- Here is the data read into links and nodes, and the network.
Sept11_Network <- graph_from_data_frame(Sept11_links,
vertices = Sept11_nodes,
directed = F)
- This is the density of the network.
Sept11_Network %>%
vcount()
[1] 62
Sept11_Network %>%
ecount()
[1] 151
Sept11_Network %>%
edge_density()
[1] 0.07985193
The density of this network is .08.
- Make a histogram of the distances in the network.
Sept11_Network %>%
distances() %>%
as.vector() %>%
as_tibble() %>%
plot_ly(x = ~value) %>%
add_histogram()
Most relationships in this network were 3 connections apart.
- Find the length of the diameter of the network.
Sept11_Network %>%
get_diameter() %>%
length()
[1] 6
The diameter of the network is 6.
- Here is label, title, degree and value = degree mutated into the data.
Sept11_nodes <- Sept11_nodes %>%
mutate(label = name)
Sept11_nodes <- Sept11_nodes %>%
mutate(title = name)
Sept11_nodes <- Sept11_nodes %>%
mutate(degree = degree(Sept11_Network))
Sept11_nodes <- Sept11_nodes %>%
mutate(value = degree)
These changes have had an impact in the columns and will have an impact on the upcoming graph(s).
- Mutate betweenness into the links data, and set it to value.
Sept11_links <- Sept11_links %>%
mutate(betweenness = edge_betweenness(Sept11_Network)) %>%
mutate(value = betweenness)
We will see the results of these added columns on our graph(s)
- This is a diagram of the network.
visNetwork(Sept11_nodes,
Sept11_links,
main = "Network of Terrorists involved in the 9/11 Attack") %>%
visIgraphLayout(layout = "layout_nicely") %>%
visOptions(highlightNearest = T, nodesIdSelection = T)
This Network is not very tightly packed there are almost three spread apart groups.
- Here are the communities in the network and another diagram displaying the colored groups.
Sept11_nodes <- Sept11_nodes %>%
mutate(group = membership(infomap.community(Sept11_Network)))
Sept11_nodes %>%
datatable()
NA
visNetwork(Sept11_nodes,
Sept11_links,
main = "Network of Terrorists involved in the 9/11 Attack") %>%
visIgraphLayout(layout = "layout_nicely") %>%
visOptions(highlightNearest = T, nodesIdSelection = T)
NA
With the colors its much more obvious that there are 6 groups.
LS0tDQp0aXRsZTogIlNlcHQgMTEiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCg0KMS4gSGVyZSBpcyB0aGUgZGF0YSByZWFkIGludG8gbGlua3MgYW5kIG5vZGVzLCBhbmQgdGhlIG5ldHdvcmsuICANCmBgYHtyfQ0KU2VwdDExX05ldHdvcmsgPC0gZ3JhcGhfZnJvbV9kYXRhX2ZyYW1lKFNlcHQxMV9saW5rcywgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBTZXB0MTFfbm9kZXMsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpcmVjdGVkID0gRikNCg0KYGBgDQoNCg0KDQoNCjIuIFRoaXMgaXMgdGhlIGRlbnNpdHkgb2YgdGhlIG5ldHdvcmsuICANCmBgYHtyfQ0KU2VwdDExX05ldHdvcmsgJT4lIA0KICB2Y291bnQoKQ0KYGBgDQoNCg0KYGBge3J9DQpTZXB0MTFfTmV0d29yayAlPiUNCiAgZWNvdW50KCkNCmBgYA0KDQoNCmBgYHtyfQ0KU2VwdDExX05ldHdvcmsgJT4lIA0KICBlZGdlX2RlbnNpdHkoKQ0KYGBgDQpUaGUgZGVuc2l0eSBvZiB0aGlzIG5ldHdvcmsgaXMgLjA4Lg0KDQozLiBNYWtlIGEgaGlzdG9ncmFtIG9mIHRoZSBkaXN0YW5jZXMgaW4gdGhlIG5ldHdvcmsuICANCmBgYHtyfQ0KU2VwdDExX05ldHdvcmsgJT4lIA0KICBkaXN0YW5jZXMoKSAlPiUgDQogIGFzLnZlY3RvcigpICU+JSAgICAgICAgICAgICAgDQogIGFzX3RpYmJsZSgpICU+JSAgICAgICAgICAgICAgDQogIHBsb3RfbHkoeCA9IH52YWx1ZSkgJT4lIA0KICBhZGRfaGlzdG9ncmFtKCkNCmBgYA0KTW9zdCByZWxhdGlvbnNoaXBzIGluIHRoaXMgbmV0d29yayB3ZXJlIDMgY29ubmVjdGlvbnMgYXBhcnQuDQoNCg0KDQo0LiBGaW5kIHRoZSBsZW5ndGggb2YgdGhlIGRpYW1ldGVyIG9mIHRoZSBuZXR3b3JrLiAgDQoNCmBgYHtyfQ0KU2VwdDExX05ldHdvcmsgJT4lIA0KICBnZXRfZGlhbWV0ZXIoKSAlPiUgDQogIGxlbmd0aCgpDQpgYGANClRoZSBkaWFtZXRlciBvZiB0aGUgbmV0d29yayBpcyA2Lg0KDQoNCg0KNS4gSGVyZSBpcyBsYWJlbCwgdGl0bGUsIGRlZ3JlZSBhbmQgdmFsdWUgPSBkZWdyZWUgbXV0YXRlZCBpbnRvIHRoZSBkYXRhLiANCg0KYGBge3J9DQpTZXB0MTFfbm9kZXMgPC0gU2VwdDExX25vZGVzICU+JSANCiAgbXV0YXRlKGxhYmVsID0gbmFtZSkNCmBgYA0KDQpgYGB7cn0NClNlcHQxMV9ub2RlcyA8LSBTZXB0MTFfbm9kZXMgJT4lIA0KICBtdXRhdGUodGl0bGUgPSBuYW1lKQ0KYGBgDQoNCmBgYHtyfQ0KU2VwdDExX25vZGVzIDwtIFNlcHQxMV9ub2RlcyAlPiUgDQogIG11dGF0ZShkZWdyZWUgPSBkZWdyZWUoU2VwdDExX05ldHdvcmspKQ0KYGBgDQoNCmBgYHtyfQ0KU2VwdDExX25vZGVzIDwtIFNlcHQxMV9ub2RlcyAlPiUgDQogIG11dGF0ZSh2YWx1ZSA9IGRlZ3JlZSkgDQoNCmBgYA0KDQpUaGVzZSBjaGFuZ2VzIGhhdmUgaGFkIGFuIGltcGFjdCBpbiB0aGUgY29sdW1ucyBhbmQgd2lsbCBoYXZlIGFuIGltcGFjdCBvbiB0aGUgdXBjb21pbmcgZ3JhcGgocykuDQoNCjYuIE11dGF0ZSBiZXR3ZWVubmVzcyBpbnRvIHRoZSBsaW5rcyBkYXRhLCBhbmQgc2V0IGl0IHRvIHZhbHVlLiAgDQoNCmBgYHtyfQ0KU2VwdDExX2xpbmtzIDwtIFNlcHQxMV9saW5rcyAlPiUgDQogIG11dGF0ZShiZXR3ZWVubmVzcyA9IGVkZ2VfYmV0d2Vlbm5lc3MoU2VwdDExX05ldHdvcmspKSAlPiUNCiAgbXV0YXRlKHZhbHVlID0gYmV0d2Vlbm5lc3MpDQogDQpgYGANCg0KV2Ugd2lsbCBzZWUgdGhlIHJlc3VsdHMgb2YgdGhlc2UgYWRkZWQgY29sdW1ucyBvbiBvdXIgZ3JhcGgocykNCg0KDQo3LiBUaGlzIGlzIGEgZGlhZ3JhbSBvZiB0aGUgbmV0d29yay4gDQpgYGB7cn0NCiAgdmlzTmV0d29yayhTZXB0MTFfbm9kZXMsIA0KICAgICAgICAgICBTZXB0MTFfbGlua3MsIA0KICAgICAgICAgICBtYWluID0gIk5ldHdvcmsgb2YgVGVycm9yaXN0cyBpbnZvbHZlZCBpbiB0aGUgOS8xMSBBdHRhY2siKSAlPiUgDQogIHZpc0lncmFwaExheW91dChsYXlvdXQgPSAibGF5b3V0X25pY2VseSIpICU+JSANCiAgdmlzT3B0aW9ucyhoaWdobGlnaHROZWFyZXN0ID0gVCwgbm9kZXNJZFNlbGVjdGlvbiA9IFQpDQpgYGANClRoaXMgTmV0d29yayBpcyBub3QgdmVyeSB0aWdodGx5IHBhY2tlZCB0aGVyZSBhcmUgYWxtb3N0IHRocmVlIHNwcmVhZCBhcGFydCBncm91cHMuDQoNCg0KDQoNCjguIEhlcmUgYXJlIHRoZSBjb21tdW5pdGllcyBpbiB0aGUgbmV0d29yayBhbmQgYW5vdGhlciBkaWFncmFtIGRpc3BsYXlpbmcgdGhlIGNvbG9yZWQgZ3JvdXBzLg0KDQoNCmBgYHtyfQ0KU2VwdDExX25vZGVzIDwtIFNlcHQxMV9ub2RlcyAlPiUgDQogIG11dGF0ZShncm91cCA9IG1lbWJlcnNoaXAoaW5mb21hcC5jb21tdW5pdHkoU2VwdDExX05ldHdvcmspKSkNCg0KU2VwdDExX25vZGVzICU+JSANCiAgZGF0YXRhYmxlKCkNCg0KYGBgDQoNCmBgYHtyfQ0KdmlzTmV0d29yayhTZXB0MTFfbm9kZXMsIA0KICAgICAgICAgICBTZXB0MTFfbGlua3MsIA0KICAgICAgICAgICBtYWluID0gIk5ldHdvcmsgb2YgVGVycm9yaXN0cyBpbnZvbHZlZCBpbiB0aGUgOS8xMSBBdHRhY2siKSAlPiUgDQogIHZpc0lncmFwaExheW91dChsYXlvdXQgPSAibGF5b3V0X25pY2VseSIpICU+JSANCiAgdmlzT3B0aW9ucyhoaWdobGlnaHROZWFyZXN0ID0gVCwgbm9kZXNJZFNlbGVjdGlvbiA9IFQpDQoNCmBgYA0KV2l0aCB0aGUgY29sb3JzIGl0cyBtdWNoIG1vcmUgb2J2aW91cyB0aGF0IHRoZXJlIGFyZSA2IGdyb3Vwcy4gDQo=