inc3)   -0.106    0.044   -2.410    0.016   -0.193   -0.020
##   LadderDif.1 ~                                                         
##     Age     (Age1)    0.042    0.038    1.118    0.264   -0.032    0.116
##   LadderDif.2 ~                                                         
##     Age     (Age1)    0.042    0.038    1.118    0.264   -0.032    0.116
##   LadderDif.3 ~                                                         
##     Age     (Age1)    0.042    0.038    1.118    0.264   -0.032    0.116
##   LadderDif.4 ~                                                         
##     Age     (Age1)    0.042    0.038    1.118    0.264   -0.032    0.116
##   LadderDif.5 ~                                                         
##     Age     (Age1)    0.042    0.038    1.118    0.264   -0.032    0.116
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.030    0.043    0.707    0.480   -0.054    0.114
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.030    0.043    0.707    0.480   -0.054    0.114
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.030    0.043    0.707    0.480   -0.054    0.114
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.030    0.043    0.707    0.480   -0.054    0.114
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.030    0.043    0.707    0.480   -0.054    0.114
##   Fatigue_1 ~                                                           
##     Age     (Age3)   -0.005    0.043   -0.124    0.901   -0.090    0.079
##   Fatigue_2 ~                                                           
##     Age     (Age3)   -0.005    0.043   -0.124    0.901   -0.090    0.079
##   Fatigue_3 ~                                                           
##     Age     (Age3)   -0.005    0.043   -0.124    0.901   -0.090    0.079
##   Fatigue_4 ~                                                           
##     Age     (Age3)   -0.005    0.043   -0.124    0.901   -0.090    0.079
##   Fatigue_5 ~                                                           
##     Age     (Age3)   -0.005    0.043   -0.124    0.901   -0.090    0.079
##   wy2 ~                                                                 
##     wy1               0.533    0.052   10.187    0.000    0.431    0.636
##     wm1       (b1)   -0.033    0.028   -1.191    0.234   -0.088    0.021
##   wy3 ~                                                                 
##     wx1      (cp1)    0.065    0.035    1.863    0.062   -0.003    0.132
##     wy2               0.430    0.072    5.958    0.000    0.289    0.572
##     wm2       (b1)   -0.033    0.028   -1.191    0.234   -0.088    0.021
##     wy1               0.298    0.071    4.227    0.000    0.160    0.437
##   wy4 ~                                                                 
##     wx2      (cp1)    0.065    0.035    1.863    0.062   -0.003    0.132
##     wy3               0.357    0.065    5.477    0.000    0.229    0.485
##     wm3       (b1)   -0.033    0.028   -1.191    0.234   -0.088    0.021
##     wy2               0.448    0.068    6.576    0.000    0.315    0.582
##   wy5 ~                                                                 
##     wx3      (cp1)    0.065    0.035    1.863    0.062   -0.003    0.132
##     wy4               0.414    0.069    5.990    0.000    0.278    0.549
##     wm4       (b1)   -0.033    0.028   -1.191    0.234   -0.088    0.021
##     wy3               0.257    0.071    3.628    0.000    0.118    0.396
##   wx2 ~                                                                 
##     wx1               0.218    0.061    3.550    0.000    0.098    0.338
##     wm1       (b2)   -0.042    0.031   -1.343    0.179   -0.103    0.019
##   wx3 ~                                                                 
##     wx2               0.445    0.067    6.658    0.000    0.314    0.576
##     wy1      (cp2)   -0.023    0.036   -0.624    0.532   -0.094    0.049
##     wm2       (b2)   -0.042    0.031   -1.343    0.179   -0.103    0.019
##     wx1               0.163    0.064    2.537    0.011    0.037    0.288
##   wx4 ~                                                                 
##     wx3               0.292    0.077    3.779    0.000    0.140    0.443
##     wy2      (cp2)   -0.023    0.036   -0.624    0.532   -0.094    0.049
##     wm3       (b2)   -0.042    0.031   -1.343    0.179   -0.103    0.019
##     wx2               0.236    0.079    2.996    0.003    0.082    0.390
##   wx5 ~                                                                 
##     wx4               0.243    0.064    3.779    0.000    0.117    0.370
##     wy3      (cp2)   -0.023    0.036   -0.624    0.532   -0.094    0.049
##     wm4       (b2)   -0.042    0.031   -1.343    0.179   -0.103    0.019
##     wx3               0.418    0.069    6.025    0.000    0.282    0.554
##   wm2 ~                                                                 
##     wx1       (a1)   -0.044    0.025   -1.734    0.083   -0.093    0.006
##     wy1       (a2)   -0.065    0.024   -2.670    0.008   -0.112   -0.017
##     wm1               0.525    0.052   10.020    0.000    0.422    0.628
##   wm3 ~                                                                 
##     wx2       (a1)   -0.044    0.025   -1.734    0.083   -0.093    0.006
##     wy2       (a2)   -0.065    0.024   -2.670    0.008   -0.112   -0.017
##     wm2               0.589    0.054   10.854    0.000    0.483    0.695
##     wm1               0.224    0.053    4.195    0.000    0.119    0.328
##   wm4 ~                                                                 
##     wx3       (a1)   -0.044    0.025   -1.734    0.083   -0.093    0.006
##     wy3       (a2)   -0.065    0.024   -2.670    0.008   -0.112   -0.017
##     wm3               0.438    0.070    6.278    0.000    0.301    0.575
##     wm2               0.331    0.067    4.928    0.000    0.200    0.463
##   wm5 ~                                                                 
##     wx4       (a1)   -0.044    0.025   -1.734    0.083   -0.093    0.006
##     wy4       (a2)   -0.065    0.024   -2.670    0.008   -0.112   -0.017
##     wm4               0.328    0.070    4.668    0.000    0.191    0.466
##     wm3               0.469    0.068    6.947    0.000    0.337    0.602
##    Std.lv  Std.all
##                   
##    -0.124   -0.062
##                   
##    -0.124   -0.063
##                   
##    -0.124   -0.063
##                   
##    -0.124   -0.062
##                   
##    -0.124   -0.064
##                   
##    -0.218   -0.109
##                   
##    -0.218   -0.109
##                   
##    -0.218   -0.111
##                   
##    -0.218   -0.114
##                   
##    -0.218   -0.113
##                   
##     0.131    0.063
##                   
##     0.131    0.066
##                   
##     0.131    0.065
##                   
##     0.131    0.064
##                   
##     0.131    0.067
##                   
##    -0.074   -0.074
##                   
##    -0.074   -0.076
##                   
##    -0.074   -0.075
##                   
##    -0.074   -0.075
##                   
##    -0.074   -0.077
##                   
##    -0.006   -0.006
##                   
##    -0.006   -0.006
##                   
##    -0.006   -0.006
##                   
##    -0.006   -0.006
##                   
##    -0.006   -0.006
##                   
##    -0.026   -0.025
##                   
##    -0.026   -0.026
##                   
##    -0.026   -0.026
##                   
##    -0.026   -0.026
##                   
##    -0.026   -0.027
##                   
##    -0.109   -0.108
##                   
##    -0.109   -0.111
##                   
##    -0.109   -0.110
##                   
##    -0.109   -0.109
##                   
##    -0.109   -0.113
##                   
##     0.041    0.041
##                   
##     0.041    0.041
##                   
##     0.041    0.042
##                   
##     0.041    0.043
##                   
##     0.041    0.042
##                   
##    -0.106   -0.102
##                   
##    -0.106   -0.107
##                   
##    -0.106   -0.105
##                   
##    -0.106   -0.104
##                   
##    -0.106   -0.108
##                   
##     0.042    0.042
##                   
##     0.042    0.043
##                   
##     0.042    0.042
##                   
##     0.042    0.042
##                   
##     0.042    0.043
##                   
##     0.030    0.030
##                   
##     0.030    0.030
##                   
##     0.030    0.031
##                   
##     0.030    0.032
##                   
##     0.030    0.031
##                   
##    -0.005   -0.005
##                   
##    -0.005   -0.005
##                   
##    -0.005   -0.005
##                   
##    -0.005   -0.005
##                   
##    -0.005   -0.005
##                   
##     0.555    0.555
##    -0.033   -0.033
##                   
##     0.064    0.064
##     0.422    0.422
##    -0.033   -0.033
##     0.305    0.305
##                   
##     0.061    0.061
##     0.354    0.354
##    -0.032   -0.032
##     0.436    0.436
##                   
##     0.064    0.064
##     0.431    0.431
##    -0.032   -0.032
##     0.265    0.265
##                   
##     0.224    0.224
##    -0.043   -0.043
##                   
##     0.442    0.442
##    -0.024   -0.024
##    -0.043   -0.043
##     0.166    0.166
##                   
##     0.290    0.290
##    -0.023   -0.023
##    -0.042   -0.042
##     0.233    0.233
##                   
##     0.250    0.250
##    -0.024   -0.024
##    -0.042   -0.042
##     0.427    0.427
##                   
##    -0.044   -0.044
##    -0.067   -0.067
##     0.527    0.527
##                   
##    -0.044   -0.044
##    -0.066   -0.066
##     0.601    0.601
##     0.229    0.229
##                   
##    -0.045   -0.045
##    -0.069   -0.069
##     0.451    0.451
##     0.348    0.348
##                   
##    -0.045   -0.045
##    -0.069   -0.069
##     0.325    0.325
##     0.478    0.478
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1               0.016    0.049    0.337    0.736   -0.079    0.112
##     wm1              -0.012    0.047   -0.263    0.792   -0.104    0.080
##   wy1 ~~                                                                
##     wm1              -0.078    0.049   -1.594    0.111   -0.173    0.018
##  .wx2 ~~                                                                
##    .wy2              -0.021    0.050   -0.421    0.674   -0.119    0.077
##  .wx3 ~~                                                                
##    .wy3               0.023    0.046    0.512    0.609   -0.066    0.113
##  .wx4 ~~                                                                
##    .wy4               0.029    0.046    0.632    0.527   -0.061    0.120
##  .wx5 ~~                                                                
##    .wy5              -0.046    0.044   -1.047    0.295   -0.132    0.040
##  .wx2 ~~                                                                
##    .wm2              -0.025    0.050   -0.507    0.612   -0.123    0.073
##  .wx3 ~~                                                                
##    .wm3              -0.009    0.038   -0.239    0.811   -0.083    0.065
##  .wx4 ~~                                                                
##    .wm4               0.018    0.040    0.447    0.655   -0.060    0.096
##  .wx5 ~~                                                                
##    .wm5              -0.058    0.037   -1.567    0.117   -0.130    0.014
##  .wy2 ~~                                                                
##    .wm2               0.071    0.044    1.639    0.101   -0.014    0.157
##  .wy3 ~~                                                                
##    .wm3              -0.026    0.035   -0.747    0.455   -0.094    0.042
##  .wy4 ~~                                                                
##    .wm4              -0.029    0.033   -0.876    0.381   -0.093    0.035
##  .wy5 ~~                                                                
##    .wm5               0.032    0.035    0.911    0.363   -0.037    0.101
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##     0.016    0.016
##    -0.012   -0.012
##                   
##    -0.075   -0.075
##                   
##    -0.027   -0.027
##                   
##     0.036    0.036
##                   
##     0.047    0.047
##                   
##    -0.079   -0.079
##                   
##    -0.032   -0.032
##                   
##    -0.017   -0.017
##                   
##     0.033    0.033
##                   
##    -0.121   -0.121
##                   
##     0.104    0.104
##                   
##    -0.053   -0.053
##                   
##    -0.065   -0.065
##                   
##     0.069    0.069
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.066    0.062    1.066    0.287   -0.055    0.186
##    .LadderDif.2       0.124    0.073    1.699    0.089   -0.019    0.266
##    .LadderDif.3       0.102    0.078    1.315    0.189   -0.050    0.254
##    .LadderDif.4       0.144    0.081    1.776    0.076   -0.015    0.303
##    .LadderDif.5       0.120    0.081    1.488    0.137   -0.038    0.278
##    .Fatigue_1         2.421    0.067   36.332    0.000    2.291    2.552
##    .Fatigue_2         2.313    0.074   31.207    0.000    2.168    2.459
##    .Fatigue_3         2.294    0.079   29.062    0.000    2.139    2.449
##    .Fatigue_4         2.221    0.082   27.150    0.000    2.061    2.382
##    .Fatigue_5         2.214    0.083   26.567    0.000    2.050    2.377
##    .posEmo.1          0.114    0.065    1.753    0.080   -0.013    0.241
##    .posEmo.2          0.105    0.074    1.412    0.158   -0.041    0.250
##    .posEmo.3          0.109    0.076    1.449    0.147   -0.039    0.258
##    .posEmo.4          0.089    0.077    1.153    0.249   -0.062    0.240
##    .posEmo.5          0.082    0.079    1.039    0.299   -0.073    0.238
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.066    0.065
##     0.124    0.126
##     0.102    0.103
##     0.144    0.145
##     0.120    0.124
##     2.421    2.334
##     2.313    2.321
##     2.294    2.259
##     2.221    2.166
##     2.214    2.249
##     0.114    0.114
##     0.105    0.105
##     0.109    0.112
##     0.089    0.093
##     0.082    0.086
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.988    0.066   14.945    0.000    0.859    1.118
##     wy1               1.061    0.071   14.951    0.000    0.922    1.200
##     wm1               0.995    0.066   14.994    0.000    0.865    1.125
##    .wx2               0.888    0.079   11.179    0.000    0.732    1.044
##    .wy2               0.673    0.060   11.179    0.000    0.555    0.791
##    .wm2               0.700    0.062   11.225    0.000    0.577    0.822
##    .wx3               0.701    0.070   10.021    0.000    0.564    0.838
##    .wy3               0.585    0.058   10.027    0.000    0.471    0.700
##    .wm3               0.405    0.040   10.035    0.000    0.326    0.484
##    .wx4               0.759    0.079    9.646    0.000    0.605    0.914
##    .wy4               0.511    0.053    9.640    0.000    0.407    0.614
##    .wm4               0.379    0.039    9.661    0.000    0.302    0.456
##    .wx5               0.601    0.064    9.427    0.000    0.476    0.726
##    .wy5               0.560    0.059    9.418    0.000    0.443    0.676
##    .wm5               0.380    0.040    9.439    0.000    0.301    0.459
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .Fatigue_1         0.000                               0.000    0.000
##    .Fatigue_2         0.000                               0.000    0.000
##    .Fatigue_3         0.000                               0.000    0.000
##    .Fatigue_4         0.000                               0.000    0.000
##    .Fatigue_5         0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.948    0.948
##     0.688    0.688
##     0.709    0.709
##     0.739    0.739
##     0.576    0.576
##     0.427    0.427
##     0.790    0.790
##     0.493    0.493
##     0.424    0.424
##     0.662    0.662
##     0.587    0.587
##     0.416    0.416
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

LadderDif, Positive Emotions, and Physical Ability, 2nd Order AR, controls

White Participants

(a1) Perceived status difference at time t predicts less positive emotions at time t+1, b = -.07, p = .003
(b1) Positive emotions at time t do not predict physical ability at time t+1

PEmoPhysCLPM_2AR_controls <- '
 # Create between components (random intercepts)
  RIx =~ 1*LadderDif.1 + 1*LadderDif.2 + 1*LadderDif.3 + 1*LadderDif.4 + 1*LadderDif.5
  RIy =~ 1*Phys_1 + 1*Phys_2 + 1*Phys_3 + 1*Phys_4 + 1*Phys_5
  RIm =~ 1*posEmo.1 + 1*posEmo.2 + 1*posEmo.3 + 1*posEmo.4 + 1*posEmo.5
  
  # Create within-person centered variables
  wx1 =~ 1*LadderDif.1
  wx2 =~ 1*LadderDif.2
  wx3 =~ 1*LadderDif.3 
  wx4 =~ 1*LadderDif.4
  wx5 =~ 1*LadderDif.5
  wy1 =~ 1*Phys_1
  wy2 =~ 1*Phys_2
  wy3 =~ 1*Phys_3
  wy4 =~ 1*Phys_4
  wy5 =~ 1*Phys_5
  wm1 =~ 1*posEmo.1
  wm2 =~ 1*posEmo.2
  wm3 =~ 1*posEmo.3
  wm4 =~ 1*posEmo.4
  wm5 =~ 1*posEmo.5
  
  # Regression of observed variables on controls (constrained). 
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Gen1*GenderBinary
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Gen2*GenderBinary
  Phys_1 + Phys_2 + Phys_3 + Phys_4 + Phys_5 ~ Gen3*GenderBinary
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Edu1*Edu
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5 ~ Edu2*Edu
  Phys_1 + Phys_2 + Phys_3 + Phys_4 + Phys_5 ~ Edu3*Edu
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Inc1*Income
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Inc2*Income
  Phys_1 + Phys_2 + Phys_3 + Phys_4 + Phys_5  ~ Inc3*Income
  LadderDif.1 + LadderDif.2 + LadderDif.3 + LadderDif.4 + LadderDif.5 ~ Age1*Age
  posEmo.1 + posEmo.2 + posEmo.3 + posEmo.4 + posEmo.5  ~ Age2*Age
  Phys_1 + Phys_2 + Phys_3 + Phys_4 + Phys_5  ~ Age3*Age

  # Estimate the lagged effects between the within-person centered variables.
  wy2 ~ wy1 + b1*wm1
  wy3 ~ cp1*wx1 + wy2 + b1*wm2 + wy1
  wy4 ~ cp1*wx2 + wy3 + b1*wm3 + wy2
  wy5 ~ cp1*wx3 + wy4 + b1*wm4 + wy3
  wx2 ~ wx1 + b2*wm1
  wx3 ~ wx2 + cp2*wy1 + b2*wm2 + wx1
  wx4 ~ wx3 + cp2*wy2 + b2*wm3 + wx2
  wx5 ~ wx4 + cp2*wy3 + b2*wm4 + wx3
  wm2 ~ a1*wx1 + a2*wy1 + wm1
  wm3 ~ a1*wx2 + a2*wy2 + wm2 + wm1
  wm4 ~ a1*wx3 + a2*wy3 + wm3 + wm2
  wm5 ~ a1*wx4 + a2*wy4 + wm4 + wm3


  # Estimate the covariance between the within-person centered variables at the first wave. 
  wx1 ~~ wy1 # Covariance
  wx1 ~~ wm1 # Covariance
  wm1 ~~ wy1 # Covariance
  
  # Estimate the covariances between the residuals of the within-person centered variables (the innovations).
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  wx2 ~~ wm2
  wx3 ~~ wm3
  wx4 ~~ wm4
  wx5 ~~ wm5
  wm2 ~~ wy2
  wm3 ~~ wy3
  wm4 ~~ wy4
  wm5 ~~ wy5
  
  # Estimate the variance and covariance of the random intercepts. 
  RIx ~~ 0*RIx
  RIy ~~ 0*RIy
  RIm ~~ 0*RIm
  RIx ~~ 0*RIy
  RIx ~~ 0*RIm
  RIy ~~ 0*RIm

  # Estimate the (residual) variance of the within-person centered variables.
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1 
  wm1 ~~ wm1 
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2 
  wm2 ~~ wm2 
  wx3 ~~ wx3 
  wy3 ~~ wy3 
  wm3 ~~ wm3 
  wx4 ~~ wx4 
  wy4 ~~ wy4 
  wm4 ~~ wm4 
  wx5 ~~ wx5
  wy5 ~~ wy5
  wm5 ~~ wm5 
'

PEmoPhysCLPM_w2AR_controls.fit <- lavaan(PEmoPhysCLPM_2AR_controls, data = d_white, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoPhysCLPM_w2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 60 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           433         482
##   Number of missing patterns                         8            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               190.053
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2200.085
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.961
##   Tucker-Lewis Index (TLI)                       0.942
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5154.658
##   Loglikelihood unrestricted model (H1)      -5059.632
##                                                       
##   Akaike (AIC)                               10477.316
##   Bayesian (BIC)                             10819.258
##   Sample-size adjusted Bayesian (BIC)        10552.689
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.041
##   90 Percent confidence interval - lower         0.031
##   90 Percent confidence interval - upper         0.050
##   P-value RMSEA <= 0.05                          0.946
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.044
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     Phys_1            1.000                               1.000    1.000
##     Phys_2            1.000                               1.000    1.000
##     Phys_3            1.000                               1.000    1.000
##     Phys_4            1.000                               1.000    1.000
##     Phys_5            1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     Phys_1            1.000                               1.000    1.000
##   wy2 =~                                                                
##     Phys_2            1.000                               1.000    1.000
##   wy3 =~                                                                
##     Phys_3            1.000                               1.000    1.000
##   wy4 =~                                                                
##     Phys_4            1.000                               1.000    1.000
##   wy5 =~                                                                
##     Phys_5            1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.956    0.957
##                   
##     0.972    0.958
##                   
##     0.952    0.956
##                   
##     0.952    0.956
##                   
##     0.921    0.953
##                   
##     1.041    0.949
##                   
##     1.065    0.951
##                   
##     1.058    0.950
##                   
##     1.135    0.957
##                   
##     1.092    0.953
##                   
##     0.977    0.980
##                   
##     0.951    0.979
##                   
##     0.958    0.979
##                   
##     0.973    0.980
##                   
##     0.974    0.980
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)    0.302    0.077    3.915    0.000    0.151    0.453
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)    0.302    0.077    3.915    0.000    0.151    0.453
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)    0.302    0.077    3.915    0.000    0.151    0.453
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)    0.302    0.077    3.915    0.000    0.151    0.453
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)    0.302    0.077    3.915    0.000    0.151    0.453
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.152    0.082   -1.862    0.063   -0.312    0.008
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.152    0.082   -1.862    0.063   -0.312    0.008
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.152    0.082   -1.862    0.063   -0.312    0.008
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.152    0.082   -1.862    0.063   -0.312    0.008
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.152    0.082   -1.862    0.063   -0.312    0.008
##   Phys_1 ~                                                              
##     GndrBnr (Gen3)   -0.231    0.089   -2.594    0.009   -0.406   -0.056
##   Phys_2 ~                                                              
##     GndrBnr (Gen3)   -0.231    0.089   -2.594    0.009   -0.406   -0.056
##   Phys_3 ~                                                              
##     GndrBnr (Gen3)   -0.231    0.089   -2.594    0.009   -0.406   -0.056
##   Phys_4 ~                                                              
##     GndrBnr (Gen3)   -0.231    0.089   -2.594    0.009   -0.406   -0.056
##   Phys_5 ~                                                              
##     GndrBnr (Gen3)   -0.231    0.089   -2.594    0.009   -0.406   -0.056
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)    0.016    0.041    0.397    0.691   -0.064    0.097
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)    0.016    0.041    0.397    0.691   -0.064    0.097
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)    0.016    0.041    0.397    0.691   -0.064    0.097
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)    0.016    0.041    0.397    0.691   -0.064    0.097
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)    0.016    0.041    0.397    0.691   -0.064    0.097
##   posEmo.1 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.430    0.153   -0.148    0.023
##   posEmo.2 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.430    0.153   -0.148    0.023
##   posEmo.3 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.430    0.153   -0.148    0.023
##   posEmo.4 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.430    0.153   -0.148    0.023
##   posEmo.5 ~                                                            
##     Edu     (Edu2)   -0.063    0.044   -1.430    0.153   -0.148    0.023
##   Phys_1 ~                                                              
##     Edu     (Edu3)    0.178    0.047    3.779    0.000    0.086    0.271
##   Phys_2 ~                                                              
##     Edu     (Edu3)    0.178    0.047    3.779    0.000    0.086    0.271
##   Phys_3 ~                                                              
##     Edu     (Edu3)    0.178    0.047    3.779    0.000    0.086    0.271
##   Phys_4 ~                                                              
##     Edu     (Edu3)    0.178    0.047    3.779    0.000    0.086    0.271
##   Phys_5 ~                                                              
##     Edu     (Edu3)    0.178    0.047    3.779    0.000    0.086    0.271
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.131    0.000   -0.330   -0.170
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.131    0.000   -0.330   -0.170
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.131    0.000   -0.330   -0.170
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.131    0.000   -0.330   -0.170
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.250    0.041   -6.131    0.000   -0.330   -0.170
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.159    0.043    3.648    0.000    0.073    0.244
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.159    0.043    3.648    0.000    0.073    0.244
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.159    0.043    3.648    0.000    0.073    0.244
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.159    0.043    3.648    0.000    0.073    0.244
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.159    0.043    3.648    0.000    0.073    0.244
##   Phys_1 ~                                                              
##     Income  (Inc3)    0.201    0.047    4.258    0.000    0.109    0.294
##   Phys_2 ~                                                              
##     Income  (Inc3)    0.201    0.047    4.258    0.000    0.109    0.294
##   Phys_3 ~                                                              
##     Income  (Inc3)    0.201    0.047    4.258    0.000    0.109    0.294
##   Phys_4 ~                                                              
##     Income  (Inc3)    0.201    0.047    4.258    0.000    0.109    0.294
##   Phys_5 ~                                                              
##     Income  (Inc3)    0.201    0.047    4.258    0.000    0.109    0.294
##   LadderDif.1 ~                                                         
##     Age     (Age1)   -0.017    0.039   -0.430    0.667   -0.093    0.059
##   LadderDif.2 ~                                                         
##     Age     (Age1)   -0.017    0.039   -0.430    0.667   -0.093    0.059
##   LadderDif.3 ~                                                         
##     Age     (Age1)   -0.017    0.039   -0.430    0.667   -0.093    0.059
##   LadderDif.4 ~                                                         
##     Age     (Age1)   -0.017    0.039   -0.430    0.667   -0.093    0.059
##   LadderDif.5 ~                                                         
##     Age     (Age1)   -0.017    0.039   -0.430    0.667   -0.093    0.059
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.095    0.041    2.305    0.021    0.014    0.176
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.095    0.041    2.305    0.021    0.014    0.176
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.095    0.041    2.305    0.021    0.014    0.176
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.095    0.041    2.305    0.021    0.014    0.176
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.095    0.041    2.305    0.021    0.014    0.176
##   Phys_1 ~                                                              
##     Age     (Age3)    0.031    0.045    0.704    0.482   -0.056    0.119
##   Phys_2 ~                                                              
##     Age     (Age3)    0.031    0.045    0.704    0.482   -0.056    0.119
##   Phys_3 ~                                                              
##     Age     (Age3)    0.031    0.045    0.704    0.482   -0.056    0.119
##   Phys_4 ~                                                              
##     Age     (Age3)    0.031    0.045    0.704    0.482   -0.056    0.119
##   Phys_5 ~                                                              
##     Age     (Age3)    0.031    0.045    0.704    0.482   -0.056    0.119
##   wy2 ~                                                                 
##     wy1               0.606    0.049   12.363    0.000    0.510    0.703
##     wm1       (b1)   -0.025    0.027   -0.918    0.358   -0.077    0.028
##   wy3 ~                                                                 
##     wx1      (cp1)   -0.013    0.034   -0.396    0.692   -0.080    0.053
##     wy2               0.301    0.057    5.230    0.000    0.188    0.413
##     wm2       (b1)   -0.025    0.027   -0.918    0.358   -0.077    0.028
##     wy1               0.491    0.058    8.482    0.000    0.378    0.605
##   wy4 ~                                                                 
##     wx2      (cp1)   -0.013    0.034   -0.396    0.692   -0.080    0.053
##     wy3               0.466    0.068    6.897    0.000    0.334    0.599
##     wm3       (b1)   -0.025    0.027   -0.918    0.358   -0.077    0.028
##     wy2               0.349    0.067    5.191    0.000    0.217    0.481
##   wy5 ~                                                                 
##     wx3      (cp1)   -0.013    0.034   -0.396    0.692   -0.080    0.053
##     wy4               0.305    0.065    4.702    0.000    0.178    0.432
##     wm4       (b1)   -0.025    0.027   -0.918    0.358   -0.077    0.028
##     wy3               0.393    0.072    5.486    0.000    0.252    0.533
##   wx2 ~                                                                 
##     wx1               0.515    0.051   10.134    0.000    0.416    0.615
##     wm1       (b2)   -0.032    0.025   -1.260    0.208   -0.082    0.018
##   wx3 ~                                                                 
##     wx2               0.282    0.062    4.580    0.000    0.162    0.403
##     wy1      (cp2)   -0.019    0.029   -0.671    0.502   -0.076    0.037
##     wm2       (b2)   -0.032    0.025   -1.260    0.208   -0.082    0.018
##     wx1               0.401    0.059    6.764    0.000    0.285    0.518
##   wx4 ~                                                                 
##     wx3               0.256    0.063    4.036    0.000    0.132    0.381
##     wy2      (cp2)   -0.019    0.029   -0.671    0.502   -0.076    0.037
##     wm3       (b2)   -0.032    0.025   -1.260    0.208   -0.082    0.018
##     wx2               0.381    0.067    5.655    0.000    0.249    0.512
##   wx5 ~                                                                 
##     wx4               0.289    0.057    5.065    0.000    0.177    0.402
##     wy3      (cp2)   -0.019    0.029   -0.671    0.502   -0.076    0.037
##     wm4       (b2)   -0.032    0.025   -1.260    0.208   -0.082    0.018
##     wx3               0.435    0.056    7.808    0.000    0.326    0.544
##   wm2 ~                                                                 
##     wx1       (a1)   -0.071    0.024   -3.001    0.003   -0.118   -0.025
##     wy1       (a2)    0.012    0.021    0.555    0.579   -0.030    0.053
##     wm1               0.563    0.043   13.004    0.000    0.478    0.648
##   wm3 ~                                                                 
##     wx2       (a1)   -0.071    0.024   -3.001    0.003   -0.118   -0.025
##     wy2       (a2)    0.012    0.021    0.555    0.579   -0.030    0.053
##     wm2               0.548    0.058    9.419    0.000    0.434    0.662
##     wm1               0.190    0.057    3.298    0.001    0.077    0.302
##   wm4 ~                                                                 
##     wx3       (a1)   -0.071    0.024   -3.001    0.003   -0.118   -0.025
##     wy3       (a2)    0.012    0.021    0.555    0.579   -0.030    0.053
##     wm3               0.534    0.063    8.448    0.000    0.410    0.658
##     wm2               0.256    0.064    3.976    0.000    0.130    0.382
##   wm5 ~                                                                 
##     wx4       (a1)   -0.071    0.024   -3.001    0.003   -0.118   -0.025
##     wy4       (a2)    0.012    0.021    0.555    0.579   -0.030    0.053
##     wm4               0.377    0.060    6.338    0.000    0.261    0.494
##     wm3               0.461    0.060    7.715    0.000    0.344    0.578
##    Std.lv  Std.all
##                   
##     0.302    0.151
##                   
##     0.302    0.149
##                   
##     0.302    0.152
##                   
##     0.302    0.152
##                   
##     0.302    0.156
##                   
##    -0.152   -0.076
##                   
##    -0.152   -0.078
##                   
##    -0.152   -0.078
##                   
##    -0.152   -0.077
##                   
##    -0.152   -0.077
##                   
##    -0.231   -0.105
##                   
##    -0.231   -0.103
##                   
##    -0.231   -0.104
##                   
##    -0.231   -0.097
##                   
##    -0.231   -0.101
##                   
##     0.016    0.016
##                   
##     0.016    0.016
##                   
##     0.016    0.016
##                   
##     0.016    0.016
##                   
##     0.016    0.017
##                   
##    -0.063   -0.063
##                   
##    -0.063   -0.064
##                   
##    -0.063   -0.064
##                   
##    -0.063   -0.063
##                   
##    -0.063   -0.063
##                   
##     0.178    0.162
##                   
##     0.178    0.159
##                   
##     0.178    0.160
##                   
##     0.178    0.150
##                   
##     0.178    0.156
##                   
##    -0.250   -0.251
##                   
##    -0.250   -0.247
##                   
##    -0.250   -0.251
##                   
##    -0.250   -0.252
##                   
##    -0.250   -0.259
##                   
##     0.159    0.159
##                   
##     0.159    0.163
##                   
##     0.159    0.162
##                   
##     0.159    0.160
##                   
##     0.159    0.160
##                   
##     0.201    0.184
##                   
##     0.201    0.180
##                   
##     0.201    0.181
##                   
##     0.201    0.170
##                   
##     0.201    0.176
##                   
##    -0.017   -0.017
##                   
##    -0.017   -0.016
##                   
##    -0.017   -0.017
##                   
##    -0.017   -0.017
##                   
##    -0.017   -0.017
##                   
##     0.095    0.095
##                   
##     0.095    0.097
##                   
##     0.095    0.097
##                   
##     0.095    0.095
##                   
##     0.095    0.095
##                   
##     0.031    0.029
##                   
##     0.031    0.028
##                   
##     0.031    0.028
##                   
##     0.031    0.026
##                   
##     0.031    0.027
##                   
##     0.592    0.592
##    -0.023   -0.023
##                   
##    -0.012   -0.012
##     0.303    0.303
##    -0.022   -0.022
##     0.483    0.483
##                   
##    -0.012   -0.012
##     0.435    0.435
##    -0.021   -0.021
##     0.328    0.328
##                   
##    -0.012   -0.012
##     0.317    0.317
##    -0.022   -0.022
##     0.380    0.380
##                   
##     0.507    0.507
##    -0.032   -0.032
##                   
##     0.288    0.288
##    -0.021   -0.021
##    -0.032   -0.032
##     0.403    0.403
##                   
##     0.256    0.256
##    -0.022   -0.022
##    -0.032   -0.032
##     0.389    0.389
##                   
##     0.299    0.299
##    -0.022   -0.022
##    -0.034   -0.034
##     0.450    0.450
##                   
##    -0.072   -0.072
##     0.013    0.013
##     0.578    0.578
##                   
##    -0.072   -0.072
##     0.013    0.013
##     0.544    0.544
##     0.193    0.193
##                   
##    -0.070   -0.070
##     0.013    0.013
##     0.526    0.526
##     0.250    0.250
##                   
##    -0.070   -0.070
##     0.014    0.014
##     0.377    0.377
##     0.454    0.454
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.175    0.049   -3.596    0.000   -0.270   -0.080
##     wm1              -0.182    0.046   -3.971    0.000   -0.272   -0.092
##   wy1 ~~                                                                
##     wm1               0.100    0.049    2.043    0.041    0.004    0.197
##  .wx2 ~~                                                                
##    .wy2               0.011    0.042    0.275    0.783   -0.070    0.093
##  .wx3 ~~                                                                
##    .wy3              -0.007    0.036   -0.189    0.850   -0.078    0.065
##  .wx4 ~~                                                                
##    .wy4               0.065    0.044    1.458    0.145   -0.022    0.152
##  .wx5 ~~                                                                
##    .wy5               0.045    0.041    1.098    0.272   -0.035    0.125
##  .wx2 ~~                                                                
##    .wm2              -0.042    0.037   -1.141    0.254   -0.114    0.030
##  .wx3 ~~                                                                
##    .wm3               0.006    0.034    0.191    0.849   -0.060    0.073
##  .wx4 ~~                                                                
##    .wm4               0.000    0.035    0.013    0.990   -0.068    0.069
##  .wx5 ~~                                                                
##    .wm5              -0.009    0.029   -0.318    0.750   -0.066    0.048
##  .wy2 ~~                                                                
##    .wm2               0.015    0.038    0.392    0.695   -0.059    0.089
##  .wy3 ~~                                                                
##    .wm3               0.002    0.034    0.068    0.946   -0.064    0.069
##  .wy4 ~~                                                                
##    .wm4               0.022    0.037    0.594    0.552   -0.051    0.095
##  .wy5 ~~                                                                
##    .wm5               0.035    0.036    0.974    0.330   -0.035    0.105
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.176   -0.176
##    -0.195   -0.195
##                   
##     0.099    0.099
##                   
##     0.016    0.016
##                   
##    -0.012   -0.012
##                   
##     0.100    0.100
##                   
##     0.076    0.076
##                   
##    -0.066   -0.066
##                   
##     0.012    0.012
##                   
##     0.001    0.001
##                   
##    -0.022   -0.022
##                   
##     0.023    0.023
##                   
##     0.004    0.004
##                   
##     0.040    0.040
##                   
##     0.068    0.068
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1      -0.146    0.061   -2.404    0.016   -0.265   -0.027
##    .LadderDif.2      -0.153    0.067   -2.298    0.022   -0.283   -0.022
##    .LadderDif.3      -0.185    0.069   -2.678    0.007   -0.320   -0.050
##    .LadderDif.4      -0.166    0.072   -2.302    0.021   -0.308   -0.025
##    .LadderDif.5      -0.188    0.071   -2.635    0.008   -0.328   -0.048
##    .Phys_1            4.074    0.068   60.089    0.000    3.941    4.207
##    .Phys_2            4.013    0.074   54.419    0.000    3.868    4.157
##    .Phys_3            3.956    0.076   52.140    0.000    3.807    4.104
##    .Phys_4            3.918    0.084   46.831    0.000    3.754    4.082
##    .Phys_5            3.961    0.084   47.149    0.000    3.796    4.126
##    .posEmo.1          0.078    0.063    1.235    0.217   -0.046    0.201
##    .posEmo.2          0.075    0.066    1.126    0.260   -0.055    0.205
##    .posEmo.3          0.104    0.070    1.482    0.138   -0.034    0.241
##    .posEmo.4          0.097    0.073    1.322    0.186   -0.047    0.240
##    .posEmo.5          0.109    0.074    1.473    0.141   -0.036    0.254
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##    -0.146   -0.146
##    -0.153   -0.151
##    -0.185   -0.186
##    -0.166   -0.167
##    -0.188   -0.195
##     4.074    3.714
##     4.013    3.582
##     3.956    3.555
##     3.918    3.301
##     3.961    3.458
##     0.078    0.078
##     0.075    0.077
##     0.104    0.106
##     0.097    0.097
##     0.109    0.110
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.914    0.062   14.666    0.000    0.792    1.036
##     wy1               1.083    0.074   14.699    0.000    0.939    1.228
##     wm1               0.954    0.065   14.705    0.000    0.827    1.081
##    .wx2               0.695    0.057   12.260    0.000    0.584    0.807
##    .wy2               0.739    0.060   12.254    0.000    0.621    0.858
##    .wm2               0.582    0.047   12.286    0.000    0.489    0.674
##    .wx3               0.564    0.051   10.957    0.000    0.463    0.664
##    .wy3               0.560    0.051   10.997    0.000    0.460    0.660
##    .wm3               0.476    0.043   10.986    0.000    0.391    0.561
##    .wx4               0.610    0.058   10.465    0.000    0.495    0.724
##    .wy4               0.691    0.066   10.468    0.000    0.562    0.820
##    .wm4               0.438    0.042   10.481    0.000    0.356    0.520
##    .wx5               0.485    0.047   10.283    0.000    0.393    0.578
##    .wy5               0.719    0.070   10.275    0.000    0.582    0.857
##    .wm5               0.368    0.036   10.287    0.000    0.298    0.439
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .Phys_1            0.000                               0.000    0.000
##    .Phys_2            0.000                               0.000    0.000
##    .Phys_3            0.000                               0.000    0.000
##    .Phys_4            0.000                               0.000    0.000
##    .Phys_5            0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.736    0.736
##     0.651    0.651
##     0.643    0.643
##     0.622    0.622
##     0.501    0.501
##     0.519    0.519
##     0.673    0.673
##     0.536    0.536
##     0.463    0.463
##     0.573    0.573
##     0.603    0.603
##     0.389    0.389
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000

Black Participants

Perceived status difference at time t does not predict positive emotions at time t+1
Positive emotions at time t do not predict fatigue at time t+1

# Same model as above code, but fit with d_black dataset this time
PEmoPhysCLPM_b2AR_controls.fit <- lavaan(PEmoPhysCLPM_2AR_controls, data = d_black, missing = 'ML', meanstructure = T, int.ov.free = T) 
summary(PEmoPhysCLPM_b2AR_controls.fit, standardized = T, fit.measures = T, ci = T)
## lavaan 0.6-8 ended normally after 58 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       148
##   Number of equality constraints                    64
##                                                       
##                                                   Used       Total
##   Number of observations                           451         482
##   Number of missing patterns                         7            
##                                                                   
## Model Test User Model:
##                                                       
##   Test statistic                               188.143
##   Degrees of freedom                               111
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1546.380
##   Degrees of freedom                               165
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.944
##   Tucker-Lewis Index (TLI)                       0.917
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4843.408
##   Loglikelihood unrestricted model (H1)      -4749.337
##                                                       
##   Akaike (AIC)                                9854.817
##   Bayesian (BIC)                             10200.180
##   Sample-size adjusted Bayesian (BIC)         9933.595
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.039
##   90 Percent confidence interval - lower         0.029
##   90 Percent confidence interval - upper         0.049
##   P-value RMSEA <= 0.05                          0.969
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.053
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   RIx =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##     LadderDif.2       1.000                               1.000    1.000
##     LadderDif.3       1.000                               1.000    1.000
##     LadderDif.4       1.000                               1.000    1.000
##     LadderDif.5       1.000                               1.000    1.000
##   RIy =~                                                                
##     Phys_1            1.000                               1.000    1.000
##     Phys_2            1.000                               1.000    1.000
##     Phys_3            1.000                               1.000    1.000
##     Phys_4            1.000                               1.000    1.000
##     Phys_5            1.000                               1.000    1.000
##   RIm =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##     posEmo.2          1.000                               1.000    1.000
##     posEmo.3          1.000                               1.000    1.000
##     posEmo.4          1.000                               1.000    1.000
##     posEmo.5          1.000                               1.000    1.000
##   wx1 =~                                                                
##     LadderDif.1       1.000                               1.000    1.000
##   wx2 =~                                                                
##     LadderDif.2       1.000                               1.000    1.000
##   wx3 =~                                                                
##     LadderDif.3       1.000                               1.000    1.000
##   wx4 =~                                                                
##     LadderDif.4       1.000                               1.000    1.000
##   wx5 =~                                                                
##     LadderDif.5       1.000                               1.000    1.000
##   wy1 =~                                                                
##     Phys_1            1.000                               1.000    1.000
##   wy2 =~                                                                
##     Phys_2            1.000                               1.000    1.000
##   wy3 =~                                                                
##     Phys_3            1.000                               1.000    1.000
##   wy4 =~                                                                
##     Phys_4            1.000                               1.000    1.000
##   wy5 =~                                                                
##     Phys_5            1.000                               1.000    1.000
##   wm1 =~                                                                
##     posEmo.1          1.000                               1.000    1.000
##   wm2 =~                                                                
##     posEmo.2          1.000                               1.000    1.000
##   wm3 =~                                                                
##     posEmo.3          1.000                               1.000    1.000
##   wm4 =~                                                                
##     posEmo.4          1.000                               1.000    1.000
##   wm5 =~                                                                
##     posEmo.5          1.000                               1.000    1.000
##    Std.lv  Std.all
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##                   
##     0.994    0.985
##                   
##     0.967    0.984
##                   
##     0.966    0.984
##                   
##     0.969    0.984
##                   
##     0.946    0.984
##                   
##     1.119    0.973
##                   
##     1.088    0.971
##                   
##     1.072    0.970
##                   
##     1.067    0.970
##                   
##     1.079    0.971
##                   
##     0.997    0.994
##                   
##     0.995    0.994
##                   
##     0.985    0.994
##                   
##     0.950    0.993
##                   
##     0.966    0.994
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   LadderDif.1 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.690    0.091   -0.274    0.020
##   LadderDif.2 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.690    0.091   -0.274    0.020
##   LadderDif.3 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.690    0.091   -0.274    0.020
##   LadderDif.4 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.690    0.091   -0.274    0.020
##   LadderDif.5 ~                                                         
##     GndrBnr (Gen1)   -0.127    0.075   -1.690    0.091   -0.274    0.020
##   posEmo.1 ~                                                            
##     GndrBnr (Gen2)   -0.207    0.086   -2.406    0.016   -0.376   -0.038
##   posEmo.2 ~                                                            
##     GndrBnr (Gen2)   -0.207    0.086   -2.406    0.016   -0.376   -0.038
##   posEmo.3 ~                                                            
##     GndrBnr (Gen2)   -0.207    0.086   -2.406    0.016   -0.376   -0.038
##   posEmo.4 ~                                                            
##     GndrBnr (Gen2)   -0.207    0.086   -2.406    0.016   -0.376   -0.038
##   posEmo.5 ~                                                            
##     GndrBnr (Gen2)   -0.207    0.086   -2.406    0.016   -0.376   -0.038
##   Phys_1 ~                                                              
##     GndrBnr (Gen3)    0.067    0.094    0.713    0.476   -0.117    0.251
##   Phys_2 ~                                                              
##     GndrBnr (Gen3)    0.067    0.094    0.713    0.476   -0.117    0.251
##   Phys_3 ~                                                              
##     GndrBnr (Gen3)    0.067    0.094    0.713    0.476   -0.117    0.251
##   Phys_4 ~                                                              
##     GndrBnr (Gen3)    0.067    0.094    0.713    0.476   -0.117    0.251
##   Phys_5 ~                                                              
##     GndrBnr (Gen3)    0.067    0.094    0.713    0.476   -0.117    0.251
##   LadderDif.1 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   LadderDif.2 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   LadderDif.3 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   LadderDif.4 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   LadderDif.5 ~                                                         
##     Edu     (Edu1)   -0.074    0.039   -1.874    0.061   -0.151    0.003
##   posEmo.1 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.998   -0.088    0.089
##   posEmo.2 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.998   -0.088    0.089
##   posEmo.3 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.998   -0.088    0.089
##   posEmo.4 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.998   -0.088    0.089
##   posEmo.5 ~                                                            
##     Edu     (Edu2)    0.000    0.045    0.003    0.998   -0.088    0.089
##   Phys_1 ~                                                              
##     Edu     (Edu3)    0.134    0.049    2.724    0.006    0.038    0.231
##   Phys_2 ~                                                              
##     Edu     (Edu3)    0.134    0.049    2.724    0.006    0.038    0.231
##   Phys_3 ~                                                              
##     Edu     (Edu3)    0.134    0.049    2.724    0.006    0.038    0.231
##   Phys_4 ~                                                              
##     Edu     (Edu3)    0.134    0.049    2.724    0.006    0.038    0.231
##   Phys_5 ~                                                              
##     Edu     (Edu3)    0.134    0.049    2.724    0.006    0.038    0.231
##   LadderDif.1 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.887    0.004   -0.187   -0.036
##   LadderDif.2 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.887    0.004   -0.187   -0.036
##   LadderDif.3 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.887    0.004   -0.187   -0.036
##   LadderDif.4 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.887    0.004   -0.187   -0.036
##   LadderDif.5 ~                                                         
##     Income  (Inc1)   -0.112    0.039   -2.887    0.004   -0.187   -0.036
##   posEmo.1 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   posEmo.2 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   posEmo.3 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   posEmo.4 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   posEmo.5 ~                                                            
##     Income  (Inc2)    0.041    0.044    0.933    0.351   -0.045    0.128
##   Phys_1 ~                                                              
##     Income  (Inc3)    0.141    0.049    2.902    0.004    0.046    0.236
##   Phys_2 ~                                                              
##     Income  (Inc3)    0.141    0.049    2.902    0.004    0.046    0.236
##   Phys_3 ~                                                              
##     Income  (Inc3)    0.141    0.049    2.902    0.004    0.046    0.236
##   Phys_4 ~                                                              
##     Income  (Inc3)    0.141    0.049    2.902    0.004    0.046    0.236
##   Phys_5 ~                                                              
##     Income  (Inc3)    0.141    0.049    2.902    0.004    0.046    0.236
##   LadderDif.1 ~                                                         
##     Age     (Age1)    0.044    0.037    1.188    0.235   -0.029    0.118
##   LadderDif.2 ~                                                         
##     Age     (Age1)    0.044    0.037    1.188    0.235   -0.029    0.118
##   LadderDif.3 ~                                                         
##     Age     (Age1)    0.044    0.037    1.188    0.235   -0.029    0.118
##   LadderDif.4 ~                                                         
##     Age     (Age1)    0.044    0.037    1.188    0.235   -0.029    0.118
##   LadderDif.5 ~                                                         
##     Age     (Age1)    0.044    0.037    1.188    0.235   -0.029    0.118
##   posEmo.1 ~                                                            
##     Age     (Age2)    0.029    0.043    0.673    0.501   -0.055    0.113
##   posEmo.2 ~                                                            
##     Age     (Age2)    0.029    0.043    0.673    0.501   -0.055    0.113
##   posEmo.3 ~                                                            
##     Age     (Age2)    0.029    0.043    0.673    0.501   -0.055    0.113
##   posEmo.4 ~                                                            
##     Age     (Age2)    0.029    0.043    0.673    0.501   -0.055    0.113
##   posEmo.5 ~                                                            
##     Age     (Age2)    0.029    0.043    0.673    0.501   -0.055    0.113
##   Phys_1 ~                                                              
##     Age     (Age3)    0.098    0.047    2.084    0.037    0.006    0.189
##   Phys_2 ~                                                              
##     Age     (Age3)    0.098    0.047    2.084    0.037    0.006    0.189
##   Phys_3 ~                                                              
##     Age     (Age3)    0.098    0.047    2.084    0.037    0.006    0.189
##   Phys_4 ~                                                              
##     Age     (Age3)    0.098    0.047    2.084    0.037    0.006    0.189
##   Phys_5 ~                                                              
##     Age     (Age3)    0.098    0.047    2.084    0.037    0.006    0.189
##   wy2 ~                                                                 
##     wy1               0.497    0.055    9.055    0.000    0.389    0.604
##     wm1       (b1)    0.057    0.030    1.869    0.062   -0.003    0.116
##   wy3 ~                                                                 
##     wx1      (cp1)    0.007    0.037    0.186    0.853   -0.066    0.080
##     wy2               0.378    0.065    5.855    0.000    0.251    0.505
##     wm2       (b1)    0.057    0.030    1.869    0.062   -0.003    0.116
##     wy1               0.311    0.065    4.792    0.000    0.183    0.438
##   wy4 ~                                                                 
##     wx2      (cp1)    0.007    0.037    0.186    0.853   -0.066    0.080
##     wy3               0.289    0.068    4.270    0.000    0.156    0.421
##     wm3       (b1)    0.057    0.030    1.869    0.062   -0.003    0.116
##     wy2               0.392    0.069    5.658    0.000    0.256    0.528
##   wy5 ~                                                                 
##     wx3      (cp1)    0.007    0.037    0.186    0.853   -0.066    0.080
##     wy4               0.490    0.061    8.015    0.000    0.370    0.609
##     wm4       (b1)    0.057    0.030    1.869    0.062   -0.003    0.116
##     wy3               0.341    0.063    5.420    0.000    0.218    0.465
##   wx2 ~                                                                 
##     wx1               0.213    0.061    3.467    0.001    0.093    0.333
##     wm1       (b2)   -0.039    0.031   -1.261    0.207   -0.100    0.022
##   wx3 ~                                                                 
##     wx2               0.434    0.066    6.578    0.000    0.305    0.563
##     wy1      (cp2)    0.019    0.035    0.535    0.593   -0.050    0.088
##     wm2       (b2)   -0.039    0.031   -1.261    0.207   -0.100    0.022
##     wx1               0.157    0.063    2.483    0.013    0.033    0.281
##   wx4 ~                                                                 
##     wx3               0.259    0.078    3.326    0.001    0.106    0.412
##     wy2      (cp2)    0.019    0.035    0.535    0.593   -0.050    0.088
##     wm3       (b2)   -0.039    0.031   -1.261    0.207   -0.100    0.022
##     wx2               0.246    0.079    3.127    0.002    0.092    0.399
##   wx5 ~                                                                 
##     wx4               0.238    0.065    3.672    0.000    0.111    0.365
##     wy3      (cp2)    0.019    0.035    0.535    0.593   -0.050    0.088
##     wm4       (b2)   -0.039    0.031   -1.261    0.207   -0.100    0.022
##     wx3               0.416    0.070    5.953    0.000    0.279    0.553
##   wm2 ~                                                                 
##     wx1       (a1)   -0.034    0.025   -1.334    0.182   -0.084    0.016
##     wy1       (a2)    0.016    0.023    0.671    0.502   -0.030    0.061
##     wm1               0.529    0.053   10.012    0.000    0.425    0.632
##   wm3 ~                                                                 
##     wx2       (a1)   -0.034    0.025   -1.334    0.182   -0.084    0.016
##     wy2       (a2)    0.016    0.023    0.671    0.502   -0.030    0.061
##     wm2               0.599    0.054   11.028    0.000    0.493    0.706
##     wm1               0.225    0.053    4.250    0.000    0.121    0.329
##   wm4 ~                                                                 
##     wx3       (a1)   -0.034    0.025   -1.334    0.182   -0.084    0.016
##     wy3       (a2)    0.016    0.023    0.671    0.502   -0.030    0.061
##     wm3               0.440    0.070    6.290    0.000    0.303    0.577
##     wm2               0.334    0.067    4.973    0.000    0.202    0.465
##   wm5 ~                                                                 
##     wx4       (a1)   -0.034    0.025   -1.334    0.182   -0.084    0.016
##     wy4       (a2)    0.016    0.023    0.671    0.502   -0.030    0.061
##     wm4               0.340    0.071    4.816    0.000    0.202    0.479
##     wm3               0.475    0.068    6.989    0.000    0.342    0.609
##    Std.lv  Std.all
##                   
##    -0.127   -0.063
##                   
##    -0.127   -0.065
##                   
##    -0.127   -0.065
##                   
##    -0.127   -0.064
##                   
##    -0.127   -0.066
##                   
##    -0.207   -0.103
##                   
##    -0.207   -0.103
##                   
##    -0.207   -0.104
##                   
##    -0.207   -0.108
##                   
##    -0.207   -0.106
##                   
##     0.067    0.029
##                   
##     0.067    0.030
##                   
##     0.067    0.030
##                   
##     0.067    0.030
##                   
##     0.067    0.030
##                   
##    -0.074   -0.073
##                   
##    -0.074   -0.075
##                   
##    -0.074   -0.075
##                   
##    -0.074   -0.075
##                   
##    -0.074   -0.077
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.000    0.000
##                   
##     0.134    0.117
##                   
##     0.134    0.120
##                   
##     0.134    0.122
##                   
##     0.134    0.122
##                   
##     0.134    0.121
##                   
##    -0.112   -0.110
##                   
##    -0.112   -0.113
##                   
##    -0.112   -0.114
##                   
##    -0.112   -0.113
##                   
##    -0.112   -0.116
##                   
##     0.041    0.041
##                   
##     0.041    0.041
##                   
##     0.041    0.042
##                   
##     0.041    0.043
##                   
##     0.041    0.043
##                   
##     0.141    0.122
##                   
##     0.141    0.126
##                   
##     0.141    0.128
##                   
##     0.141    0.128
##                   
##     0.141    0.127
##                   
##     0.044    0.044
##                   
##     0.044    0.045
##                   
##     0.044    0.045
##                   
##     0.044    0.045
##                   
##     0.044    0.046
##                   
##     0.029    0.029
##                   
##     0.029    0.029
##                   
##     0.029    0.029
##                   
##     0.029    0.030
##                   
##     0.029    0.030
##                   
##     0.098    0.085
##                   
##     0.098    0.087
##                   
##     0.098    0.088
##                   
##     0.098    0.089
##                   
##     0.098    0.088
##                   
##     0.510    0.510
##     0.052    0.052
##                   
##     0.006    0.006
##     0.384    0.384
##     0.053    0.053
##     0.324    0.324
##                   
##     0.006    0.006
##     0.290    0.290
##     0.052    0.052
##     0.400    0.400
##                   
##     0.006    0.006
##     0.484    0.484
##     0.050    0.050
##     0.339    0.339
##                   
##     0.219    0.219
##    -0.040   -0.040
##                   
##     0.435    0.435
##     0.022    0.022
##    -0.040   -0.040
##     0.162    0.162
##                   
##     0.258    0.258
##     0.021    0.021
##    -0.040   -0.040
##     0.245    0.245
##                   
##     0.244    0.244
##     0.021    0.021
##    -0.039   -0.039
##     0.425    0.425
##                   
##    -0.034   -0.034
##     0.018    0.018
##     0.529    0.529
##                   
##    -0.033   -0.033
##     0.017    0.017
##     0.606    0.606
##     0.228    0.228
##                   
##    -0.034   -0.034
##     0.018    0.018
##     0.456    0.456
##     0.350    0.350
##                   
##    -0.034   -0.034
##     0.017    0.017
##     0.335    0.335
##     0.485    0.485
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   wx1 ~~                                                                
##     wy1              -0.021    0.053   -0.406    0.685   -0.125    0.082
##     wm1              -0.013    0.047   -0.267    0.789   -0.104    0.079
##   wy1 ~~                                                                
##     wm1               0.349    0.055    6.330    0.000    0.241    0.457
##  .wx2 ~~                                                                
##    .wy2              -0.057    0.056   -1.025    0.305   -0.167    0.052
##  .wx3 ~~                                                                
##    .wy3               0.101    0.050    2.042    0.041    0.004    0.198
##  .wx4 ~~                                                                
##    .wy4              -0.097    0.055   -1.774    0.076   -0.205    0.010
##  .wx5 ~~                                                                
##    .wy5               0.005    0.042    0.128    0.898   -0.078    0.089
##  .wx2 ~~                                                                
##    .wm2              -0.033    0.050   -0.659    0.510   -0.131    0.065
##  .wx3 ~~                                                                
##    .wm3              -0.010    0.038   -0.276    0.782   -0.085    0.064
##  .wx4 ~~                                                                
##    .wm4               0.014    0.040    0.348    0.728   -0.064    0.092
##  .wx5 ~~                                                                
##    .wm5              -0.057    0.037   -1.551    0.121   -0.129    0.015
##  .wy2 ~~                                                                
##    .wm2               0.099    0.049    2.014    0.044    0.003    0.196
##  .wy3 ~~                                                                
##    .wm3               0.066    0.038    1.732    0.083   -0.009    0.140
##  .wy4 ~~                                                                
##    .wm4               0.074    0.039    1.895    0.058   -0.003    0.150
##  .wy5 ~~                                                                
##    .wm5               0.016    0.034    0.463    0.644   -0.051    0.083
##   RIx ~~                                                                
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##   RIy ~~                                                                
##     RIm               0.000                               0.000    0.000
##    Std.lv  Std.all
##                   
##    -0.019   -0.019
##    -0.013   -0.013
##                   
##     0.312    0.312
##                   
##    -0.066   -0.066
##                   
##     0.146    0.146
##                   
##    -0.134   -0.134
##                   
##     0.010    0.010
##                   
##    -0.042   -0.042
##                   
##    -0.020   -0.020
##                   
##     0.026    0.026
##                   
##    -0.119   -0.119
##                   
##     0.128    0.128
##                   
##     0.124    0.124
##                   
##     0.143    0.143
##                   
##     0.035    0.035
##                   
##       NaN      NaN
##       NaN      NaN
##                   
##       NaN      NaN
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .LadderDif.1       0.067    0.061    1.094    0.274   -0.053    0.187
##    .LadderDif.2       0.124    0.072    1.718    0.086   -0.018    0.267
##    .LadderDif.3       0.104    0.077    1.348    0.178   -0.047    0.255
##    .LadderDif.4       0.144    0.081    1.789    0.074   -0.014    0.302
##    .LadderDif.5       0.121    0.080    1.502    0.133   -0.037    0.278
##    .Phys_1            3.810    0.072   52.909    0.000    3.669    3.952
##    .Phys_2            3.754    0.081   46.098    0.000    3.595    3.914
##    .Phys_3            3.869    0.085   45.631    0.000    3.703    4.035
##    .Phys_4            3.812    0.088   43.138    0.000    3.639    3.985
##    .Phys_5            3.874    0.091   42.754    0.000    3.696    4.052
##    .posEmo.1          0.108    0.065    1.661    0.097   -0.019    0.236
##    .posEmo.2          0.103    0.074    1.382    0.167   -0.043    0.248
##    .posEmo.3          0.106    0.076    1.391    0.164   -0.043    0.256
##    .posEmo.4          0.086    0.078    1.112    0.266   -0.066    0.238
##    .posEmo.5          0.080    0.080    1.004    0.315   -0.077    0.237
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.000                               0.000    0.000
##    .wx2               0.000                               0.000    0.000
##    .wx3               0.000                               0.000    0.000
##    .wx4               0.000                               0.000    0.000
##    .wx5               0.000                               0.000    0.000
##     wy1               0.000                               0.000    0.000
##    .wy2               0.000                               0.000    0.000
##    .wy3               0.000                               0.000    0.000
##    .wy4               0.000                               0.000    0.000
##    .wy5               0.000                               0.000    0.000
##     wm1               0.000                               0.000    0.000
##    .wm2               0.000                               0.000    0.000
##    .wm3               0.000                               0.000    0.000
##    .wm4               0.000                               0.000    0.000
##    .wm5               0.000                               0.000    0.000
##    Std.lv  Std.all
##     0.067    0.066
##     0.124    0.127
##     0.104    0.106
##     0.144    0.146
##     0.121    0.125
##     3.810    3.312
##     3.754    3.350
##     3.869    3.502
##     3.812    3.466
##     3.874    3.486
##     0.108    0.108
##     0.103    0.103
##     0.106    0.107
##     0.086    0.090
##     0.080    0.083
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     RIx               0.000                               0.000    0.000
##     RIy               0.000                               0.000    0.000
##     RIm               0.000                               0.000    0.000
##     wx1               0.989    0.066   14.942    0.000    0.859    1.118
##     wy1               1.252    0.083   15.009    0.000    1.089    1.416
##     wm1               0.994    0.066   15.001    0.000    0.864    1.124
##    .wx2               0.888    0.079   11.180    0.000    0.732    1.044
##    .wy2               0.853    0.076   11.233    0.000    0.704    1.002
##    .wm2               0.706    0.063   11.226    0.000    0.582    0.829
##    .wx3               0.699    0.070   10.036    0.000    0.563    0.836
##    .wy3               0.688    0.069   10.017    0.000    0.554    0.823
##    .wm3               0.409    0.041   10.035    0.000    0.329    0.489
##    .wx4               0.760    0.079    9.644    0.000    0.606    0.915
##    .wy4               0.691    0.072    9.589    0.000    0.550    0.832
##    .wm4               0.383    0.040    9.635    0.000    0.305    0.461
##    .wx5               0.603    0.064    9.437    0.000    0.478    0.729
##    .wy5               0.530    0.056    9.429    0.000    0.420    0.640
##    .wm5               0.381    0.040    9.437    0.000    0.302    0.460
##    .LadderDif.1       0.000                               0.000    0.000
##    .LadderDif.2       0.000                               0.000    0.000
##    .LadderDif.3       0.000                               0.000    0.000
##    .LadderDif.4       0.000                               0.000    0.000
##    .LadderDif.5       0.000                               0.000    0.000
##    .Phys_1            0.000                               0.000    0.000
##    .Phys_2            0.000                               0.000    0.000
##    .Phys_3            0.000                               0.000    0.000
##    .Phys_4            0.000                               0.000    0.000
##    .Phys_5            0.000                               0.000    0.000
##    .posEmo.1          0.000                               0.000    0.000
##    .posEmo.2          0.000                               0.000    0.000
##    .posEmo.3          0.000                               0.000    0.000
##    .posEmo.4          0.000                               0.000    0.000
##    .posEmo.5          0.000                               0.000    0.000
##    Std.lv  Std.all
##       NaN      NaN
##       NaN      NaN
##       NaN      NaN
##     1.000    1.000
##     1.000    1.000
##     1.000    1.000
##     0.950    0.950
##     0.720    0.720
##     0.712    0.712
##     0.750    0.750
##     0.599    0.599
##     0.422    0.422
##     0.810    0.810
##     0.607    0.607
##     0.424    0.424
##     0.675    0.675
##     0.456    0.456
##     0.408    0.408
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000
##     0.000    0.000