This is a IC experiment.

The letters are getting smaller

smaller

smaller

You need a space between # and sentence.

####Otherwise, you cannot adjust the size.

Use the shortcut ctrl+alt+i to make a chuck

```{r}
```

Now, letโ€™s load the tidryverse library first.

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Then, read any csv file.

anb <-read_csv( "C:/Users/Ma Family/Documents/R/DATA101/AB_NYC_2019.csv")
## Rows: 48895 Columns: 16
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr   (5): name, host_name, neighbourhood_group, neighbourhood, room_type
## dbl  (10): id, host_id, latitude, longitude, price, minimum_nights, number_o...
## date  (1): last_review
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(anb)
## # A tibble: 6 x 16
##      id name           host_id host_name neighbourhood_g~ neighbourhood latitude
##   <dbl> <chr>            <dbl> <chr>     <chr>            <chr>            <dbl>
## 1  2539 Clean & quiet~    2787 John      Brooklyn         Kensington        40.6
## 2  2595 Skylit Midtow~    2845 Jennifer  Manhattan        Midtown           40.8
## 3  3647 THE VILLAGE O~    4632 Elisabeth Manhattan        Harlem            40.8
## 4  3831 Cozy Entire F~    4869 LisaRoxa~ Brooklyn         Clinton Hill      40.7
## 5  5022 Entire Apt: S~    7192 Laura     Manhattan        East Harlem       40.8
## 6  5099 Large Cozy 1 ~    7322 Chris     Manhattan        Murray Hill       40.7
## # ... with 9 more variables: longitude <dbl>, room_type <chr>, price <dbl>,
## #   minimum_nights <dbl>, number_of_reviews <dbl>, last_review <date>,
## #   reviews_per_month <dbl>, calculated_host_listings_count <dbl>,
## #   availability_365 <dbl>
dim(anb)
## [1] 48895    16
str(anb)
## spec_tbl_df [48,895 x 16] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ id                            : num [1:48895] 2539 2595 3647 3831 5022 ...
##  $ name                          : chr [1:48895] "Clean & quiet apt home by the park" "Skylit Midtown Castle" "THE VILLAGE OF HARLEM....NEW YORK !" "Cozy Entire Floor of Brownstone" ...
##  $ host_id                       : num [1:48895] 2787 2845 4632 4869 7192 ...
##  $ host_name                     : chr [1:48895] "John" "Jennifer" "Elisabeth" "LisaRoxanne" ...
##  $ neighbourhood_group           : chr [1:48895] "Brooklyn" "Manhattan" "Manhattan" "Brooklyn" ...
##  $ neighbourhood                 : chr [1:48895] "Kensington" "Midtown" "Harlem" "Clinton Hill" ...
##  $ latitude                      : num [1:48895] 40.6 40.8 40.8 40.7 40.8 ...
##  $ longitude                     : num [1:48895] -74 -74 -73.9 -74 -73.9 ...
##  $ room_type                     : chr [1:48895] "Private room" "Entire home/apt" "Private room" "Entire home/apt" ...
##  $ price                         : num [1:48895] 149 225 150 89 80 200 60 79 79 150 ...
##  $ minimum_nights                : num [1:48895] 1 1 3 1 10 3 45 2 2 1 ...
##  $ number_of_reviews             : num [1:48895] 9 45 0 270 9 74 49 430 118 160 ...
##  $ last_review                   : Date[1:48895], format: "2018-10-19" "2019-05-21" ...
##  $ reviews_per_month             : num [1:48895] 0.21 0.38 NA 4.64 0.1 0.59 0.4 3.47 0.99 1.33 ...
##  $ calculated_host_listings_count: num [1:48895] 6 2 1 1 1 1 1 1 1 4 ...
##  $ availability_365              : num [1:48895] 365 355 365 194 0 129 0 220 0 188 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   id = col_double(),
##   ..   name = col_character(),
##   ..   host_id = col_double(),
##   ..   host_name = col_character(),
##   ..   neighbourhood_group = col_character(),
##   ..   neighbourhood = col_character(),
##   ..   latitude = col_double(),
##   ..   longitude = col_double(),
##   ..   room_type = col_character(),
##   ..   price = col_double(),
##   ..   minimum_nights = col_double(),
##   ..   number_of_reviews = col_double(),
##   ..   last_review = col_date(format = ""),
##   ..   reviews_per_month = col_double(),
##   ..   calculated_host_listings_count = col_double(),
##   ..   availability_365 = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
summary(anb)
##        id               name              host_id           host_name        
##  Min.   :    2539   Length:48895       Min.   :     2438   Length:48895      
##  1st Qu.: 9471945   Class :character   1st Qu.:  7822033   Class :character  
##  Median :19677284   Mode  :character   Median : 30793816   Mode  :character  
##  Mean   :19017143                      Mean   : 67620011                     
##  3rd Qu.:29152178                      3rd Qu.:107434423                     
##  Max.   :36487245                      Max.   :274321313                     
##                                                                              
##  neighbourhood_group neighbourhood         latitude       longitude     
##  Length:48895        Length:48895       Min.   :40.50   Min.   :-74.24  
##  Class :character    Class :character   1st Qu.:40.69   1st Qu.:-73.98  
##  Mode  :character    Mode  :character   Median :40.72   Median :-73.96  
##                                         Mean   :40.73   Mean   :-73.95  
##                                         3rd Qu.:40.76   3rd Qu.:-73.94  
##                                         Max.   :40.91   Max.   :-73.71  
##                                                                         
##   room_type             price         minimum_nights    number_of_reviews
##  Length:48895       Min.   :    0.0   Min.   :   1.00   Min.   :  0.00   
##  Class :character   1st Qu.:   69.0   1st Qu.:   1.00   1st Qu.:  1.00   
##  Mode  :character   Median :  106.0   Median :   3.00   Median :  5.00   
##                     Mean   :  152.7   Mean   :   7.03   Mean   : 23.27   
##                     3rd Qu.:  175.0   3rd Qu.:   5.00   3rd Qu.: 24.00   
##                     Max.   :10000.0   Max.   :1250.00   Max.   :629.00   
##                                                                          
##   last_review         reviews_per_month calculated_host_listings_count
##  Min.   :2011-03-28   Min.   : 0.010    Min.   :  1.000               
##  1st Qu.:2018-07-08   1st Qu.: 0.190    1st Qu.:  1.000               
##  Median :2019-05-19   Median : 0.720    Median :  1.000               
##  Mean   :2018-10-04   Mean   : 1.373    Mean   :  7.144               
##  3rd Qu.:2019-06-23   3rd Qu.: 2.020    3rd Qu.:  2.000               
##  Max.   :2019-07-08   Max.   :58.500    Max.   :327.000               
##  NA's   :10052        NA's   :10052                                   
##  availability_365
##  Min.   :  0.0   
##  1st Qu.:  0.0   
##  Median : 45.0   
##  Mean   :112.8   
##  3rd Qu.:227.0   
##  Max.   :365.0   
## 

Then, click the knit on the tab tool bar. And the, publish it.