UK media in survey: Daily Mail (1) Guardian (2) Sun (3) Daily Mirror (4) The Scotsman & Scotland on Sunday (5) UK Times (6) Telegraph & Sunday Telegraph (7) BBC Radio (8) BBC Broadcast (9) The Independent (10)
UK media LIWC measures: Daily Mail (1) Guardian (2)
Sun (3) Mirror (4) ————- Scotsman (not in survey??) UK Times (6) Telegraph (7) BBC (8, 9???) Independent (10)
————- National (not in survey??)
#################################################################################
#
# prep USA data set wave 1
#
#################################################################################
#delete any measures we don't want---exclude media exposure #3, #8, and #9
## missing Yahoo, Huff Post, Wash Post
d1 <- d1.usa[,c("s3", "vaxxAttitudes",
"demStrength", "repStrength", "partyClose",
"risk3", "risk4", "risk5", "risk6",
"mediaExposure_1", "mediaExposure_2", "mediaExposure_4",
"mediaExposure_5", "mediaExposure_6", "mediaExposure_7",
"mediaExposure_10", "mediaExposure_11", "mediaExposure_12",
"mediaExposure_13", "mediaExposure_14", "mediaExposure_15")]
colnames(d1)[colnames(d1) == "s3"] <- "participant"
#rename exposure
colnames(d1)[colnames(d1)=="mediaExposure_1"] <- "NYT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_2"] <- "WSJ_exp"
colnames(d1)[colnames(d1)=="mediaExposure_4"] <- "USAT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_5"] <- "Fox_exp"
colnames(d1)[colnames(d1)=="mediaExposure_6"] <- "CNN_exp"
colnames(d1)[colnames(d1)=="mediaExposure_7"] <- "MSNBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_10"] <-"AOL_exp"
colnames(d1)[colnames(d1)=="mediaExposure_11"] <-"NPR_exp"
colnames(d1)[colnames(d1)=="mediaExposure_12"] <-"ABC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_13"] <-"NBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_14"] <-"CBS_exp"
colnames(d1)[colnames(d1)=="mediaExposure_15"] <-"PBS_exp"
#change to 0-4 rating
d1$ABC_exp <- d1$ABC_exp - 1
d1$CBS_exp <- d1$CBS_exp - 1
d1$CNN_exp <- d1$CNN_exp - 1
d1$Fox_exp <- d1$Fox_exp - 1
d1$MSNBC_exp <- d1$MSNBC_exp - 1
d1$NBC_exp <- d1$NBC_exp - 1
d1$NPR_exp <- d1$NPR_exp - 1
d1$NYT_exp <- d1$NYT_exp - 1
d1$PBS_exp <- d1$PBS_exp - 1
d1$USAT_exp <- d1$USAT_exp - 1
d1$WSJ_exp <- d1$WSJ_exp - 1
d1$AOL_exp <- d1$AOL_exp - 1
x <- cbind(d1$ABC_exp,
d1$CBS_exp,
d1$CNN_exp,
d1$Fox_exp,
d1$MSNBC_exp,
d1$NBC_exp,
d1$NPR_exp,
d1$NYT_exp,
d1$PBS_exp,
d1$USAT_exp,
d1$WSJ_exp,
d1$AOL_exp)
d1$sum.media.exp <- rowSums(x, na.rm = T)
d1$sum.media.exp <- scale(d1$sum.media.exp)
# affect
d1$ABC_AF <- w1$affect[w1$mediaOutlet == "ABC"]
d1$CBS_AF <- w1$affect[w1$mediaOutlet == "CBS"]
d1$CNN_AF <- w1$affect[w1$mediaOutlet == "CNN"]
d1$Fox_AF <- w1$affect[w1$mediaOutlet == "Fox"]
d1$MSNBC_AF <- w1$affect[w1$mediaOutlet == "MSNBC"]
d1$NBC_AF <- w1$affect[w1$mediaOutlet == "NBC"]
d1$NPR_AF <- w1$affect[w1$mediaOutlet == "NPR"]
d1$NYT_AF <- w1$affect[w1$mediaOutlet == "NYT"]
d1$PBS_AF <- w1$affect[w1$mediaOutlet == "PBS"]
d1$USAT_AF <- w1$affect[w1$mediaOutlet == "USAToday"]
d1$WSJ_AF <- w1$affect[w1$mediaOutlet == "WSJ"]
d1$AOL_AF <- w1$affect[w1$mediaOutlet == "AOL"]
d1$ABC_AFexp <- d1$ABC_AF * d1$ABC_exp
d1$CBS_AFexp <- d1$CBS_AF * d1$CBS_exp
d1$CNN_AFexp <- d1$CNN_AF * d1$CNN_exp
d1$Fox_AFexp <- d1$Fox_AF * d1$Fox_exp
d1$MSNBC_AFexp <- d1$MSNBC_AF * d1$MSNBC_exp
d1$NBC_AFexp <- d1$NBC_AF * d1$NBC_exp
d1$NPR_AFexp <- d1$NPR_AF * d1$NPR_exp
d1$NYT_AFexp <- d1$NYT_AF * d1$NYT_exp
d1$PBS_AFexp <- d1$PBS_AF * d1$PBS_exp
d1$USAT_AFexp <- d1$USAT_AF * d1$USAT_exp
d1$WSJ_AFexp <- d1$WSJ_AF * d1$WSJ_exp
d1$AOL_AFexp <- d1$AOL_AF * d1$AOL_exp
x <- cbind(d1$ABC_AFexp,
d1$CBS_AFexp,
d1$CNN_AFexp,
d1$Fox_AFexp,
d1$MSNBC_AFexp,
d1$NBC_AFexp,
d1$NPR_AFexp,
d1$NYT_AFexp,
d1$PBS_AFexp,
d1$USAT_AFexp,
d1$WSJ_AFexp,
d1$AOL_AFexp)
d1$index_AFexp <- rowMeans(x, na.rm = T)
## analytic thinking
d1$ABC_AN <- w1$analytic[w1$mediaOutlet == "ABC"]
d1$CBS_AN <- w1$analytic[w1$mediaOutlet == "CBS"]
d1$CNN_AN <- w1$analytic[w1$mediaOutlet == "CNN"]
d1$Fox_AN <- w1$analytic[w1$mediaOutlet == "Fox"]
d1$MSNBC_AN <- w1$analytic[w1$mediaOutlet == "MSNBC"]
d1$NBC_AN <- w1$analytic[w1$mediaOutlet == "NBC"]
d1$NPR_AN <- w1$analytic[w1$mediaOutlet == "NPR"]
d1$NYT_AN <- w1$analytic[w1$mediaOutlet == "NYT"]
d1$PBS_AN <- w1$analytic[w1$mediaOutlet == "PBS"]
d1$USAT_AN <- w1$analytic[w1$mediaOutlet == "USAToday"]
d1$WSJ_AN <- w1$analytic[w1$mediaOutlet == "WSJ"]
d1$AOL_AN <- w1$analytic[w1$mediaOutlet == "AOL"]
d1$ABC_ANexp <- d1$ABC_AN * d1$ABC_exp
d1$CBS_ANexp <- d1$CBS_AN * d1$CBS_exp
d1$CNN_ANexp <- d1$CNN_AN * d1$CNN_exp
d1$Fox_ANexp <- d1$Fox_AN * d1$Fox_exp
d1$MSNBC_ANexp <- d1$MSNBC_AN * d1$MSNBC_exp
d1$NBC_ANexp <- d1$NBC_AN * d1$NBC_exp
d1$NPR_ANexp <- d1$NPR_AN * d1$NPR_exp
d1$NYT_ANexp <- d1$NYT_AN * d1$NYT_exp
d1$PBS_ANexp <- d1$PBS_AN * d1$PBS_exp
d1$USAT_ANexp <- d1$USAT_AN * d1$USAT_exp
d1$WSJ_ANexp <- d1$WSJ_AN * d1$WSJ_exp
d1$AOL_ANexp <- d1$AOL_AN * d1$AOL_exp
x <- cbind(d1$ABC_ANexp,
d1$CBS_ANexp,
d1$CNN_ANexp,
d1$Fox_ANexp,
d1$MSNBC_ANexp,
d1$NBC_ANexp,
d1$NPR_ANexp,
d1$NYT_ANexp,
d1$PBS_ANexp,
d1$USAT_ANexp,
d1$WSJ_ANexp,
d1$AOL_ANexp)
d1$index_ANexp <- rowMeans(x, na.rm = T)
#emotional tone
d1$ABC_ET <- w1$emotone[w1$mediaOutlet == "ABC"]
d1$CBS_ET <- w1$emotone[w1$mediaOutlet == "CBS"]
d1$CNN_ET <- w1$emotone[w1$mediaOutlet == "CNN"]
d1$Fox_ET <- w1$emotone[w1$mediaOutlet == "Fox"]
d1$MSNBC_ET <- w1$emotone[w1$mediaOutlet == "MSNBC"]
d1$NBC_ET <- w1$emotone[w1$mediaOutlet == "NBC"]
d1$NPR_ET <- w1$emotone[w1$mediaOutlet == "NPR"]
d1$NYT_ET <- w1$emotone[w1$mediaOutlet == "NYT"]
d1$PBS_ET <- w1$emotone[w1$mediaOutlet == "PBS"]
d1$USAT_ET <- w1$emotone[w1$mediaOutlet == "USAToday"]
d1$WSJ_ET <- w1$emotone[w1$mediaOutlet == "WSJ"]
d1$AOL_ET <- w1$emotone[w1$mediaOutlet == "AOL"]
d1$ABC_ETexp <- d1$ABC_ET * d1$ABC_exp
d1$CBS_ETexp <- d1$CBS_ET * d1$CBS_exp
d1$CNN_ETexp <- d1$CNN_ET * d1$CNN_exp
d1$Fox_ETexp <- d1$Fox_ET * d1$Fox_exp
d1$MSNBC_ETexp <- d1$MSNBC_ET * d1$MSNBC_exp
d1$NBC_ETexp <- d1$NBC_ET * d1$NBC_exp
d1$NPR_ETexp <- d1$NPR_ET * d1$NPR_exp
d1$NYT_ETexp <- d1$NYT_ET * d1$NYT_exp
d1$PBS_ETexp <- d1$PBS_ET * d1$PBS_exp
d1$USAT_ETexp <- d1$USAT_ET * d1$USAT_exp
d1$WSJ_ETexp <- d1$WSJ_ET * d1$WSJ_exp
d1$AOL_ETexp <- d1$AOL_ET * d1$AOL_exp
x <- cbind(d1$ABC_ETexp,
d1$CBS_ETexp,
d1$CNN_ETexp,
d1$Fox_ETexp,
d1$MSNBC_ETexp,
d1$NBC_ETexp,
d1$NPR_ETexp,
d1$NYT_ETexp,
d1$PBS_ETexp,
d1$USAT_ETexp,
d1$WSJ_ETexp,
d1$AOL_ETexp)
d1$index_ETexp <- rowMeans(x, na.rm = T)
## threat
d1$ABC_TR <- w1$threat[w1$mediaOutlet == "ABC"]
d1$CBS_TR <- w1$threat[w1$mediaOutlet == "CBS"]
d1$CNN_TR <- w1$threat[w1$mediaOutlet == "CNN"]
d1$Fox_TR <- w1$threat[w1$mediaOutlet == "Fox"]
d1$MSNBC_TR <- w1$threat[w1$mediaOutlet == "MSNBC"]
d1$NBC_TR <- w1$threat[w1$mediaOutlet == "NBC"]
d1$NPR_TR <- w1$threat[w1$mediaOutlet == "NPR"]
d1$NYT_TR <- w1$threat[w1$mediaOutlet == "NYT"]
d1$PBS_TR <- w1$threat[w1$mediaOutlet == "PBS"]
d1$USAT_TR <- w1$threat[w1$mediaOutlet == "USAToday"]
d1$WSJ_TR <- w1$threat[w1$mediaOutlet == "WSJ"]
d1$AOL_TR <- w1$threat[w1$mediaOutlet == "AOL"]
d1$ABC_TRexp <- d1$ABC_TR * d1$ABC_exp
d1$CBS_TRexp <- d1$CBS_TR * d1$CBS_exp
d1$CNN_TRexp <- d1$CNN_TR * d1$CNN_exp
d1$Fox_TRexp <- d1$Fox_TR * d1$Fox_exp
d1$MSNBC_TRexp <- d1$MSNBC_TR * d1$MSNBC_exp
d1$NBC_TRexp <- d1$NBC_TR * d1$NBC_exp
d1$NPR_TRexp <- d1$NPR_TR * d1$NPR_exp
d1$NYT_TRexp <- d1$NYT_TR * d1$NYT_exp
d1$PBS_TRexp <- d1$PBS_TR * d1$PBS_exp
d1$USAT_TRexp <- d1$USAT_TR * d1$USAT_exp
d1$WSJ_TRexp <- d1$WSJ_TR * d1$WSJ_exp
d1$AOL_TRexp <- d1$AOL_TR * d1$AOL_exp
x <- cbind(d1$ABC_TRexp,
d1$CBS_TRexp,
d1$CNN_TRexp,
d1$Fox_TRexp,
d1$MSNBC_TRexp,
d1$NBC_TRexp,
d1$NPR_TRexp,
d1$NYT_TRexp,
d1$PBS_TRexp,
d1$USAT_TRexp,
d1$WSJ_TRexp,
d1$AOL_TRexp)
d1$index_TRexp <- rowMeans(x, na.rm = T)
## difference score
d1$ABC_expAFAN <- d1$ABC_exp * d1$ABC_AF/d1$ABC_AN
d1$CBS_expAFAN <- d1$CBS_exp * d1$CBS_AF/d1$CBS_AN
d1$CNN_expAFAN <- d1$CNN_exp * d1$CNN_AF/d1$CNN_AN
d1$Fox_expAFAN <- d1$Fox_exp * d1$Fox_AF/d1$Fox_AN
d1$MSNBC_expAFAN <- d1$MSNBC_exp * d1$MSNBC_AF/d1$MSNBC_AN
d1$NBC_expAFAN <- d1$NBC_exp * d1$NBC_AF/d1$NBC_AN
d1$NPR_expAFAN <- d1$NPR_exp * d1$NPR_AF/d1$NPR_AN
d1$NYT_expAFAN <- d1$NYT_exp * d1$NYT_AF/d1$NYT_AN
d1$PBS_expAFAN <- d1$PBS_exp * d1$PBS_AF/d1$PBS_AN
d1$USAT_expAFAN <- d1$USAT_exp * d1$USAT_AF/d1$USAT_AN
d1$WSJ_expAFAN <- d1$WSJ_exp * d1$WSJ_AF/d1$WSJ_AN
d1$AOL_expAFAN <- d1$AOL_exp * d1$AOL_AF/d1$AOL_AN
x <- cbind(d1$ABC_expAFAN,
d1$CBS_expAFAN,
d1$CNN_expAFAN,
d1$Fox_expAFAN,
d1$MSNBC_expAFAN,
d1$NBC_expAFAN,
d1$NPR_expAFAN,
d1$NYT_expAFAN,
d1$PBS_expAFAN,
d1$USAT_expAFAN,
d1$WSJ_expAFAN,
d1$AOL_expAFAN)
d1$index_expAFAN <- rowMeans(x, na.rm = T)
#####################################################
# codes for party
####################################################
d1$partyCont <- NA
d1$partyCont[d1$demStrength == 1] <- -3
d1$partyCont[d1$demStrength == 2] <- -2
d1$partyCont[d1$partyClose == 1] <- -1
d1$partyCont[d1$partyClose == 3] <- 0
d1$partyCont[d1$partyClose == 2] <- 1
d1$partyCont[d1$repStrength == 2] <- 2
d1$partyCont[d1$repStrength == 1] <- 3
## party factor
d1$party_factor <- NA
d1$party_factor[d1$partyCont < 0] <- 'Democrat'
d1$party_factor[d1$partyCont == 0] <- 'Independent'
d1$party_factor[d1$partyCont > 0] <- 'Republican'
## Order of party variable
d1$party_factor <- factor(d1$party_factor,
levels = c('Democrat', 'Republican', 'Independent'))
## contrast codes
d1$DvR <- NA
d1$DvR[d1$party_factor == 'Democrat'] <- -.5
d1$DvR[d1$party_factor == 'Independent'] <- 0
d1$DvR[d1$party_factor == 'Republican'] <- .5
d1$IvDR <- NA
d1$IvDR[d1$party_factor == 'Democrat'] <- .33
d1$IvDR[d1$party_factor == 'Independent'] <- -.67
d1$IvDR[d1$party_factor == 'Republican'] <- .33
## dummy codes
d1$Rep_1[d1$party_factor == 'Democrat'] <- 0
d1$Rep_1[d1$party_factor == 'Republican'] <- 1
d1$Rep_1[d1$party_factor == 'Independent'] <- 0
d1$Ind_1[d1$party_factor == 'Democrat'] <- 0
d1$Ind_1[d1$party_factor == 'Republican'] <- 0
d1$Ind_1[d1$party_factor == 'Independent'] <- 1
d1$Dem_1[d1$party_factor == 'Democrat'] <- 1
d1$Dem_1[d1$party_factor == 'Republican'] <- 0
d1$Dem_1[d1$party_factor == 'Independent'] <- 0
## delete unnecessary columns
d1$party <- NULL
d1$demStrength <- NULL
d1$repStrength <- NULL
d1$partyClose <- NULL
colnames(d1)[colnames(d1) == "risk3"] <- "healthRisk"
colnames(d1)[colnames(d1) == "risk4"] <- "econRisk"
colnames(d1)[colnames(d1) == "risk5"] <- "pEconRisk"
colnames(d1)[colnames(d1) == "risk6"] <- "worstAB"
#################################################################################
#
# prep USA data set wave 2
#
#################################################################################
#delete any measures we don't want---exclude media exposure #3, #8, and #9
## missing Yahoo, Huff Post, Wash Post
d2 <- d2.usa[,c("s3", "vaxxAttitudes",
"demStrength", "repStrength", "partyClose",
"risk3", "risk4", "risk5", "risk6",
"mediaExposure_1", "mediaExposure_2", "mediaExposure_4",
"mediaExposure_5", "mediaExposure_6", "mediaExposure_7",
"mediaExposure_10", "mediaExposure_11", "mediaExposure_12",
"mediaExposure_13", "mediaExposure_14", "mediaExposure_15")]
colnames(d2)[colnames(d2) == "s3"] <- "participant"
#rename exposure
colnames(d2)[colnames(d2)=="mediaExposure_1"] <- "NYT_exp"
colnames(d2)[colnames(d2)=="mediaExposure_2"] <- "WSJ_exp"
colnames(d2)[colnames(d2)=="mediaExposure_4"] <- "USAT_exp"
colnames(d2)[colnames(d2)=="mediaExposure_5"] <- "Fox_exp"
colnames(d2)[colnames(d2)=="mediaExposure_6"] <- "CNN_exp"
colnames(d2)[colnames(d2)=="mediaExposure_7"] <- "MSNBC_exp"
colnames(d2)[colnames(d2)=="mediaExposure_10"] <-"AOL_exp"
colnames(d2)[colnames(d2)=="mediaExposure_11"] <-"NPR_exp"
colnames(d2)[colnames(d2)=="mediaExposure_12"] <-"ABC_exp"
colnames(d2)[colnames(d2)=="mediaExposure_13"] <-"NBC_exp"
colnames(d2)[colnames(d2)=="mediaExposure_14"] <-"CBS_exp"
colnames(d2)[colnames(d2)=="mediaExposure_15"] <-"PBS_exp"
#change to 0-4 rating
d2$ABC_exp <- d2$ABC_exp - 1
d2$CBS_exp <- d2$CBS_exp - 1
d2$CNN_exp <- d2$CNN_exp - 1
d2$Fox_exp <- d2$Fox_exp - 1
d2$MSNBC_exp <- d2$MSNBC_exp - 1
d2$NBC_exp <- d2$NBC_exp - 1
d2$NPR_exp <- d2$NPR_exp - 1
d2$NYT_exp <- d2$NYT_exp - 1
d2$PBS_exp <- d2$PBS_exp - 1
d2$USAT_exp <- d2$USAT_exp - 1
d2$WSJ_exp <- d2$WSJ_exp - 1
d2$AOL_exp <- d2$AOL_exp - 1
x <- cbind(d2$ABC_exp,
d2$CBS_exp,
d2$CNN_exp,
d2$Fox_exp,
d2$MSNBC_exp,
d2$NBC_exp,
d2$NPR_exp,
d2$NYT_exp,
d2$PBS_exp,
d2$USAT_exp,
d2$WSJ_exp,
d2$AOL_exp)
d2$sum.media.exp <- rowSums(x, na.rm = T)
d2$sum.media.exp <- scale(d2$sum.media.exp)
# affect
d2$ABC_AF <- w2$affect[w2$mediaOutlet == "ABC"]
d2$CBS_AF <- w2$affect[w2$mediaOutlet == "CBS"]
d2$CNN_AF <- w2$affect[w2$mediaOutlet == "CNN"]
d2$Fox_AF <- w2$affect[w2$mediaOutlet == "Fox"]
d2$MSNBC_AF <- w2$affect[w2$mediaOutlet == "MSNBC"]
d2$NBC_AF <- w2$affect[w2$mediaOutlet == "NBC"]
d2$NPR_AF <- w2$affect[w2$mediaOutlet == "NPR"]
d2$NYT_AF <- w2$affect[w2$mediaOutlet == "NYT"]
d2$PBS_AF <- w2$affect[w2$mediaOutlet == "PBS"]
d2$USAT_AF <- w2$affect[w2$mediaOutlet == "USAToday"]
d2$WSJ_AF <- w2$affect[w2$mediaOutlet == "WSJ"]
d2$AOL_AF <- w2$affect[w2$mediaOutlet == "AOL"]
d2$ABC_AFexp <- d2$ABC_AF * d2$ABC_exp
d2$CBS_AFexp <- d2$CBS_AF * d2$CBS_exp
d2$CNN_AFexp <- d2$CNN_AF * d2$CNN_exp
d2$Fox_AFexp <- d2$Fox_AF * d2$Fox_exp
d2$MSNBC_AFexp <- d2$MSNBC_AF * d2$MSNBC_exp
d2$NBC_AFexp <- d2$NBC_AF * d2$NBC_exp
d2$NPR_AFexp <- d2$NPR_AF * d2$NPR_exp
d2$NYT_AFexp <- d2$NYT_AF * d2$NYT_exp
d2$PBS_AFexp <- d2$PBS_AF * d2$PBS_exp
d2$USAT_AFexp <- d2$USAT_AF * d2$USAT_exp
d2$WSJ_AFexp <- d2$WSJ_AF * d2$WSJ_exp
d2$AOL_AFexp <- d2$AOL_AF * d2$AOL_exp
x <- cbind(d2$ABC_AFexp,
d2$CBS_AFexp,
d2$CNN_AFexp,
d2$Fox_AFexp,
d2$MSNBC_AFexp,
d2$NBC_AFexp,
d2$NPR_AFexp,
d2$NYT_AFexp,
d2$PBS_AFexp,
d2$USAT_AFexp,
d2$WSJ_AFexp,
d2$AOL_AFexp)
d2$index_AFexp <- rowMeans(x, na.rm = T)
## analytic thinking
d2$ABC_AN <- w2$analytic[w2$mediaOutlet == "ABC"]
d2$CBS_AN <- w2$analytic[w2$mediaOutlet == "CBS"]
d2$CNN_AN <- w2$analytic[w2$mediaOutlet == "CNN"]
d2$Fox_AN <- w2$analytic[w2$mediaOutlet == "Fox"]
d2$MSNBC_AN <- w2$analytic[w2$mediaOutlet == "MSNBC"]
d2$NBC_AN <- w2$analytic[w2$mediaOutlet == "NBC"]
d2$NPR_AN <- w2$analytic[w2$mediaOutlet == "NPR"]
d2$NYT_AN <- w2$analytic[w2$mediaOutlet == "NYT"]
d2$PBS_AN <- w2$analytic[w2$mediaOutlet == "PBS"]
d2$USAT_AN <- w2$analytic[w2$mediaOutlet == "USAToday"]
d2$WSJ_AN <- w2$analytic[w2$mediaOutlet == "WSJ"]
d2$AOL_AN <- w2$analytic[w2$mediaOutlet == "AOL"]
d2$ABC_ANexp <- d2$ABC_AN * d2$ABC_exp
d2$CBS_ANexp <- d2$CBS_AN * d2$CBS_exp
d2$CNN_ANexp <- d2$CNN_AN * d2$CNN_exp
d2$Fox_ANexp <- d2$Fox_AN * d2$Fox_exp
d2$MSNBC_ANexp <- d2$MSNBC_AN * d2$MSNBC_exp
d2$NBC_ANexp <- d2$NBC_AN * d2$NBC_exp
d2$NPR_ANexp <- d2$NPR_AN * d2$NPR_exp
d2$NYT_ANexp <- d2$NYT_AN * d2$NYT_exp
d2$PBS_ANexp <- d2$PBS_AN * d2$PBS_exp
d2$USAT_ANexp <- d2$USAT_AN * d2$USAT_exp
d2$WSJ_ANexp <- d2$WSJ_AN * d2$WSJ_exp
d2$AOL_ANexp <- d2$AOL_AN * d2$AOL_exp
x <- cbind(d2$ABC_ANexp,
d2$CBS_ANexp,
d2$CNN_ANexp,
d2$Fox_ANexp,
d2$MSNBC_ANexp,
d2$NBC_ANexp,
d2$NPR_ANexp,
d2$NYT_ANexp,
d2$PBS_ANexp,
d2$USAT_ANexp,
d2$WSJ_ANexp,
d2$AOL_ANexp)
d2$index_ANexp <- rowMeans(x, na.rm = T)
#emotional tone
d2$ABC_ET <- w2$emotone[w2$mediaOutlet == "ABC"]
d2$CBS_ET <- w2$emotone[w2$mediaOutlet == "CBS"]
d2$CNN_ET <- w2$emotone[w2$mediaOutlet == "CNN"]
d2$Fox_ET <- w2$emotone[w2$mediaOutlet == "Fox"]
d2$MSNBC_ET <- w2$emotone[w2$mediaOutlet == "MSNBC"]
d2$NBC_ET <- w2$emotone[w2$mediaOutlet == "NBC"]
d2$NPR_ET <- w2$emotone[w2$mediaOutlet == "NPR"]
d2$NYT_ET <- w2$emotone[w2$mediaOutlet == "NYT"]
d2$PBS_ET <- w2$emotone[w2$mediaOutlet == "PBS"]
d2$USAT_ET <- w2$emotone[w2$mediaOutlet == "USAToday"]
d2$WSJ_ET <- w2$emotone[w2$mediaOutlet == "WSJ"]
d2$AOL_ET <- w2$emotone[w2$mediaOutlet == "AOL"]
d2$ABC_ETexp <- d2$ABC_ET * d2$ABC_exp
d2$CBS_ETexp <- d2$CBS_ET * d2$CBS_exp
d2$CNN_ETexp <- d2$CNN_ET * d2$CNN_exp
d2$Fox_ETexp <- d2$Fox_ET * d2$Fox_exp
d2$MSNBC_ETexp <- d2$MSNBC_ET * d2$MSNBC_exp
d2$NBC_ETexp <- d2$NBC_ET * d2$NBC_exp
d2$NPR_ETexp <- d2$NPR_ET * d2$NPR_exp
d2$NYT_ETexp <- d2$NYT_ET * d2$NYT_exp
d2$PBS_ETexp <- d2$PBS_ET * d2$PBS_exp
d2$USAT_ETexp <- d2$USAT_ET * d2$USAT_exp
d2$WSJ_ETexp <- d2$WSJ_ET * d2$WSJ_exp
d2$AOL_ETexp <- d2$AOL_ET * d2$AOL_exp
x <- cbind(d2$ABC_ETexp,
d2$CBS_ETexp,
d2$CNN_ETexp,
d2$Fox_ETexp,
d2$MSNBC_ETexp,
d2$NBC_ETexp,
d2$NPR_ETexp,
d2$NYT_ETexp,
d2$PBS_ETexp,
d2$USAT_ETexp,
d2$WSJ_ETexp,
d2$AOL_ETexp)
d2$index_ETexp <- rowMeans(x, na.rm = T)
## threat
d2$ABC_TR <- w2$threat[w2$mediaOutlet == "ABC"]
d2$CBS_TR <- w2$threat[w2$mediaOutlet == "CBS"]
d2$CNN_TR <- w2$threat[w2$mediaOutlet == "CNN"]
d2$Fox_TR <- w2$threat[w2$mediaOutlet == "Fox"]
d2$MSNBC_TR <- w2$threat[w2$mediaOutlet == "MSNBC"]
d2$NBC_TR <- w2$threat[w2$mediaOutlet == "NBC"]
d2$NPR_TR <- w2$threat[w2$mediaOutlet == "NPR"]
d2$NYT_TR <- w2$threat[w2$mediaOutlet == "NYT"]
d2$PBS_TR <- w2$threat[w2$mediaOutlet == "PBS"]
d2$USAT_TR <- w2$threat[w2$mediaOutlet == "USAToday"]
d2$WSJ_TR <- w2$threat[w2$mediaOutlet == "WSJ"]
d2$AOL_TR <- w2$threat[w2$mediaOutlet == "AOL"]
d2$ABC_TRexp <- d2$ABC_TR * d2$ABC_exp
d2$CBS_TRexp <- d2$CBS_TR * d2$CBS_exp
d2$CNN_TRexp <- d2$CNN_TR * d2$CNN_exp
d2$Fox_TRexp <- d2$Fox_TR * d2$Fox_exp
d2$MSNBC_TRexp <- d2$MSNBC_TR * d2$MSNBC_exp
d2$NBC_TRexp <- d2$NBC_TR * d2$NBC_exp
d2$NPR_TRexp <- d2$NPR_TR * d2$NPR_exp
d2$NYT_TRexp <- d2$NYT_TR * d2$NYT_exp
d2$PBS_TRexp <- d2$PBS_TR * d2$PBS_exp
d2$USAT_TRexp <- d2$USAT_TR * d2$USAT_exp
d2$WSJ_TRexp <- d2$WSJ_TR * d2$WSJ_exp
d2$AOL_TRexp <- d2$AOL_TR * d2$AOL_exp
x <- cbind(d2$ABC_TRexp,
d2$CBS_TRexp,
d2$CNN_TRexp,
d2$Fox_TRexp,
d2$MSNBC_TRexp,
d2$NBC_TRexp,
d2$NPR_TRexp,
d2$NYT_TRexp,
d2$PBS_TRexp,
d2$USAT_TRexp,
d2$WSJ_TRexp,
d2$AOL_TRexp)
d2$index_TRexp <- rowMeans(x, na.rm = T)
## difference score
d2$ABC_expAFAN <- d2$ABC_exp * d2$ABC_AF/d2$ABC_AN
d2$CBS_expAFAN <- d2$CBS_exp * d2$CBS_AF/d2$CBS_AN
d2$CNN_expAFAN <- d2$CNN_exp * d2$CNN_AF/d2$CNN_AN
d2$Fox_expAFAN <- d2$Fox_exp * d2$Fox_AF/d2$Fox_AN
d2$MSNBC_expAFAN <- d2$MSNBC_exp * d2$MSNBC_AF/d2$MSNBC_AN
d2$NBC_expAFAN <- d2$NBC_exp * d2$NBC_AF/d2$NBC_AN
d2$NPR_expAFAN <- d2$NPR_exp * d2$NPR_AF/d2$NPR_AN
d2$NYT_expAFAN <- d2$NYT_exp * d2$NYT_AF/d2$NYT_AN
d2$PBS_expAFAN <- d2$PBS_exp * d2$PBS_AF/d2$PBS_AN
d2$USAT_expAFAN <- d2$USAT_exp * d2$USAT_AF/d2$USAT_AN
d2$WSJ_expAFAN <- d2$WSJ_exp * d2$WSJ_AF/d2$WSJ_AN
d2$AOL_expAFAN <- d2$AOL_exp * d2$AOL_AF/d2$AOL_AN
x <- cbind(d2$ABC_expAFAN,
d2$CBS_expAFAN,
d2$CNN_expAFAN,
d2$Fox_expAFAN,
d2$MSNBC_expAFAN,
d2$NBC_expAFAN,
d2$NPR_expAFAN,
d2$NYT_expAFAN,
d2$PBS_expAFAN,
d2$USAT_expAFAN,
d2$WSJ_expAFAN,
d2$AOL_expAFAN)
d2$index_expAFAN <- rowMeans(x, na.rm = T)
#####################################################
# codes for party
####################################################
d2$partyCont <- NA
d2$partyCont[d2$demStrength == 1] <- -3
d2$partyCont[d2$demStrength == 2] <- -2
d2$partyCont[d2$partyClose == 1] <- -1
d2$partyCont[d2$partyClose == 3] <- 0
d2$partyCont[d2$partyClose == 2] <- 1
d2$partyCont[d2$repStrength == 2] <- 2
d2$partyCont[d2$repStrength == 1] <- 3
## party factor
d2$party_factor <- NA
d2$party_factor[d2$partyCont < 0] <- 'Democrat'
d2$party_factor[d2$partyCont == 0] <- 'Independent'
d2$party_factor[d2$partyCont > 0] <- 'Republican'
## Order of party variable
d2$party_factor <- factor(d2$party_factor,
levels = c('Democrat', 'Republican', 'Independent'))
## contrast codes
d2$DvR <- NA
d2$DvR[d2$party_factor == 'Democrat'] <- -.5
d2$DvR[d2$party_factor == 'Independent'] <- 0
d2$DvR[d2$party_factor == 'Republican'] <- .5
d2$IvDR <- NA
d2$IvDR[d2$party_factor == 'Democrat'] <- .33
d2$IvDR[d2$party_factor == 'Independent'] <- -.67
d2$IvDR[d2$party_factor == 'Republican'] <- .33
## dummy codes
d2$Rep_1[d2$party_factor == 'Democrat'] <- 0
d2$Rep_1[d2$party_factor == 'Republican'] <- 1
d2$Rep_1[d2$party_factor == 'Independent'] <- 0
d2$Ind_1[d2$party_factor == 'Democrat'] <- 0
d2$Ind_1[d2$party_factor == 'Republican'] <- 0
d2$Ind_1[d2$party_factor == 'Independent'] <- 1
d2$Dem_1[d2$party_factor == 'Democrat'] <- 1
d2$Dem_1[d2$party_factor == 'Republican'] <- 0
d2$Dem_1[d2$party_factor == 'Independent'] <- 0
## delete unnecessary columns
d2$party <- NULL
d2$demStrength <- NULL
d2$repStrength <- NULL
d2$partyClose <- NULL
colnames(d2)[colnames(d2) == "risk3"] <- "healthRisk"
colnames(d2)[colnames(d2) == "risk4"] <- "econRisk"
colnames(d2)[colnames(d2) == "risk5"] <- "pEconRisk"
colnames(d2)[colnames(d2) == "risk6"] <- "worstAB"
###############################################################################
#
# UK data prep
#
###############################################################################
d1UK <- d1.uk[,c("X", "vaxxAttitudes",
"demStrength", "repStrength", "partyClose",
"risk3", "risk4", "risk5", "risk6",
"mediaExposure_1", "mediaExposure_2", "mediaExposure_3",
"mediaExposure_4", "mediaExposure_6", "mediaExposure_7",
"mediaExposure_9", "mediaExposure_10")]
colnames(d1UK)[colnames(d1UK) == "X"] <- "participant"
# rename exposure
colnames(d1UK)[colnames(d1UK)=="mediaExposure_1"] <- "DAM_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_2"] <- "GAR_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_3"] <- "SUN_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_4"] <- "MIR_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_6"] <- "UKT_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_7"] <- "TEL_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_9"] <- "BBC_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_10"] <-"IND_exp"
# change to 0-4 rating
d1UK$DAM_exp <- d1UK$DAM_exp - 1
d1UK$GAR_exp <- d1UK$GAR_exp - 1
d1UK$SUN_exp <- d1UK$SUN_exp - 1
d1UK$MIR_exp <- d1UK$MIR_exp - 1
d1UK$UKT_exp <- d1UK$UKT_exp - 1
d1UK$TEL_exp <- d1UK$TEL_exp - 1
d1UK$BBC_exp <- d1UK$BBC_exp - 1
d1UK$IND_exp <- d1UK$IND_exp - 1
x <- cbind(d1UK$DAM_exp,
d1UK$GAR_exp,
d1UK$SUN_exp,
d1UK$MIR_exp,
d1UK$UKT_exp,
d1UK$TEL_exp,
d1UK$BBC_exp,
d1UK$IND_exp)
d1UK$sum.media.exp <- rowSums(x, na.rm = T)
d1UK$sum.media.exp <- scale(d1UK$sum.media.exp)
## affect
d1UK$DAM_AF <- w1UK$affect[w1UK$mediaOutlet == "DailyMail"]
d1UK$GAR_AF <- w1UK$affect[w1UK$mediaOutlet == "GuardianObserve"]
d1UK$SUN_AF <- w1UK$affect[w1UK$mediaOutlet == "Sun"]
d1UK$MIR_AF <- w1UK$affect[w1UK$mediaOutlet == "Mirror"]
d1UK$UKT_AF <- w1UK$affect[w1UK$mediaOutlet == "UKTimes"]
d1UK$TEL_AF <- w1UK$affect[w1UK$mediaOutlet == "Telegraph"]
d1UK$BBC_AF <- w1UK$affect[w1UK$mediaOutlet == "BBC"]
d1UK$IND_AF <- w1UK$affect[w1UK$mediaOutlet == "Independent"]
d1UK$BBC_AFexp <- d1UK$BBC_AF * d1UK$BBC_exp
d1UK$DAM_AFexp <- d1UK$DAM_AF * d1UK$DAM_exp
d1UK$GAR_AFexp <- d1UK$GAR_AF * d1UK$GAR_exp
d1UK$IND_AFexp <- d1UK$IND_AF * d1UK$IND_exp
d1UK$MIR_AFexp <- d1UK$MIR_AF * d1UK$MIR_exp
d1UK$SUN_AFexp <- d1UK$SUN_AF * d1UK$SUN_exp
d1UK$TEL_AFexp <- d1UK$TEL_AF * d1UK$TEL_exp
d1UK$UKT_AFexp <- d1UK$UKT_AF * d1UK$UKT_exp
x <- cbind(d1UK$BBC_AFexp,
d1UK$DAM_AFexp,
d1UK$GAR_AFexp,
d1UK$IND_AFexp,
d1UK$MIR_AFexp,
d1UK$SUN_AFexp,
d1UK$TEL_AFexp,
d1UK$UKT_AFexp)
d1UK$index_AFexp <- rowMeans(x, na.rm = T)
# emotional tone
d1UK$BBC_ET <- w1UK$emotone[w1UK$mediaOutlet == "BBC"]
d1UK$DAM_ET <- w1UK$emotone[w1UK$mediaOutlet == "DailyMail"]
d1UK$GAR_ET <- w1UK$emotone[w1UK$mediaOutlet == "GuardianObserve"]
d1UK$IND_ET <- w1UK$emotone[w1UK$mediaOutlet == "Independent"]
d1UK$MIR_ET <- w1UK$emotone[w1UK$mediaOutlet == "Mirror"]
d1UK$SUN_ET <- w1UK$emotone[w1UK$mediaOutlet == "Sun"]
d1UK$TEL_ET <- w1UK$emotone[w1UK$mediaOutlet == "Telegraph"]
d1UK$UKT_ET <- w1UK$emotone[w1UK$mediaOutlet == "UKTimes"]
d1UK$BBC_ETexp <- d1UK$BBC_ET * d1UK$BBC_exp
d1UK$DAM_ETexp <- d1UK$DAM_ET * d1UK$DAM_exp
d1UK$GAR_ETexp <- d1UK$GAR_ET * d1UK$GAR_exp
d1UK$IND_ETexp <- d1UK$IND_ET * d1UK$IND_exp
d1UK$MIR_ETexp <- d1UK$MIR_ET * d1UK$MIR_exp
d1UK$SUN_ETexp <- d1UK$SUN_ET * d1UK$SUN_exp
d1UK$TEL_ETexp <- d1UK$TEL_ET * d1UK$TEL_exp
d1UK$UKT_ETexp <- d1UK$UKT_ET * d1UK$UKT_exp
x <- cbind(d1UK$BBC_ETexp,
d1UK$DAM_ETexp,
d1UK$GAR_ETexp,
d1UK$IND_ETexp,
d1UK$MIR_ETexp,
d1UK$SUN_ETexp,
d1UK$TEL_ETexp,
d1UK$UKT_ETexp)
d1UK$index_ETexp <- rowMeans(x, na.rm = T)
# analytic thinking
d1UK$BBC_AN <- w1UK$analytic[w1UK$mediaOutlet == "BBC"]
d1UK$DAM_AN <- w1UK$analytic[w1UK$mediaOutlet == "DailyMail"]
d1UK$GAR_AN <- w1UK$analytic[w1UK$mediaOutlet == "GuardianObserve"]
d1UK$IND_AN <- w1UK$analytic[w1UK$mediaOutlet == "Independent"]
d1UK$MIR_AN <- w1UK$analytic[w1UK$mediaOutlet == "Mirror"]
d1UK$SUN_AN <- w1UK$analytic[w1UK$mediaOutlet == "Sun"]
d1UK$TEL_AN <- w1UK$analytic[w1UK$mediaOutlet == "Telegraph"]
d1UK$UKT_AN <- w1UK$analytic[w1UK$mediaOutlet == "UKTimes"]
d1UK$BBC_ANexp <- d1UK$BBC_AN * d1UK$BBC_exp
d1UK$DAM_ANexp <- d1UK$DAM_AN * d1UK$DAM_exp
d1UK$GAR_ANexp <- d1UK$GAR_AN * d1UK$GAR_exp
d1UK$IND_ANexp <- d1UK$IND_AN * d1UK$IND_exp
d1UK$MIR_ANexp <- d1UK$MIR_AN * d1UK$MIR_exp
d1UK$SUN_ANexp <- d1UK$SUN_AN * d1UK$SUN_exp
d1UK$TEL_ANexp <- d1UK$TEL_AN * d1UK$TEL_exp
d1UK$UKT_ANexp <- d1UK$UKT_AN * d1UK$UKT_exp
x <- cbind(d1UK$BBC_ANexp,
d1UK$DAM_ANexp,
d1UK$GAR_ANexp,
d1UK$IND_ANexp,
d1UK$MIR_ANexp,
d1UK$SUN_ANexp,
d1UK$TEL_ANexp,
d1UK$UKT_ANexp)
d1UK$index_ANexp <- rowMeans(x, na.rm = T)
# threat
d1UK$BBC_TR <- w1UK$threat[w1UK$mediaOutlet == "BBC"]
d1UK$DAM_TR <- w1UK$threat[w1UK$mediaOutlet == "DailyMail"]
d1UK$GAR_TR <- w1UK$threat[w1UK$mediaOutlet == "GuardianObserve"]
d1UK$IND_TR <- w1UK$threat[w1UK$mediaOutlet == "Independent"]
d1UK$MIR_TR <- w1UK$threat[w1UK$mediaOutlet == "Mirror"]
d1UK$SUN_TR <- w1UK$threat[w1UK$mediaOutlet == "Sun"]
d1UK$TEL_TR <- w1UK$threat[w1UK$mediaOutlet == "Telegraph"]
d1UK$UKT_TR <- w1UK$threat[w1UK$mediaOutlet == "UKTimes"]
d1UK$BBC_TRexp <- d1UK$BBC_TR * d1UK$BBC_exp
d1UK$DAM_TRexp <- d1UK$DAM_TR * d1UK$DAM_exp
d1UK$GAR_TRexp <- d1UK$GAR_TR * d1UK$GAR_exp
d1UK$IND_TRexp <- d1UK$IND_TR * d1UK$IND_exp
d1UK$MIR_TRexp <- d1UK$MIR_TR * d1UK$MIR_exp
d1UK$SUN_TRexp <- d1UK$SUN_TR * d1UK$SUN_exp
d1UK$TEL_TRexp <- d1UK$TEL_TR * d1UK$TEL_exp
d1UK$UKT_TRexp <- d1UK$UKT_TR * d1UK$UKT_exp
x <- cbind(d1UK$BBC_TRexp,
d1UK$DAM_TRexp,
d1UK$GAR_TRexp,
d1UK$IND_TRexp,
d1UK$MIR_TRexp,
d1UK$SUN_TRexp,
d1UK$TEL_TRexp,
d1UK$UKT_TRexp)
d1UK$index_TRexp <- rowMeans(x, na.rm = T)
## difference score
d1UK$BBC_expAFAN <- d1UK$BBC_exp * d1UK$BBC_AF / d1UK$BBC_AN
d1UK$DAM_expAFAN <- d1UK$DAM_exp * d1UK$DAM_AF / d1UK$DAM_AN
d1UK$GAR_expAFAN <- d1UK$GAR_exp * d1UK$GAR_AF / d1UK$GAR_AN
d1UK$IND_expAFAN <- d1UK$IND_exp * d1UK$IND_AF / d1UK$IND_AN
d1UK$MIR_expAFAN <- d1UK$MIR_exp * d1UK$MIR_AF / d1UK$MIR_AN
d1UK$SUN_expAFAN <- d1UK$SUN_exp * d1UK$SUN_AF / d1UK$SUN_AN
d1UK$TEL_expAFAN <- d1UK$TEL_exp * d1UK$TEL_AF / d1UK$TEL_AN
d1UK$UKT_expAFAN <- d1UK$UKT_exp * d1UK$UKT_AF / d1UK$UKT_AN
x <- cbind(d1UK$BBC_expAFAN,
d1UK$DAM_expAFAN,
d1UK$GAR_expAFAN,
d1UK$IND_expAFAN,
d1UK$MIR_expAFAN,
d1UK$SUN_expAFAN,
d1UK$TEL_expAFAN,
d1UK$UKT_expAFAN)
d1UK$index_expAFAN <- rowMeans(x, na.rm = T)
#####################################################
#
# codes for party
#
####################################################
d1UK$partyCont <- NA
d1UK$partyCont[d1UK$demStrength == 1] <- -3
d1UK$partyCont[d1UK$demStrength == 2] <- -2
d1UK$partyCont[d1UK$partyClose == 1] <- -1
d1UK$partyCont[d1UK$partyClose == 3] <- 0
d1UK$partyCont[d1UK$partyClose == 2] <- 1
d1UK$partyCont[d1UK$repStrength == 2] <- 2
d1UK$partyCont[d1UK$repStrength == 1] <- 3
## party factor
d1UK$party_factor <- NA
d1UK$party_factor[d1UK$partyCont < 0] <- 'Democrat'
d1UK$party_factor[d1UK$partyCont == 0] <- 'Independent'
d1UK$party_factor[d1UK$partyCont > 0] <- 'Republican'
## Order of party variable
d1UK$party_factor <- factor(d1UK$party_factor,
levels = c('Democrat', 'Republican', 'Independent'))
## contrast codes
d1UK$DvR <- NA
d1UK$DvR[d1UK$party_factor == 'Democrat'] <- -.5
d1UK$DvR[d1UK$party_factor == 'Independent'] <- 0
d1UK$DvR[d1UK$party_factor == 'Republican'] <- .5
d1UK$IvDR <- NA
d1UK$IvDR[d1UK$party_factor == 'Democrat'] <- .33
d1UK$IvDR[d1UK$party_factor == 'Independent'] <- -.67
d1UK$IvDR[d1UK$party_factor == 'Republican'] <- .33
## dummy codes
d1UK$Rep_1[d1UK$party_factor == 'Democrat'] <- 0
d1UK$Rep_1[d1UK$party_factor == 'Republican'] <- 1
d1UK$Rep_1[d1UK$party_factor == 'Independent'] <- 0
d1UK$Ind_1[d1UK$party_factor == 'Democrat'] <- 0
d1UK$Ind_1[d1UK$party_factor == 'Republican'] <- 0
d1UK$Ind_1[d1UK$party_factor == 'Independent'] <- 1
d1UK$Dem_1[d1UK$party_factor == 'Democrat'] <- 1
d1UK$Dem_1[d1UK$party_factor == 'Republican'] <- 0
d1UK$Dem_1[d1UK$party_factor == 'Independent'] <- 0
## delete unnecessary columns
d1UK$party <- NULL
d1UK$demStrength <- NULL
d1UK$repStrength <- NULL
d1UK$partyClose <- NULL
colnames(d1UK)[colnames(d1UK) == "risk3"] <- "healthRisk"
colnames(d1UK)[colnames(d1UK) == "risk4"] <- "econRisk"
colnames(d1UK)[colnames(d1UK) == "risk5"] <- "pEconRisk"
colnames(d1UK)[colnames(d1UK) == "risk6"] <- "worstAB"
#####################################################################
#
# merge USA + UK data
#
#####################################################################
d1.UK <- d1UK[,c("participant", "vaxxAttitudes",
"party_factor", "DvR", "IvDR", "Rep_1", "Dem_1", "Ind_1",
"healthRisk", "econRisk", "pEconRisk", "worstAB",
"index_AFexp", "index_ANexp", "index_TRexp","index_ETexp",
"index_expAFAN", "sum.media.exp")]
d1.UK$country <- "UK"
d1.US <- d1[,c("participant", "vaxxAttitudes",
"party_factor", "DvR", "IvDR", "Rep_1", "Dem_1", "Ind_1",
"healthRisk", "econRisk", "pEconRisk", "worstAB",
"index_AFexp", "index_ANexp", "index_TRexp","index_ETexp",
"index_expAFAN", "sum.media.exp")]
d1.US$country <- "US"
dm <- rbind.data.frame(d1.UK, d1.US)
dm$participant <- as.factor(dm$participant)
dm$USvUK <- NA
dm$USvUK[dm$country == "US"] <- -.5
dm$USvUK[dm$country == "UK"] <- .5
dm$US_0 <- NA
dm$US_0[dm$country == "US"] <- 0
dm$US_0[dm$country == "UK"] <- 1
dm$UK_0 <- NA
dm$UK_0[dm$country == "US"] <- 1
dm$UK_0[dm$country == "UK"] <- 0
dm$riskSeverity <- rowMeans(cbind(dm$econRisk, dm$pEconRisk, dm$healthRisk), na.rm = T)
long merged data
#############################################################
#
# LONG merged data USA w1 + w2
#
#############################################################
d2.US <- d2[,c("participant", "vaxxAttitudes",
"party_factor", "DvR", "IvDR", "Rep_1", "Dem_1", "Ind_1",
"healthRisk", "econRisk", "pEconRisk", "worstAB",
"index_AFexp", "index_ANexp","index_ETexp", "index_TRexp",
"index_expAFAN", "sum.media.exp")]
d2.US$wave <- 2
d1.US <- d1[,c("participant", "vaxxAttitudes",
"party_factor", "DvR", "IvDR", "Rep_1", "Dem_1", "Ind_1",
"healthRisk", "econRisk", "pEconRisk", "worstAB",
"index_AFexp", "index_ANexp","index_ETexp", "index_TRexp",
"index_expAFAN", "sum.media.exp")]
d1.US$wave <- 1
names(d2.US) == names(d1.US)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE
dl <- rbind.data.frame(d1.US, d2.US)
dl$participant <- as.factor(dl$participant)
dl$W1vW2 <- NA
dl$W1vW2[dl$wave == 1] <- -.5
dl$W1vW2[dl$wave == 2] <- .5
dl$W1_0 <- NA
dl$W1_0[dl$wave == 1] <- 0
dl$W1_0[dl$wave == 2] <- 1
dl$W2_0 <- NA
dl$W2_0[dl$wave == 1] <- 1
dl$W2_0[dl$wave == 2] <- 0
wide merged data
#d1 = x; d2 = y
dw <- merge(d1.US, d2.US, by = c("participant"), all.x = T, all.y = T)
dw$party_match <- TRUE
dw$party_match[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Republican'] <- FALSE
dw$party_match[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Democrat']<- FALSE
#make weak leaners
dw$party_factor.y[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Independent']<- 'Democrat'
dw$party_factor.y[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Republican']<- 'Republican'
dw$party_factor.x[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Democrat']<- 'Democrat'
dw$party_factor.x[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Independent']<- 'Republican'
dw$partyCont.y[dw$party_factor.y == 'Democrat' & dw$party_factor.x == 'Independent']<- -1
dw$partyCont.y[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Republican']<- 1
dw$partyCont.x[dw$party_factor.y == 'Independent' & dw$party_factor.x == 'Democrat']<- -1
dw$partyCont.x[dw$party_factor.y == 'Republican' & dw$party_factor.x == 'Independent']<- 1
#get rid of party swaps
dw <- dw[dw$party_match,]
colnames(dw)[colnames(dw) == "vaxxAttitudes.x"] <- "vaxxAttitudes.w1"
colnames(dw)[colnames(dw) == "vaxxAttitudes.y"] <- "vaxxAttitudes.w2"
colnames(dw)[colnames(dw) == "worstAB.x"] <- "worstAB.w1"
colnames(dw)[colnames(dw) == "worstAB.y"] <- "worstAB.w2"
colnames(dw)[colnames(dw) == "worstAB.x"] <- "worstAB.w1"
colnames(dw)[colnames(dw) == "worstAB.y"] <- "worstAB.w2"
colnames(dw)[colnames(dw) == "healthRisk.x"] <- "healthRisk.w1"
colnames(dw)[colnames(dw) == "healthRisk.y"] <- "healthRisk.w2"
colnames(dw)[colnames(dw) == "econRisk.x"] <- "econRisk.w1"
colnames(dw)[colnames(dw) == "econRisk.y"] <- "econRisk.w2"
colnames(dw)[colnames(dw) == "pEconRisk.x"] <- "pEconRisk.w1"
colnames(dw)[colnames(dw) == "pEconRisk.y"] <- "pEconRisk.w2"
dw$vaxxAttitudes.c.w1 <- dw$vaxxAttitudes.w1 - mean(dw$vaxxAttitudes.w1, na.rm = T)
colnames(dw)[colnames(dw) == "party_factor.x"] <- "party_factor"
dw$party_factor.y <- NULL
colnames(dw)[colnames(dw) == "partyCont.x"] <- "partyCont.w1"
colnames(dw)[colnames(dw) == "partyCont.y"] <- "partyCont.w2"
colnames(dw)[colnames(dw) == "index_AFexp.x"] <- "index_AFexp.w1"
colnames(dw)[colnames(dw) == "index_AFexp.y"] <- "index_AFexp.w2"
colnames(dw)[colnames(dw) == "index_ANexp.x"] <- "index_ANexp.w1"
colnames(dw)[colnames(dw) == "index_ANexp.y"] <- "index_ANexp.w2"
colnames(dw)[colnames(dw) == "index_expAFAN.x"] <- "index_expAFAN.w1"
colnames(dw)[colnames(dw) == "index_expAFAN.y"] <- "index_expAFAN.w2"
colnames(dw)[colnames(dw) == "index_ETexp.x"] <- "index_ETexp.w1"
colnames(dw)[colnames(dw) == "index_ETexp.y"] <- "index_ETexp.w2"
colnames(dw)[colnames(dw) == "DvR.x"] <- "DvR"
colnames(dw)[colnames(dw) == "IvDR.x"] <- "IvDR"
colnames(dw)[colnames(dw) == "Ind_1.x"] <- "Ind_1"
colnames(dw)[colnames(dw) == "Rep_1.x"] <- "Rep_1"
colnames(dw)[colnames(dw) == "Dem_1.x"] <- "Dem_1"
#get averages
x <- cbind(dw$vaxxAttitudes.w1, dw$vaxxAttitudes.w2)
dw$avgVaxxAttitudes <- rowMeans(x, na.rm = T)
x <- cbind(dw$index_AFexp.w1, dw$index_AFexp.w2)
dw$avg_AFexp <- rowMeans(x, na.rm = T)
x <- cbind(dw$index_ANexp.w1, dw$index_ANexp.w2)
dw$avg_ANexp <- rowMeans(x, na.rm = T)
x <- cbind(dw$sum.media.exp.x, dw$sum.media.exp.y)
dw$avg.sum.media.exp <- rowMeans(x, na.rm = T)
x <- cbind(dw$pEconRisk.w1, dw$econRisk.w1, dw$healthRisk.w1)
dw$riskSeverity.w1 <- rowMeans(x, na.rm = T)
x <- cbind(dw$pEconRisk.w2, dw$econRisk.w2, dw$healthRisk.w2)
dw$riskSeverity.w2 <- rowMeans(x, na.rm = T)
## [1] "United States:"
## [1] "N = 3311"
##
## Democrat Republican Independent
## 1403 1117 627
##
## Democrat Republican Independent
## 0.45 0.35 0.20
## d1.US$index_AFexp d1.US$index_ANexp d1.US$index_TRexp
## vars 1 1 1
## n 3054 3054 3054
## mean 0.4447977 0.8777574 0.4759922
## sd 0.3471932 0.7220945 0.3888483
## median 0.3759157 0.70565 0.3827436
## trimmed 0.4103688 0.7962021 0.4325456
## mad 0.3468042 0.6978475 0.3782807
## min 0 0 0
## max 1.542211 3.23485 1.749746
## range 1.542211 3.23485 1.749746
## skew 0.8178045 0.9351743 0.9329112
## kurtosis 0.1147903 0.3381969 0.3490539
## se 0.006282561 0.01306651 0.007036322
## mediaOutlet affect analytic threat emotone
## 1 ABC 0.39 0.79 0.49 0.52
## 2 AOL 0.35 0.95 0.52 0.39
## 3 CBS 0.39 0.79 0.46 0.48
## 4 CNN 0.38 0.74 0.39 0.41
## 5 Fox 0.44 0.60 0.37 0.45
## 6 MSNBC 0.39 0.71 0.39 0.42
## 7 NBC 0.66 0.81 0.34 0.12
## 8 NPR 0.34 0.72 0.40 0.42
## 9 NYT 0.35 0.93 0.50 0.33
## 10 PBS 0.38 0.79 0.46 0.41
## 11 USAToday 0.37 0.91 0.48 0.41
## 12 WSJ 0.18 0.97 0.44 0.29
## [1] "United Kingdom:"
## [1] "N = 1520"
##
## Democrat Republican Independent
## 866 352 289
##
## Democrat Republican Independent
## 0.57 0.23 0.19
## d1.UK$index_AFexp d1.UK$index_ANexp d1.UK$index_TRexp
## vars 1 1 1
## n 1502 1502 1502
## mean 0.3242044 0.7514027 0.3260611
## sd 0.264256 0.6236259 0.2583307
## median 0.2760944 0.6318944 0.2710254
## trimmed 0.2895456 0.6686965 0.2933595
## mad 0.2039689 0.4929536 0.2009484
## min 0 0 0
## max 1.540084 3.596128 1.518299
## range 1.540084 3.596128 1.518299
## skew 1.344443 1.337255 1.31931
## kurtosis 2.121496 2.038769 2.097306
## se 0.006818516 0.01609123 0.006665628
## d1.UK$vaxxAttitudes
## vars 1
## n 1502
## mean 1.368842
## sd 1.812618
## median 2
## trimmed 1.663062
## mad 1.4826
## min -3
## max 3
## range 6
## skew -1.044851
## kurtosis 0.06644983
## se 0.04677043
## mediaOutlet affect analytic threat emotone
## 1 BBC 0.37 0.80 0.42 0.42
## 2 DailyMail 0.40 0.91 0.33 0.33
## 3 GuardianObserve 0.36 0.93 0.34 0.34
## 4 Independent 0.38 0.92 0.33 0.33
## 5 Mirror 0.41 0.89 0.45 0.45
## 6 National 0.41 0.91 0.45 0.45
## 7 Sun 0.41 0.87 0.44 0.44
## 8 Telegraph 0.38 0.93 0.38 0.38
## 9 UKTimes 0.37 0.93 0.35 0.35
## [1] "United States responses:"
## [1] "vaccine attitudes:3051"
## [1] "ABC:3051"
## [1] "CBS:3051"
## [1] "CNN:3053"
## [1] "Fox:3053"
## [1] "MSNBC:3052"
## [1] "NBC:3053"
## [1] "NPR:3052"
## [1] "NY Times:3052"
## [1] "PBS:3053"
## [1] "USA Today:3053"
## [1] "WSJ:3052"
## [1] "AOL:3053"
## [1] "United Kingdom responses:"
## [1] "vaccine attitudes:1502"
## [1] "daily mail: 1500"
## [1] "guardian: 1502"
## [1] "sun: 1502"
## [1] "mirror: 1502"
## [1] "UK times: 1502"
## [1] "telegraph: 1502"
## [1] "BBC: 1502"
## [1] "independent: 1502"
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (DvR + IvDR) * (index_ANexp),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0554 -1.3902 0.4176 1.5695 3.3857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.524638 0.052233 10.044 < 2e-16 ***
## USvUK 0.988113 0.104466 9.459 < 2e-16 ***
## DvR -0.799531 0.118297 -6.759 1.57e-11 ***
## IvDR 0.556112 0.118871 4.678 2.98e-06 ***
## index_ANexp 0.458798 0.053324 8.604 < 2e-16 ***
## USvUK:DvR 0.794214 0.236594 3.357 0.000795 ***
## USvUK:IvDR 0.009152 0.237741 0.038 0.969295
## USvUK:index_ANexp -0.189010 0.106647 -1.772 0.076413 .
## DvR:index_ANexp 0.419961 0.115713 3.629 0.000287 ***
## IvDR:index_ANexp -0.088246 0.125137 -0.705 0.480725
## USvUK:DvR:index_ANexp -0.241844 0.231426 -1.045 0.296070
## USvUK:IvDR:index_ANexp -0.276185 0.250275 -1.104 0.269857
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1005, Adjusted R-squared: 0.0983
## F-statistic: 46.02 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_ANexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0554 -1.3902 0.4176 1.5695 3.3857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.10792 0.07322 15.131 < 2e-16 ***
## USvUK 0.59403 0.14644 4.056 5.07e-05 ***
## index_ANexp 0.21970 0.06626 3.315 0.000922 ***
## Rep_1 -0.79953 0.11830 -6.759 1.57e-11 ***
## Ind_1 -0.95588 0.12646 -7.559 4.90e-14 ***
## USvUK:index_ANexp -0.15923 0.13253 -1.201 0.229624
## USvUK:Rep_1 0.79421 0.23659 3.357 0.000795 ***
## USvUK:Ind_1 0.38796 0.25293 1.534 0.125131
## index_ANexp:Rep_1 0.41996 0.11571 3.629 0.000287 ***
## index_ANexp:Ind_1 0.29823 0.12924 2.308 0.021069 *
## USvUK:index_ANexp:Rep_1 -0.24184 0.23143 -1.045 0.296070
## USvUK:index_ANexp:Ind_1 0.15526 0.25848 0.601 0.548084
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1005, Adjusted R-squared: 0.0983
## F-statistic: 46.02 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_ANexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0554 -1.3902 0.4176 1.5695 3.3857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.30839 0.09291 3.319 0.000910 ***
## USvUK 1.38824 0.18583 7.471 9.53e-14 ***
## index_ANexp 0.63966 0.09486 6.743 1.75e-11 ***
## Dem_1 0.79953 0.11830 6.759 1.57e-11 ***
## Ind_1 -0.15635 0.13880 -1.126 0.260041
## USvUK:index_ANexp -0.40107 0.18972 -2.114 0.034569 *
## USvUK:Dem_1 -0.79421 0.23659 -3.357 0.000795 ***
## USvUK:Ind_1 -0.40626 0.27759 -1.463 0.143401
## index_ANexp:Dem_1 -0.41996 0.11571 -3.629 0.000287 ***
## index_ANexp:Ind_1 -0.12173 0.14598 -0.834 0.404381
## USvUK:index_ANexp:Dem_1 0.24184 0.23143 1.045 0.296070
## USvUK:index_ANexp:Ind_1 0.39711 0.29196 1.360 0.173857
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1005, Adjusted R-squared: 0.0983
## F-statistic: 46.02 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_ANexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0554 -1.3902 0.4176 1.5695 3.3857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.152043 0.103110 1.475 0.1404
## USvUK 0.981981 0.206220 4.762 1.98e-06 ***
## index_ANexp 0.517923 0.110959 4.668 3.13e-06 ***
## Dem_1 0.955877 0.126463 7.559 4.90e-14 ***
## Rep_1 0.156346 0.138797 1.126 0.2600
## USvUK:index_ANexp -0.003967 0.221919 -0.018 0.9857
## USvUK:Dem_1 -0.387955 0.252926 -1.534 0.1251
## USvUK:Rep_1 0.406259 0.277595 1.463 0.1434
## index_ANexp:Dem_1 -0.298227 0.129239 -2.308 0.0211 *
## index_ANexp:Rep_1 0.121734 0.145982 0.834 0.4044
## USvUK:index_ANexp:Dem_1 -0.155263 0.258479 -0.601 0.5481
## USvUK:index_ANexp:Rep_1 -0.397107 0.291963 -1.360 0.1739
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1005, Adjusted R-squared: 0.0983
## F-statistic: 46.02 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ UK_0 * index_ANexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0554 -1.3902 0.4176 1.5695 3.3857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.018694 0.086297 11.805 < 2e-16 ***
## UK_0 -0.988113 0.104466 -9.459 < 2e-16 ***
## index_ANexp 0.364292 0.091571 3.978 7.05e-05 ***
## DvR -0.402424 0.197845 -2.034 0.042006 *
## IvDR 0.560688 0.194507 2.883 0.003963 **
## UK_0:index_ANexp 0.189010 0.106647 1.772 0.076413 .
## UK_0:DvR -0.794214 0.236594 -3.357 0.000795 ***
## UK_0:IvDR -0.009152 0.237741 -0.038 0.969295
## index_ANexp:DvR 0.299039 0.198786 1.504 0.132568
## index_ANexp:IvDR -0.226339 0.214839 -1.054 0.292155
## UK_0:index_ANexp:DvR 0.241844 0.231426 1.045 0.296070
## UK_0:index_ANexp:IvDR 0.276185 0.250275 1.104 0.269857
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1005, Adjusted R-squared: 0.0983
## F-statistic: 46.02 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ US_0 * index_ANexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0554 -1.3902 0.4176 1.5695 3.3857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.030581 0.058873 0.519 0.603477
## US_0 0.988113 0.104466 9.459 < 2e-16 ***
## index_ANexp 0.553303 0.054666 10.121 < 2e-16 ***
## DvR -1.196638 0.129746 -9.223 < 2e-16 ***
## IvDR 0.551536 0.136704 4.035 5.56e-05 ***
## US_0:index_ANexp -0.189010 0.106647 -1.772 0.076413 .
## US_0:DvR 0.794214 0.236594 3.357 0.000795 ***
## US_0:IvDR 0.009152 0.237741 0.038 0.969295
## index_ANexp:DvR 0.540883 0.118498 4.564 5.14e-06 ***
## index_ANexp:IvDR 0.049846 0.128382 0.388 0.697838
## US_0:index_ANexp:DvR -0.241844 0.231426 -1.045 0.296070
## US_0:index_ANexp:IvDR -0.276185 0.250275 -1.104 0.269857
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1005, Adjusted R-squared: 0.0983
## F-statistic: 46.02 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (DvR + IvDR) * (index_ANexp) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9629 -1.3818 0.4343 1.5913 3.4346
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.04925 0.75202 2.725 0.006455 **
## USvUK 1.09963 0.11797 9.321 < 2e-16 ***
## DvR -0.81172 0.11841 -6.855 8.08e-12 ***
## IvDR 0.52988 0.11953 4.433 9.51e-06 ***
## index_ANexp -1.51483 0.97261 -1.557 0.119423
## sum.media.exp 1.33266 0.65575 2.032 0.042185 *
## USvUK:DvR 0.78490 0.23656 3.318 0.000914 ***
## USvUK:IvDR 0.01215 0.23766 0.051 0.959227
## USvUK:index_ANexp -0.50251 0.18752 -2.680 0.007393 **
## DvR:index_ANexp 0.42161 0.11568 3.645 0.000271 ***
## IvDR:index_ANexp -0.07099 0.12538 -0.566 0.571309
## USvUK:DvR:index_ANexp -0.23196 0.23140 -1.002 0.316188
## USvUK:IvDR:index_ANexp -0.27372 0.25019 -1.094 0.274001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1013, Adjusted R-squared: 0.09892
## F-statistic: 42.56 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_ANexp * (Rep_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9629 -1.3818 0.4343 1.5913 3.4346
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.6300 0.7525 3.495 0.000479 ***
## USvUK 0.7112 0.1573 4.520 6.33e-06 ***
## index_ANexp -1.7491 0.9710 -1.801 0.071726 .
## Rep_1 -0.8117 0.1184 -6.855 8.08e-12 ***
## Ind_1 -0.9357 0.1268 -7.379 1.88e-13 ***
## sum.media.exp 1.3327 0.6557 2.032 0.042185 *
## USvUK:index_ANexp -0.4769 0.2049 -2.327 0.019987 *
## USvUK:Rep_1 0.7849 0.2366 3.318 0.000914 ***
## USvUK:Ind_1 0.3803 0.2529 1.504 0.132662
## index_ANexp:Rep_1 0.4216 0.1157 3.645 0.000271 ***
## index_ANexp:Ind_1 0.2818 0.1294 2.177 0.029541 *
## USvUK:index_ANexp:Rep_1 -0.2320 0.2314 -1.002 0.316188
## USvUK:index_ANexp:Ind_1 0.1577 0.2584 0.610 0.541593
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1013, Adjusted R-squared: 0.09892
## F-statistic: 42.56 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_ANexp * (Dem_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9629 -1.3818 0.4343 1.5913 3.4346
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8183 0.7487 2.428 0.015202 *
## USvUK 1.4961 0.1932 7.744 1.18e-14 ***
## index_ANexp -1.3275 0.9726 -1.365 0.172356
## Dem_1 0.8117 0.1184 6.855 8.08e-12 ***
## Ind_1 -0.1240 0.1397 -0.888 0.374583
## sum.media.exp 1.3327 0.6557 2.032 0.042185 *
## USvUK:index_ANexp -0.7088 0.2427 -2.921 0.003511 **
## USvUK:Dem_1 -0.7849 0.2366 -3.318 0.000914 ***
## USvUK:Ind_1 -0.4046 0.2775 -1.458 0.144903
## index_ANexp:Dem_1 -0.4216 0.1157 -3.645 0.000271 ***
## index_ANexp:Ind_1 -0.1398 0.1462 -0.956 0.338955
## USvUK:index_ANexp:Dem_1 0.2320 0.2314 1.002 0.316188
## USvUK:index_ANexp:Ind_1 0.3897 0.2919 1.335 0.181911
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1013, Adjusted R-squared: 0.09892
## F-statistic: 42.56 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_ANexp * (Dem_1 + Rep_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9629 -1.3818 0.4343 1.5913 3.4346
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6942 0.7658 2.212 0.0270 *
## USvUK 1.0915 0.2131 5.123 3.14e-07 ***
## index_ANexp -1.4673 0.9831 -1.492 0.1356
## Dem_1 0.9357 0.1268 7.379 1.88e-13 ***
## Rep_1 0.1240 0.1397 0.888 0.3746
## sum.media.exp 1.3327 0.6557 2.032 0.0422 *
## USvUK:index_ANexp -0.3191 0.2707 -1.179 0.2385
## USvUK:Dem_1 -0.3803 0.2529 -1.504 0.1327
## USvUK:Rep_1 0.4046 0.2775 1.458 0.1449
## index_ANexp:Dem_1 -0.2818 0.1294 -2.177 0.0295 *
## index_ANexp:Rep_1 0.1398 0.1462 0.956 0.3390
## USvUK:index_ANexp:Dem_1 -0.1577 0.2584 -0.610 0.5416
## USvUK:index_ANexp:Rep_1 -0.3897 0.2919 -1.335 0.1819
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1013, Adjusted R-squared: 0.09892
## F-statistic: 42.56 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ UK_0 * index_ANexp * (DvR + IvDR) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9629 -1.3818 0.4343 1.5913 3.4346
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.59907 0.78241 3.322 0.000901 ***
## UK_0 -1.09963 0.11797 -9.321 < 2e-16 ***
## index_ANexp -1.76609 1.05227 -1.678 0.093345 .
## DvR -0.41927 0.19795 -2.118 0.034225 *
## IvDR 0.53595 0.19482 2.751 0.005965 **
## sum.media.exp 1.33266 0.65575 2.032 0.042185 *
## UK_0:index_ANexp 0.50251 0.18752 2.680 0.007393 **
## UK_0:DvR -0.78490 0.23656 -3.318 0.000914 ***
## UK_0:IvDR -0.01215 0.23766 -0.051 0.959227
## index_ANexp:DvR 0.30563 0.19874 1.538 0.124166
## index_ANexp:IvDR -0.20785 0.21496 -0.967 0.333638
## UK_0:index_ANexp:DvR 0.23196 0.23140 1.002 0.316188
## UK_0:index_ANexp:IvDR 0.27372 0.25019 1.094 0.274001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1013, Adjusted R-squared: 0.09892
## F-statistic: 42.56 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ US_0 * index_ANexp * (DvR + IvDR) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9629 -1.3818 0.4343 1.5913 3.4346
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.49944 0.72516 2.068 0.038722 *
## US_0 1.09963 0.11797 9.321 < 2e-16 ***
## index_ANexp -1.26358 0.89569 -1.411 0.158391
## DvR -1.20417 0.12975 -9.280 < 2e-16 ***
## IvDR 0.52380 0.13734 3.814 0.000139 ***
## sum.media.exp 1.33266 0.65575 2.032 0.042185 *
## US_0:index_ANexp -0.50251 0.18752 -2.680 0.007393 **
## US_0:DvR 0.78490 0.23656 3.318 0.000914 ***
## US_0:IvDR 0.01215 0.23766 0.051 0.959227
## index_ANexp:DvR 0.53759 0.11847 4.538 5.83e-06 ***
## index_ANexp:IvDR 0.06587 0.12858 0.512 0.608468
## US_0:index_ANexp:DvR -0.23196 0.23140 -1.002 0.316188
## US_0:index_ANexp:IvDR -0.27372 0.25019 -1.094 0.274001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.978 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1013, Adjusted R-squared: 0.09892
## F-statistic: 42.56 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * (index_ANexp),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.493 -1.325 0.308 1.600 3.247
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.44359 0.04837 9.171 < 2e-16 ***
## USvUK 0.73383 0.06396 11.473 < 2e-16 ***
## DvR -0.96488 0.10686 -9.029 < 2e-16 ***
## IvDR 0.48091 0.11089 4.337 1.48e-05 ***
## index_ANexp 0.51812 0.04673 11.088 < 2e-16 ***
## DvR:index_ANexp 0.47322 0.10133 4.670 3.10e-06 ***
## IvDR:index_ANexp 0.02462 0.10969 0.224 0.822
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.983 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.095, Adjusted R-squared: 0.0938
## F-statistic: 79.37 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.493 -1.325 0.308 1.600 3.247
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.08473 0.07237 14.989 < 2e-16 ***
## USvUK 0.73383 0.06396 11.473 < 2e-16 ***
## index_ANexp 0.28963 0.06144 4.714 2.50e-06 ***
## Rep_1 -0.96488 0.10686 -9.029 < 2e-16 ***
## Ind_1 -0.96334 0.12196 -7.899 3.51e-15 ***
## index_ANexp:Rep_1 0.47322 0.10133 4.670 3.10e-06 ***
## index_ANexp:Ind_1 0.21199 0.11494 1.844 0.0652 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.983 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.095, Adjusted R-squared: 0.0938
## F-statistic: 79.37 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.493 -1.325 0.308 1.600 3.247
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.119852 0.078163 1.533 0.1253
## USvUK 0.733827 0.063962 11.473 < 2e-16 ***
## index_ANexp 0.762849 0.080241 9.507 < 2e-16 ***
## Dem_1 0.964879 0.106860 9.029 < 2e-16 ***
## Ind_1 0.001534 0.124214 0.012 0.9901
## index_ANexp:Dem_1 -0.473219 0.101330 -4.670 3.1e-06 ***
## index_ANexp:Ind_1 -0.261228 0.126436 -2.066 0.0389 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.983 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.095, Adjusted R-squared: 0.0938
## F-statistic: 79.37 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.493 -1.325 0.308 1.600 3.247
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.121386 0.098009 1.239 0.2156
## USvUK 0.733827 0.063962 11.473 < 2e-16 ***
## index_ANexp 0.501621 0.097580 5.141 2.85e-07 ***
## Dem_1 0.963345 0.121960 7.899 3.51e-15 ***
## Rep_1 -0.001534 0.124214 -0.012 0.9901
## index_ANexp:Dem_1 -0.211991 0.114940 -1.844 0.0652 .
## index_ANexp:Rep_1 0.261228 0.126436 2.066 0.0389 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.983 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.095, Adjusted R-squared: 0.0938
## F-statistic: 79.37 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * (index_ANexp) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3200 -1.3405 0.3117 1.5852 3.2623
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04227 0.38898 0.109 0.9135
## USvUK 0.77167 0.07359 10.486 < 2e-16 ***
## DvR -0.95006 0.10780 -8.813 < 2e-16 ***
## IvDR 0.48952 0.11120 4.402 1.10e-05 ***
## index_ANexp 1.03541 0.49969 2.072 0.0383 *
## sum.media.exp -0.36246 0.34859 -1.040 0.2985
## DvR:index_ANexp 0.46649 0.10154 4.594 4.46e-06 ***
## IvDR:index_ANexp 0.02004 0.10978 0.183 0.8552
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.983 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09521, Adjusted R-squared: 0.09382
## F-statistic: 68.19 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Rep_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3200 -1.3405 0.3117 1.5852 3.2623
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.67884 0.39701 1.710 0.0874 .
## USvUK 0.77167 0.07359 10.486 < 2e-16 ***
## index_ANexp 0.80878 0.50305 1.608 0.1080
## Rep_1 -0.95006 0.10780 -8.813 < 2e-16 ***
## Ind_1 -0.96455 0.12196 -7.908 3.25e-15 ***
## sum.media.exp -0.36246 0.34859 -1.040 0.2985
## index_ANexp:Rep_1 0.46649 0.10154 4.594 4.46e-06 ***
## index_ANexp:Ind_1 0.21321 0.11494 1.855 0.0637 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.983 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09521, Adjusted R-squared: 0.09382
## F-statistic: 68.19 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Dem_1 + Ind_1) +
## as.vector(sum.media.exp), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3200 -1.3405 0.3117 1.5852 3.2623
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.27122 0.38414 -0.706 0.4802
## USvUK 0.77167 0.07359 10.486 < 2e-16 ***
## index_ANexp 1.27527 0.49930 2.554 0.0107 *
## Dem_1 0.95006 0.10780 8.813 < 2e-16 ***
## Ind_1 -0.01449 0.12517 -0.116 0.9079
## as.vector(sum.media.exp) -0.36246 0.34859 -1.040 0.2985
## index_ANexp:Dem_1 -0.46649 0.10154 -4.594 4.46e-06 ***
## index_ANexp:Ind_1 -0.25328 0.12667 -2.000 0.0456 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.983 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09521, Adjusted R-squared: 0.09382
## F-statistic: 68.19 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Dem_1 + Rep_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3200 -1.3405 0.3117 1.5852 3.2623
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.28571 0.40359 -0.708 0.4790
## USvUK 0.77167 0.07359 10.486 < 2e-16 ***
## index_ANexp 1.02199 0.50988 2.004 0.0451 *
## Dem_1 0.96455 0.12196 7.908 3.25e-15 ***
## Rep_1 0.01449 0.12517 0.116 0.9079
## sum.media.exp -0.36246 0.34859 -1.040 0.2985
## index_ANexp:Dem_1 -0.21321 0.11494 -1.855 0.0637 .
## index_ANexp:Rep_1 0.25328 0.12667 2.000 0.0456 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.983 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09521, Adjusted R-squared: 0.09382
## F-statistic: 68.19 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (DvR + IvDR) * index_AFexp,
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0625 -1.3785 0.4478 1.5737 3.4534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.505088 0.053114 9.510 < 2e-16 ***
## USvUK 1.014371 0.106227 9.549 < 2e-16 ***
## DvR -0.848820 0.120744 -7.030 2.38e-12 ***
## IvDR 0.557837 0.120522 4.629 3.79e-06 ***
## index_AFexp 1.018506 0.121524 8.381 < 2e-16 ***
## USvUK:DvR 0.837525 0.241489 3.468 0.000529 ***
## USvUK:IvDR 0.009398 0.241043 0.039 0.968900
## USvUK:index_AFexp -0.317874 0.243048 -1.308 0.190985
## DvR:index_AFexp 0.998751 0.264664 3.774 0.000163 ***
## IvDR:index_AFexp -0.222119 0.284495 -0.781 0.434992
## USvUK:DvR:index_AFexp -0.475957 0.529327 -0.899 0.368608
## USvUK:IvDR:index_AFexp -0.623341 0.568990 -1.096 0.273346
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09993
## F-statistic: 46.85 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_AFexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0625 -1.3785 0.4478 1.5737 3.4534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.11358 0.07478 14.892 < 2e-16 ***
## USvUK 0.59871 0.14956 4.003 6.35e-05 ***
## index_AFexp 0.44583 0.15113 2.950 0.003195 **
## Rep_1 -0.84882 0.12074 -7.030 2.38e-12 ***
## Ind_1 -0.98225 0.12835 -7.653 2.38e-14 ***
## USvUK:index_AFexp -0.28560 0.30227 -0.945 0.344782
## USvUK:Rep_1 0.83752 0.24149 3.468 0.000529 ***
## USvUK:Ind_1 0.40936 0.25669 1.595 0.110833
## index_AFexp:Rep_1 0.99875 0.26466 3.774 0.000163 ***
## index_AFexp:Ind_1 0.72149 0.29371 2.456 0.014068 *
## USvUK:index_AFexp:Rep_1 -0.47596 0.52933 -0.899 0.368608
## USvUK:index_AFexp:Ind_1 0.38536 0.58742 0.656 0.511845
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09993
## F-statistic: 46.85 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_AFexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0625 -1.3785 0.4478 1.5737 3.4534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2648 0.0948 2.793 0.005247 **
## USvUK 1.4362 0.1896 7.575 4.33e-14 ***
## index_AFexp 1.4446 0.2173 6.649 3.30e-11 ***
## Dem_1 0.8488 0.1207 7.030 2.38e-12 ***
## Ind_1 -0.1334 0.1409 -0.947 0.343894
## USvUK:index_AFexp -0.7615 0.4345 -1.753 0.079745 .
## USvUK:Dem_1 -0.8375 0.2415 -3.468 0.000529 ***
## USvUK:Ind_1 -0.4282 0.2819 -1.519 0.128882
## index_AFexp:Dem_1 -0.9988 0.2647 -3.774 0.000163 ***
## index_AFexp:Ind_1 -0.2773 0.3326 -0.834 0.404566
## USvUK:index_AFexp:Dem_1 0.4760 0.5293 0.899 0.368608
## USvUK:index_AFexp:Ind_1 0.8613 0.6652 1.295 0.195463
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09993
## F-statistic: 46.85 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_AFexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0625 -1.3785 0.4478 1.5737 3.4534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.13134 0.10431 1.259 0.2081
## USvUK 1.00807 0.20862 4.832 1.40e-06 ***
## index_AFexp 1.16733 0.25184 4.635 3.67e-06 ***
## Dem_1 0.98225 0.12835 7.653 2.38e-14 ***
## Rep_1 0.13343 0.14095 0.947 0.3439
## USvUK:index_AFexp 0.09976 0.50369 0.198 0.8430
## USvUK:Dem_1 -0.40936 0.25669 -1.595 0.1108
## USvUK:Rep_1 0.42816 0.28191 1.519 0.1289
## index_AFexp:Dem_1 -0.72149 0.29371 -2.456 0.0141 *
## index_AFexp:Rep_1 0.27726 0.33261 0.834 0.4046
## USvUK:index_AFexp:Dem_1 -0.38536 0.58742 -0.656 0.5118
## USvUK:index_AFexp:Rep_1 -0.86132 0.66523 -1.295 0.1955
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09993
## F-statistic: 46.85 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ UK_0 * index_AFexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0625 -1.3785 0.4478 1.5737 3.4534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.012274 0.087270 11.599 < 2e-16 ***
## UK_0 -1.014371 0.106227 -9.549 < 2e-16 ***
## index_AFexp 0.859569 0.215123 3.996 6.55e-05 ***
## DvR -0.430058 0.200543 -2.144 0.032048 *
## IvDR 0.562536 0.196330 2.865 0.004186 **
## UK_0:index_AFexp 0.317874 0.243048 1.308 0.190985
## UK_0:DvR -0.837525 0.241489 -3.468 0.000529 ***
## UK_0:IvDR -0.009398 0.241043 -0.039 0.968900
## index_AFexp:DvR 0.760772 0.468271 1.625 0.104309
## index_AFexp:IvDR -0.533789 0.503789 -1.060 0.289406
## UK_0:index_AFexp:DvR 0.475957 0.529327 0.899 0.368608
## UK_0:index_AFexp:IvDR 0.623341 0.568990 1.096 0.273346
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09993
## F-statistic: 46.85 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ US_0 * index_AFexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0625 -1.3785 0.4478 1.5737 3.4534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002097 0.060565 -0.035 0.972379
## US_0 1.014371 0.106227 9.549 < 2e-16 ***
## index_AFexp 1.177443 0.113113 10.409 < 2e-16 ***
## DvR -1.267583 0.134535 -9.422 < 2e-16 ***
## IvDR 0.553138 0.139844 3.955 7.76e-05 ***
## US_0:index_AFexp -0.317874 0.243048 -1.308 0.190985
## US_0:DvR 0.837525 0.241489 3.468 0.000529 ***
## US_0:IvDR 0.009398 0.241043 0.039 0.968900
## index_AFexp:DvR 1.236729 0.246798 5.011 5.62e-07 ***
## index_AFexp:IvDR 0.089552 0.264474 0.339 0.734925
## US_0:index_AFexp:DvR -0.475957 0.529327 -0.899 0.368608
## US_0:index_AFexp:IvDR -0.623341 0.568990 -1.096 0.273346
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09993
## F-statistic: 46.85 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (DvR + IvDR) * index_AFexp +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0615 -1.3789 0.4451 1.5736 3.4521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.564320 0.450011 1.254 0.209902
## USvUK 1.016860 0.107885 9.425 < 2e-16 ***
## DvR -0.849161 0.120785 -7.030 2.37e-12 ***
## IvDR 0.557893 0.120535 4.628 3.79e-06 ***
## index_AFexp 0.853832 1.248280 0.684 0.494006
## sum.media.exp 0.050004 0.377248 0.133 0.894555
## USvUK:DvR 0.838570 0.241644 3.470 0.000525 ***
## USvUK:IvDR 0.008357 0.241197 0.035 0.972361
## USvUK:index_AFexp -0.365065 0.431088 -0.847 0.397126
## DvR:index_AFexp 0.999964 0.264850 3.776 0.000162 ***
## IvDR:index_AFexp -0.222291 0.284529 -0.781 0.434691
## USvUK:DvR:index_AFexp -0.475132 0.529421 -0.897 0.369524
## USvUK:IvDR:index_AFexp -0.622339 0.569102 -1.094 0.274212
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09973
## F-statistic: 42.94 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_AFexp * (Rep_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0615 -1.3789 0.4451 1.5736 3.4521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1730 0.4545 2.581 0.009884 **
## USvUK 0.6003 0.1501 4.000 6.43e-05 ***
## index_AFexp 0.2805 1.2565 0.223 0.823360
## Rep_1 -0.8492 0.1208 -7.030 2.37e-12 ***
## Ind_1 -0.9825 0.1284 -7.653 2.38e-14 ***
## sum.media.exp 0.0500 0.3772 0.133 0.894555
## USvUK:index_AFexp -0.3329 0.4675 -0.712 0.476510
## USvUK:Rep_1 0.8386 0.2416 3.470 0.000525 ***
## USvUK:Ind_1 0.4109 0.2570 1.599 0.109890
## index_AFexp:Rep_1 1.0000 0.2648 3.776 0.000162 ***
## index_AFexp:Ind_1 0.7223 0.2938 2.458 0.013994 *
## USvUK:index_AFexp:Rep_1 -0.4751 0.5294 -0.897 0.369524
## USvUK:index_AFexp:Ind_1 0.3848 0.5875 0.655 0.512547
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09973
## F-statistic: 42.94 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_AFexp * (Dem_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0615 -1.3789 0.4451 1.5736 3.4521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3238 0.4557 0.711 0.477329
## USvUK 1.4389 0.1907 7.546 5.40e-14 ***
## index_AFexp 1.2805 1.2571 1.019 0.308466
## Dem_1 0.8492 0.1208 7.030 2.37e-12 ***
## Ind_1 -0.1333 0.1410 -0.946 0.344367
## sum.media.exp 0.0500 0.3772 0.133 0.894555
## USvUK:index_AFexp -0.8080 0.5583 -1.447 0.147866
## USvUK:Dem_1 -0.8386 0.2416 -3.470 0.000525 ***
## USvUK:Ind_1 -0.4276 0.2820 -1.517 0.129425
## index_AFexp:Dem_1 -1.0000 0.2648 -3.776 0.000162 ***
## index_AFexp:Ind_1 -0.2777 0.3327 -0.835 0.403904
## USvUK:index_AFexp:Dem_1 0.4751 0.5294 0.897 0.369524
## USvUK:index_AFexp:Ind_1 0.8599 0.6654 1.292 0.196304
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09973
## F-statistic: 42.94 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_AFexp * (Dem_1 + Rep_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0615 -1.3789 0.4451 1.5736 3.4521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1905 0.4586 0.415 0.678
## USvUK 1.0113 0.2100 4.815 1.52e-06 ***
## index_AFexp 1.0028 1.2668 0.792 0.429
## Dem_1 0.9825 0.1284 7.653 2.38e-14 ***
## Rep_1 0.1333 0.1410 0.946 0.344
## sum.media.exp 0.0500 0.3772 0.133 0.895
## USvUK:index_AFexp 0.0519 0.6198 0.084 0.933
## USvUK:Dem_1 -0.4109 0.2570 -1.599 0.110
## USvUK:Rep_1 0.4276 0.2820 1.517 0.129
## index_AFexp:Dem_1 -0.7223 0.2938 -2.458 0.014 *
## index_AFexp:Rep_1 0.2777 0.3327 0.835 0.404
## USvUK:index_AFexp:Dem_1 -0.3848 0.5875 -0.655 0.513
## USvUK:index_AFexp:Rep_1 -0.8599 0.6654 -1.292 0.196
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09973
## F-statistic: 42.94 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ UK_0 * index_AFexp * (DvR + IvDR) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0615 -1.3789 0.4451 1.5736 3.4521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.072750 0.464525 2.309 0.020969 *
## UK_0 -1.016860 0.107885 -9.425 < 2e-16 ***
## index_AFexp 0.671300 1.436562 0.467 0.640310
## DvR -0.429876 0.200569 -2.143 0.032143 *
## IvDR 0.562072 0.196383 2.862 0.004227 **
## sum.media.exp 0.050004 0.377248 0.133 0.894555
## UK_0:index_AFexp 0.365065 0.431088 0.847 0.397126
## UK_0:DvR -0.838570 0.241644 -3.470 0.000525 ***
## UK_0:IvDR -0.008357 0.241197 -0.035 0.972361
## index_AFexp:DvR 0.762398 0.468483 1.627 0.103727
## index_AFexp:IvDR -0.533460 0.503849 -1.059 0.289761
## UK_0:index_AFexp:DvR 0.475132 0.529421 0.897 0.369524
## UK_0:index_AFexp:IvDR 0.622339 0.569102 1.094 0.274212
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09973
## F-statistic: 42.94 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ US_0 * index_AFexp * (DvR + IvDR) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0615 -1.3789 0.4451 1.5736 3.4521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.055891 0.441652 0.127 0.899303
## US_0 1.016860 0.107885 9.425 < 2e-16 ***
## index_AFexp 1.036365 1.070333 0.968 0.332964
## DvR -1.268446 0.134707 -9.416 < 2e-16 ***
## IvDR 0.553715 0.139927 3.957 7.70e-05 ***
## sum.media.exp 0.050004 0.377248 0.133 0.894555
## US_0:index_AFexp -0.365065 0.431088 -0.847 0.397126
## US_0:DvR 0.838570 0.241644 3.470 0.000525 ***
## US_0:IvDR 0.008357 0.241197 0.035 0.972361
## index_AFexp:DvR 1.237529 0.246898 5.012 5.58e-07 ***
## index_AFexp:IvDR 0.088879 0.264551 0.336 0.736916
## US_0:index_AFexp:DvR -0.475132 0.529421 -0.897 0.369524
## US_0:index_AFexp:IvDR -0.622339 0.569102 -1.094 0.274212
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09973
## F-statistic: 42.94 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * index_AFexp,
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4739 -1.3336 0.3102 1.5933 3.3070
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42682 0.04865 8.773 < 2e-16 ***
## USvUK 0.79584 0.06494 12.255 < 2e-16 ***
## DvR -0.97715 0.10939 -8.933 < 2e-16 ***
## IvDR 0.46255 0.11211 4.126 3.76e-05 ***
## index_AFexp 1.13613 0.09970 11.396 < 2e-16 ***
## DvR:index_AFexp 1.01966 0.21586 4.724 2.39e-06 ***
## IvDR:index_AFexp 0.08532 0.23087 0.370 0.712
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09644, Adjusted R-squared: 0.09524
## F-statistic: 80.71 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4739 -1.3336 0.3102 1.5933 3.3070
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.06804 0.07323 14.584 < 2e-16 ***
## USvUK 0.79584 0.06494 12.255 < 2e-16 ***
## index_AFexp 0.65446 0.13156 4.975 6.78e-07 ***
## Rep_1 -0.97715 0.10939 -8.933 < 2e-16 ***
## Ind_1 -0.95113 0.12318 -7.721 1.41e-14 ***
## index_AFexp:Rep_1 1.01966 0.21586 4.724 2.39e-06 ***
## index_AFexp:Ind_1 0.42451 0.24178 1.756 0.0792 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09644, Adjusted R-squared: 0.09524
## F-statistic: 80.71 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4739 -1.3336 0.3102 1.5933 3.3070
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09089 0.07992 1.137 0.256
## USvUK 0.79584 0.06494 12.255 < 2e-16 ***
## index_AFexp 1.67412 0.17131 9.772 < 2e-16 ***
## Dem_1 0.97715 0.10939 8.933 < 2e-16 ***
## Ind_1 0.02602 0.12627 0.206 0.837
## index_AFexp:Dem_1 -1.01966 0.21586 -4.724 2.39e-06 ***
## index_AFexp:Ind_1 -0.59515 0.26728 -2.227 0.026 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09644, Adjusted R-squared: 0.09524
## F-statistic: 80.71 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4739 -1.3336 0.3102 1.5933 3.3070
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.11691 0.09868 1.185 0.2362
## USvUK 0.79584 0.06494 12.255 < 2e-16 ***
## index_AFexp 1.07897 0.20523 5.257 1.53e-07 ***
## Dem_1 0.95113 0.12318 7.721 1.41e-14 ***
## Rep_1 -0.02602 0.12627 -0.206 0.8367
## index_AFexp:Dem_1 -0.42451 0.24178 -1.756 0.0792 .
## index_AFexp:Rep_1 0.59515 0.26728 2.227 0.0260 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09644, Adjusted R-squared: 0.09524
## F-statistic: 80.71 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * index_AFexp +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1677 -1.3399 0.3333 1.5690 3.3423
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01527 0.22535 0.068 0.94598
## USvUK 0.90446 0.08711 10.383 < 2e-16 ***
## DvR -0.95493 0.11000 -8.681 < 2e-16 ***
## IvDR 0.46548 0.11209 4.153 3.34e-05 ***
## index_AFexp 2.26059 0.60940 3.710 0.00021 ***
## sum.media.exp -0.37068 0.19818 -1.870 0.06150 .
## DvR:index_AFexp 0.99266 0.21629 4.590 4.56e-06 ***
## IvDR:index_AFexp 0.08392 0.23080 0.364 0.71618
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.981 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09713, Adjusted R-squared: 0.09574
## F-statistic: 69.71 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Rep_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1677 -1.3399 0.3333 1.5690 3.3423
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.64634 0.23705 2.727 0.00642 **
## USvUK 0.90446 0.08711 10.383 < 2e-16 ***
## index_AFexp 1.79195 0.62222 2.880 0.00400 **
## Rep_1 -0.95493 0.11000 -8.681 < 2e-16 ***
## Ind_1 -0.94295 0.12323 -7.652 2.40e-14 ***
## sum.media.exp -0.37068 0.19818 -1.870 0.06150 .
## index_AFexp:Rep_1 0.99266 0.21629 4.590 4.56e-06 ***
## index_AFexp:Ind_1 0.41241 0.24180 1.706 0.08816 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.981 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09713, Adjusted R-squared: 0.09574
## F-statistic: 69.71 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Dem_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1677 -1.3399 0.3333 1.5690 3.3423
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.30859 0.22804 -1.353 0.1760
## USvUK 0.90446 0.08711 10.383 < 2e-16 ***
## index_AFexp 2.78461 0.61793 4.506 6.76e-06 ***
## Dem_1 0.95493 0.11000 8.681 < 2e-16 ***
## Ind_1 0.01198 0.12645 0.095 0.9245
## sum.media.exp -0.37068 0.19818 -1.870 0.0615 .
## index_AFexp:Dem_1 -0.99266 0.21629 -4.590 4.56e-06 ***
## index_AFexp:Ind_1 -0.58025 0.26732 -2.171 0.0300 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.981 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09713, Adjusted R-squared: 0.09574
## F-statistic: 69.71 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Dem_1 + Rep_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1677 -1.3399 0.3333 1.5690 3.3423
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.29661 0.24210 -1.225 0.22058
## USvUK 0.90446 0.08711 10.383 < 2e-16 ***
## index_AFexp 2.20437 0.63571 3.468 0.00053 ***
## Dem_1 0.94295 0.12323 7.652 2.4e-14 ***
## Rep_1 -0.01198 0.12645 -0.095 0.92452
## sum.media.exp -0.37068 0.19818 -1.870 0.06150 .
## index_AFexp:Dem_1 -0.41241 0.24180 -1.706 0.08816 .
## index_AFexp:Rep_1 0.58025 0.26732 2.171 0.03001 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.981 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09713, Adjusted R-squared: 0.09574
## F-statistic: 69.71 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (DvR + IvDR) * (index_AFexp +
## index_ANexp), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1950 -1.3522 0.4127 1.5957 3.8266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.47115 0.05648 8.343 < 2e-16 ***
## USvUK 0.99449 0.11295 8.805 < 2e-16 ***
## DvR -1.04155 0.13106 -7.947 2.39e-15 ***
## IvDR 0.55122 0.12602 4.374 1.25e-05 ***
## index_AFexp 3.52140 2.73801 1.286 0.198468
## index_ANexp -1.12812 1.16983 -0.964 0.334922
## USvUK:DvR 0.73540 0.26212 2.806 0.005045 **
## USvUK:IvDR -0.05146 0.25204 -0.204 0.838225
## USvUK:index_AFexp 1.12180 5.47602 0.205 0.837693
## USvUK:index_ANexp -0.51134 2.33965 -0.219 0.827007
## DvR:index_AFexp 21.42422 5.90374 3.629 0.000288 ***
## DvR:index_ANexp -8.86034 2.51392 -3.525 0.000428 ***
## IvDR:index_AFexp -2.36500 6.45255 -0.367 0.713993
## IvDR:index_ANexp 0.98948 2.76292 0.358 0.720265
## USvUK:DvR:index_AFexp 27.26116 11.80747 2.309 0.020999 *
## USvUK:DvR:index_ANexp -11.37459 5.02784 -2.262 0.023725 *
## USvUK:IvDR:index_AFexp 0.24576 12.90510 0.019 0.984807
## USvUK:IvDR:index_ANexp -0.54396 5.52583 -0.098 0.921587
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4526 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.107, Adjusted R-squared: 0.1037
## F-statistic: 31.91 on 17 and 4526 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (index_AFexp + index_ANexp) *
## (Rep_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1950 -1.3522 0.4127 1.5957 3.8266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.17383 0.07693 15.259 < 2e-16 ***
## USvUK 0.60981 0.15386 3.964 7.50e-05 ***
## index_AFexp -7.97116 2.94326 -2.708 0.006789 **
## index_ANexp 3.62858 1.25003 2.903 0.003716 **
## Rep_1 -1.04155 0.13106 -7.947 2.39e-15 ***
## Ind_1 -1.07199 0.13230 -8.103 6.86e-16 ***
## USvUK:index_AFexp -12.42768 5.88652 -2.111 0.034809 *
## USvUK:index_ANexp 4.99644 2.50006 1.999 0.045719 *
## USvUK:Rep_1 0.73540 0.26212 2.806 0.005045 **
## USvUK:Ind_1 0.41916 0.26461 1.584 0.113244
## index_AFexp:Rep_1 21.42422 5.90374 3.629 0.000288 ***
## index_AFexp:Ind_1 13.07711 6.44862 2.028 0.042630 *
## index_ANexp:Rep_1 -8.86034 2.51392 -3.525 0.000428 ***
## index_ANexp:Ind_1 -5.41965 2.75977 -1.964 0.049614 *
## USvUK:index_AFexp:Rep_1 27.26116 11.80747 2.309 0.020999 *
## USvUK:index_AFexp:Ind_1 13.38482 12.89724 1.038 0.299416
## USvUK:index_ANexp:Rep_1 -11.37459 5.02784 -2.262 0.023725 *
## USvUK:index_ANexp:Ind_1 -5.14333 5.51954 -0.932 0.351468
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4526 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.107, Adjusted R-squared: 0.1037
## F-statistic: 31.91 on 17 and 4526 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (index_AFexp + index_ANexp) *
## (Dem_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1950 -1.3522 0.4127 1.5957 3.8266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.13228 0.10611 1.247 0.212608
## USvUK 1.34521 0.21222 6.339 2.54e-10 ***
## index_AFexp 13.45306 5.11774 2.629 0.008600 **
## index_ANexp -5.23176 2.18111 -2.399 0.016495 *
## Dem_1 1.04155 0.13106 7.947 2.39e-15 ***
## Ind_1 -0.03045 0.15115 -0.201 0.840371
## USvUK:index_AFexp 14.83348 10.23549 1.449 0.147345
## USvUK:index_ANexp -6.37814 4.36221 -1.462 0.143773
## USvUK:Dem_1 -0.73540 0.26212 -2.806 0.005045 **
## USvUK:Ind_1 -0.31624 0.30229 -1.046 0.295559
## index_AFexp:Dem_1 -21.42422 5.90374 -3.629 0.000288 ***
## index_AFexp:Ind_1 -8.34711 7.68851 -1.086 0.277687
## index_ANexp:Dem_1 8.86034 2.51392 3.525 0.000428 ***
## index_ANexp:Ind_1 3.44069 3.28800 1.046 0.295415
## USvUK:index_AFexp:Dem_1 -27.26116 11.80747 -2.309 0.020999 *
## USvUK:index_AFexp:Ind_1 -13.87634 15.37702 -0.902 0.366888
## USvUK:index_ANexp:Dem_1 11.37459 5.02784 2.262 0.023725 *
## USvUK:index_ANexp:Ind_1 6.23126 6.57601 0.948 0.343397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4526 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.107, Adjusted R-squared: 0.1037
## F-statistic: 31.91 on 17 and 4526 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (index_AFexp + index_ANexp) *
## (Dem_1 + Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1950 -1.3522 0.4127 1.5957 3.8266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.10183 0.10764 0.946 0.3442
## USvUK 1.02897 0.21528 4.780 1.81e-06 ***
## index_AFexp 5.10595 5.73776 0.890 0.3736
## index_ANexp -1.79107 2.46044 -0.728 0.4667
## Dem_1 1.07199 0.13230 8.103 6.86e-16 ***
## Rep_1 0.03045 0.15115 0.201 0.8404
## USvUK:index_AFexp 0.95714 11.47552 0.083 0.9335
## USvUK:index_ANexp -0.14689 4.92088 -0.030 0.9762
## USvUK:Dem_1 -0.41916 0.26461 -1.584 0.1132
## USvUK:Rep_1 0.31624 0.30229 1.046 0.2956
## index_AFexp:Dem_1 -13.07711 6.44862 -2.028 0.0426 *
## index_AFexp:Rep_1 8.34711 7.68851 1.086 0.2777
## index_ANexp:Dem_1 5.41965 2.75977 1.964 0.0496 *
## index_ANexp:Rep_1 -3.44069 3.28800 -1.046 0.2954
## USvUK:index_AFexp:Dem_1 -13.38482 12.89724 -1.038 0.2994
## USvUK:index_AFexp:Rep_1 13.87634 15.37702 0.902 0.3669
## USvUK:index_ANexp:Dem_1 5.14333 5.51954 0.932 0.3515
## USvUK:index_ANexp:Rep_1 -6.23126 6.57601 -0.948 0.3434
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4526 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.107, Adjusted R-squared: 0.1037
## F-statistic: 31.91 on 17 and 4526 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (DvR + IvDR) * (index_AFexp +
## index_ANexp) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1918 -1.3674 0.4125 1.6014 3.8364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.90904 1.06215 1.797 0.072348 .
## USvUK 1.08972 0.13300 8.193 3.28e-16 ***
## DvR -1.04966 0.13119 -8.001 1.55e-15 ***
## IvDR 0.53706 0.12644 4.248 2.20e-05 ***
## index_AFexp 1.72205 3.04252 0.566 0.571425
## index_ANexp -2.17120 1.40008 -1.551 0.121029
## sum.media.exp 1.23836 0.91346 1.356 0.175269
## USvUK:DvR 0.74670 0.26223 2.847 0.004427 **
## USvUK:IvDR -0.05512 0.25203 -0.219 0.826898
## USvUK:index_AFexp -0.43507 5.59465 -0.078 0.938018
## USvUK:index_ANexp -0.19689 2.35091 -0.084 0.933258
## DvR:index_AFexp 21.26380 5.90438 3.601 0.000320 ***
## DvR:index_ANexp -8.78462 2.51431 -3.494 0.000481 ***
## IvDR:index_AFexp -2.37025 6.45196 -0.367 0.713361
## IvDR:index_ANexp 0.99956 2.76267 0.362 0.717511
## USvUK:DvR:index_AFexp 26.99274 11.80804 2.286 0.022302 *
## USvUK:DvR:index_ANexp -11.25148 5.02819 -2.238 0.025291 *
## USvUK:IvDR:index_AFexp 0.21844 12.90392 0.017 0.986495
## USvUK:IvDR:index_ANexp -0.52861 5.52533 -0.096 0.923786
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4525 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1074, Adjusted R-squared: 0.1038
## F-statistic: 30.25 on 18 and 4525 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (index_AFexp + index_ANexp) *
## (Rep_1 + Ind_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1918 -1.3674 0.4125 1.6014 3.8364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.6111 1.0630 2.456 0.014071 *
## USvUK 0.6982 0.1671 4.179 2.99e-05 ***
## index_AFexp -9.6920 3.2051 -3.024 0.002509 **
## index_ANexp 2.5510 1.4813 1.722 0.085108 .
## Rep_1 -1.0497 0.1312 -8.001 1.55e-15 ***
## Ind_1 -1.0619 0.1325 -8.014 1.40e-15 ***
## sum.media.exp 1.2384 0.9135 1.356 0.175269
## USvUK:index_AFexp -13.8594 5.9800 -2.318 0.020514 *
## USvUK:index_ANexp 5.2544 2.5071 2.096 0.036151 *
## USvUK:Rep_1 0.7467 0.2622 2.847 0.004427 **
## USvUK:Ind_1 0.4285 0.2647 1.619 0.105546
## index_AFexp:Rep_1 21.2638 5.9044 3.601 0.000320 ***
## index_AFexp:Ind_1 13.0021 6.4483 2.016 0.043819 *
## index_ANexp:Rep_1 -8.7846 2.5143 -3.494 0.000481 ***
## index_ANexp:Ind_1 -5.3919 2.7596 -1.954 0.050779 .
## USvUK:index_AFexp:Rep_1 26.9927 11.8080 2.286 0.022302 *
## USvUK:index_AFexp:Ind_1 13.2779 12.8963 1.030 0.303256
## USvUK:index_ANexp:Rep_1 -11.2515 5.0282 -2.238 0.025291 *
## USvUK:index_ANexp:Ind_1 -5.0971 5.5191 -0.924 0.355776
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4525 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1074, Adjusted R-squared: 0.1038
## F-statistic: 30.25 on 18 and 4525 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (index_AFexp + index_ANexp) *
## (Dem_1 + Ind_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1918 -1.3674 0.4125 1.6014 3.8364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.56144 1.05953 1.474 0.140629
## USvUK 1.44488 0.22458 6.434 1.37e-10 ***
## index_AFexp 11.57177 5.30209 2.182 0.029125 *
## index_ANexp -6.23365 2.30272 -2.707 0.006813 **
## Dem_1 1.04966 0.13119 8.001 1.55e-15 ***
## Ind_1 -0.01223 0.15173 -0.081 0.935754
## sum.media.exp 1.23836 0.91346 1.356 0.175269
## USvUK:index_AFexp 13.13339 10.31109 1.274 0.202830
## USvUK:index_ANexp -5.99708 4.37085 -1.372 0.170113
## USvUK:Dem_1 -0.74670 0.26223 -2.847 0.004427 **
## USvUK:Ind_1 -0.31823 0.30227 -1.053 0.292487
## index_AFexp:Dem_1 -21.26380 5.90438 -3.601 0.000320 ***
## index_AFexp:Ind_1 -8.26165 7.68806 -1.075 0.282607
## index_ANexp:Dem_1 8.78462 2.51431 3.494 0.000481 ***
## index_ANexp:Ind_1 3.39275 3.28789 1.032 0.302178
## USvUK:index_AFexp:Dem_1 -26.99274 11.80804 -2.286 0.022302 *
## USvUK:index_AFexp:Ind_1 -13.71481 15.37606 -0.892 0.372463
## USvUK:index_ANexp:Dem_1 11.25148 5.02819 2.238 0.025291 *
## USvUK:index_ANexp:Ind_1 6.15436 6.57565 0.936 0.349358
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4525 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1074, Adjusted R-squared: 0.1038
## F-statistic: 30.25 on 18 and 4525 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (index_AFexp + index_ANexp) *
## (Dem_1 + Rep_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1918 -1.3674 0.4125 1.6014 3.8364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.54921 1.07305 1.444 0.1489
## USvUK 1.12665 0.22700 4.963 7.19e-07 ***
## index_AFexp 3.31012 5.88817 0.562 0.5740
## index_ANexp -2.84090 2.57921 -1.101 0.2708
## Dem_1 1.06190 0.13250 8.014 1.40e-15 ***
## Rep_1 0.01223 0.15173 0.081 0.9358
## sum.media.exp 1.23836 0.91346 1.356 0.1753
## USvUK:index_AFexp -0.58142 11.53045 -0.050 0.9598
## USvUK:index_ANexp 0.15728 4.92553 0.032 0.9745
## USvUK:Dem_1 -0.42847 0.26467 -1.619 0.1055
## USvUK:Rep_1 0.31823 0.30227 1.053 0.2925
## index_AFexp:Dem_1 -13.00215 6.44826 -2.016 0.0438 *
## index_AFexp:Rep_1 8.26165 7.68806 1.075 0.2826
## index_ANexp:Dem_1 5.39187 2.75959 1.954 0.0508 .
## index_ANexp:Rep_1 -3.39275 3.28789 -1.032 0.3022
## USvUK:index_AFexp:Dem_1 -13.27793 12.89628 -1.030 0.3033
## USvUK:index_AFexp:Rep_1 13.71481 15.37606 0.892 0.3725
## USvUK:index_ANexp:Dem_1 5.09713 5.51913 0.924 0.3558
## USvUK:index_ANexp:Rep_1 -6.15436 6.57565 -0.936 0.3494
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4525 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1074, Adjusted R-squared: 0.1038
## F-statistic: 30.25 on 18 and 4525 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ UK_0 * (index_AFexp + index_ANexp) *
## (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1950 -1.3522 0.4127 1.5957 3.8266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.96840 0.09408 10.293 < 2e-16 ***
## UK_0 -0.99449 0.11295 -8.805 < 2e-16 ***
## index_AFexp 4.08230 5.39232 0.757 0.44905
## index_ANexp -1.38379 2.29376 -0.603 0.54635
## DvR -0.67385 0.22135 -3.044 0.00235 **
## IvDR 0.52549 0.20746 2.533 0.01134 *
## UK_0:index_AFexp -1.12180 5.47602 -0.205 0.83769
## UK_0:index_ANexp 0.51134 2.33965 0.219 0.82701
## UK_0:DvR -0.73540 0.26212 -2.806 0.00504 **
## UK_0:IvDR 0.05146 0.25204 0.204 0.83822
## index_AFexp:DvR 35.05480 11.65151 3.009 0.00264 **
## index_AFexp:IvDR -2.24212 12.69033 -0.177 0.85977
## index_ANexp:DvR -14.54763 4.94334 -2.943 0.00327 **
## index_ANexp:IvDR 0.71750 5.40739 0.133 0.89445
## UK_0:index_AFexp:DvR -27.26116 11.80747 -2.309 0.02100 *
## UK_0:index_AFexp:IvDR -0.24576 12.90510 -0.019 0.98481
## UK_0:index_ANexp:DvR 11.37459 5.02784 2.262 0.02372 *
## UK_0:index_ANexp:IvDR 0.54396 5.52583 0.098 0.92159
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4526 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.107, Adjusted R-squared: 0.1037
## F-statistic: 31.91 on 17 and 4526 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ US_0 * (index_AFexp + index_ANexp) *
## (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1950 -1.3522 0.4127 1.5957 3.8266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.02610 0.06250 -0.418 0.676281
## US_0 0.99449 0.11295 8.805 < 2e-16 ***
## index_AFexp 2.96050 0.95374 3.104 0.001920 **
## index_ANexp -0.87245 0.46112 -1.892 0.058554 .
## DvR -1.40925 0.14040 -10.037 < 2e-16 ***
## IvDR 0.57695 0.14312 4.031 5.64e-05 ***
## US_0:index_AFexp 1.12180 5.47602 0.205 0.837693
## US_0:index_ANexp -0.51134 2.33965 -0.219 0.827007
## US_0:DvR 0.73540 0.26212 2.806 0.005045 **
## US_0:IvDR -0.05146 0.25204 -0.204 0.838225
## index_AFexp:DvR 7.79364 1.91276 4.075 4.69e-05 ***
## index_AFexp:IvDR -2.48788 2.34459 -1.061 0.288694
## index_ANexp:DvR -3.17304 0.91789 -3.457 0.000551 ***
## index_ANexp:IvDR 1.26146 1.13796 1.109 0.267695
## US_0:index_AFexp:DvR 27.26116 11.80747 2.309 0.020999 *
## US_0:index_AFexp:IvDR 0.24576 12.90510 0.019 0.984807
## US_0:index_ANexp:DvR -11.37459 5.02784 -2.262 0.023725 *
## US_0:index_ANexp:IvDR -0.54396 5.52583 -0.098 0.921587
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.972 on 4526 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.107, Adjusted R-squared: 0.1037
## F-statistic: 31.91 on 17 and 4526 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (DvR + IvDR) * index_expAFAN,
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0763 -1.3808 0.4499 1.5832 3.4831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.49378 0.05391 9.159 < 2e-16 ***
## USvUK 0.99857 0.10783 9.261 < 2e-16 ***
## DvR -0.88677 0.12307 -7.206 6.73e-13 ***
## IvDR 0.55319 0.12195 4.536 5.87e-06 ***
## index_expAFAN 0.85901 0.10639 8.074 8.65e-16 ***
## USvUK:DvR 0.85584 0.24613 3.477 0.000512 ***
## USvUK:IvDR 0.01699 0.24389 0.070 0.944460
## USvUK:index_expAFAN -0.11019 0.21279 -0.518 0.604579
## DvR:index_expAFAN 0.87160 0.23255 3.748 0.000180 ***
## IvDR:index_expAFAN -0.20092 0.24846 -0.809 0.418764
## USvUK:DvR:index_expAFAN -0.27497 0.46510 -0.591 0.554403
## USvUK:IvDR:index_expAFAN -0.55616 0.49692 -1.119 0.263114
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09995
## F-statistic: 46.87 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_expAFAN * (Rep_1 +
## Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0763 -1.3808 0.4499 1.5832 3.4831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.11972 0.07571 14.789 < 2e-16 ***
## USvUK 0.57626 0.15143 3.806 0.000143 ***
## index_expAFAN 0.35690 0.13180 2.708 0.006797 **
## Rep_1 -0.88677 0.12307 -7.206 6.73e-13 ***
## Ind_1 -0.99658 0.12968 -7.685 1.87e-14 ***
## USvUK:index_expAFAN -0.15624 0.26360 -0.593 0.553406
## USvUK:Rep_1 0.85584 0.24613 3.477 0.000512 ***
## USvUK:Ind_1 0.41093 0.25936 1.584 0.113176
## index_expAFAN:Rep_1 0.87160 0.23255 3.748 0.000180 ***
## index_expAFAN:Ind_1 0.63672 0.25610 2.486 0.012946 *
## USvUK:index_expAFAN:Rep_1 -0.27497 0.46510 -0.591 0.554403
## USvUK:index_expAFAN:Ind_1 0.41867 0.51219 0.817 0.413738
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09995
## F-statistic: 46.87 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_expAFAN * (Dem_1 +
## Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0763 -1.3808 0.4499 1.5832 3.4831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.23295 0.09702 2.401 0.016388 *
## USvUK 1.43210 0.19404 7.380 1.87e-13 ***
## index_expAFAN 1.22851 0.19159 6.412 1.58e-10 ***
## Dem_1 0.88677 0.12307 7.206 6.73e-13 ***
## Ind_1 -0.10980 0.14317 -0.767 0.443148
## USvUK:index_expAFAN -0.43121 0.38318 -1.125 0.260502
## USvUK:Dem_1 -0.85584 0.24613 -3.477 0.000512 ***
## USvUK:Ind_1 -0.44491 0.28634 -1.554 0.120302
## index_expAFAN:Dem_1 -0.87160 0.23255 -3.748 0.000180 ***
## index_expAFAN:Ind_1 -0.23488 0.29141 -0.806 0.420273
## USvUK:index_expAFAN:Dem_1 0.27497 0.46510 0.591 0.554403
## USvUK:index_expAFAN:Ind_1 0.69365 0.58282 1.190 0.234052
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09995
## F-statistic: 46.87 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_expAFAN * (Dem_1 +
## Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0763 -1.3808 0.4499 1.5832 3.4831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1231 0.1053 1.170 0.2422
## USvUK 0.9872 0.2106 4.688 2.84e-06 ***
## index_expAFAN 0.9936 0.2196 4.525 6.19e-06 ***
## Dem_1 0.9966 0.1297 7.685 1.87e-14 ***
## Rep_1 0.1098 0.1432 0.767 0.4431
## USvUK:index_expAFAN 0.2624 0.4392 0.598 0.5501
## USvUK:Dem_1 -0.4109 0.2594 -1.584 0.1132
## USvUK:Rep_1 0.4449 0.2863 1.554 0.1203
## index_expAFAN:Dem_1 -0.6367 0.2561 -2.486 0.0129 *
## index_expAFAN:Rep_1 0.2349 0.2914 0.806 0.4203
## USvUK:index_expAFAN:Dem_1 -0.4187 0.5122 -0.817 0.4137
## USvUK:index_expAFAN:Rep_1 -0.6936 0.5828 -1.190 0.2341
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09995
## F-statistic: 46.87 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ UK_0 * index_expAFAN * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0763 -1.3808 0.4499 1.5832 3.4831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.99307 0.08883 11.179 < 2e-16 ***
## UK_0 -0.99857 0.10783 -9.261 < 2e-16 ***
## index_expAFAN 0.80391 0.19340 4.157 3.29e-05 ***
## DvR -0.45885 0.20494 -2.239 0.025206 *
## IvDR 0.56169 0.19919 2.820 0.004826 **
## UK_0:index_expAFAN 0.11019 0.21279 0.518 0.604579
## UK_0:DvR -0.85584 0.24613 -3.477 0.000512 ***
## UK_0:IvDR -0.01699 0.24389 -0.070 0.944460
## index_expAFAN:DvR 0.73412 0.42258 1.737 0.082417 .
## index_expAFAN:IvDR -0.47900 0.45174 -1.060 0.289053
## UK_0:index_expAFAN:DvR 0.27497 0.46510 0.591 0.554403
## UK_0:index_expAFAN:IvDR 0.55616 0.49692 1.119 0.263114
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09995
## F-statistic: 46.87 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ US_0 * index_expAFAN * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0763 -1.3808 0.4499 1.5832 3.4831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.005504 0.061124 -0.090 0.928253
## US_0 0.998571 0.107829 9.261 < 2e-16 ***
## index_expAFAN 0.914105 0.088744 10.300 < 2e-16 ***
## DvR -1.314691 0.136314 -9.645 < 2e-16 ***
## IvDR 0.544694 0.140730 3.870 0.000110 ***
## US_0:index_expAFAN -0.110194 0.212786 -0.518 0.604579
## US_0:DvR 0.855838 0.246133 3.477 0.000512 ***
## US_0:IvDR 0.016992 0.243891 0.070 0.944460
## index_expAFAN:DvR 1.009090 0.194268 5.194 2.14e-07 ***
## index_expAFAN:IvDR 0.077162 0.207031 0.373 0.709383
## US_0:index_expAFAN:DvR -0.274974 0.465097 -0.591 0.554403
## US_0:index_expAFAN:IvDR -0.556158 0.496925 -1.119 0.263114
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09995
## F-statistic: 46.87 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * (DvR + IvDR) * index_expAFAN +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0921 -1.3838 0.4487 1.5806 3.4681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7812 0.3655 2.137 0.032638 *
## USvUK 1.0147 0.1097 9.247 < 2e-16 ***
## DvR -0.8834 0.1231 -7.174 8.47e-13 ***
## IvDR 0.5576 0.1221 4.568 5.07e-06 ***
## index_expAFAN 0.1950 0.8421 0.232 0.816874
## sum.media.exp 0.2373 0.2985 0.795 0.426705
## USvUK:DvR 0.8564 0.2461 3.479 0.000508 ***
## USvUK:IvDR 0.0127 0.2440 0.052 0.958494
## USvUK:index_expAFAN -0.3893 0.4106 -0.948 0.343075
## DvR:index_expAFAN 0.8761 0.2326 3.766 0.000168 ***
## IvDR:index_expAFAN -0.2061 0.2486 -0.829 0.407062
## USvUK:DvR:index_expAFAN -0.2723 0.4651 -0.585 0.558323
## USvUK:IvDR:index_expAFAN -0.5555 0.4970 -1.118 0.263715
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1023, Adjusted R-squared: 0.09988
## F-statistic: 43.01 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_expAFAN * (Rep_1 +
## Ind_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0921 -1.3838 0.4487 1.5806 3.4681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4069 0.3691 3.812 0.000140 ***
## USvUK 0.5907 0.1525 3.873 0.000109 ***
## index_expAFAN -0.3111 0.8506 -0.366 0.714604
## Rep_1 -0.8834 0.1231 -7.174 8.47e-13 ***
## Ind_1 -0.9993 0.1297 -7.703 1.62e-14 ***
## sum.media.exp 0.2373 0.2985 0.795 0.426705
## USvUK:index_expAFAN -0.4365 0.4402 -0.992 0.321473
## USvUK:Rep_1 0.8564 0.2461 3.479 0.000508 ***
## USvUK:Ind_1 0.4155 0.2594 1.602 0.109330
## index_expAFAN:Rep_1 0.8761 0.2326 3.766 0.000168 ***
## index_expAFAN:Ind_1 0.6441 0.2563 2.513 0.011990 *
## USvUK:index_expAFAN:Rep_1 -0.2723 0.4651 -0.585 0.558323
## USvUK:index_expAFAN:Ind_1 0.4193 0.5122 0.819 0.413007
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1023, Adjusted R-squared: 0.09988
## F-statistic: 43.01 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_expAFAN * (Dem_1 +
## Ind_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0921 -1.3838 0.4487 1.5806 3.4681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5234 0.3781 1.384 0.166308
## USvUK 1.4471 0.1950 7.422 1.37e-13 ***
## index_expAFAN 0.5650 0.8563 0.660 0.509395
## Dem_1 0.8834 0.1231 7.174 8.47e-13 ***
## Ind_1 -0.1159 0.1434 -0.808 0.419006
## sum.media.exp 0.2373 0.2985 0.795 0.426705
## USvUK:index_expAFAN -0.7087 0.5184 -1.367 0.171635
## USvUK:Dem_1 -0.8564 0.2461 -3.479 0.000508 ***
## USvUK:Ind_1 -0.4409 0.2864 -1.539 0.123765
## index_expAFAN:Dem_1 -0.8761 0.2326 -3.766 0.000168 ***
## index_expAFAN:Ind_1 -0.2320 0.2914 -0.796 0.426145
## USvUK:index_expAFAN:Dem_1 0.2723 0.4651 0.585 0.558323
## USvUK:index_expAFAN:Ind_1 0.6916 0.5829 1.187 0.235444
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1023, Adjusted R-squared: 0.09988
## F-statistic: 43.01 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK * index_expAFAN * (Dem_1 +
## Rep_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0921 -1.3838 0.4487 1.5806 3.4681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.40756 0.37297 1.093 0.275
## USvUK 1.00622 0.21193 4.748 2.12e-06 ***
## index_expAFAN 0.33309 0.85947 0.388 0.698
## Dem_1 0.99930 0.12973 7.703 1.62e-14 ***
## Rep_1 0.11588 0.14338 0.808 0.419
## sum.media.exp 0.23730 0.29852 0.795 0.427
## USvUK:index_expAFAN -0.01712 0.56263 -0.030 0.976
## USvUK:Dem_1 -0.41549 0.25943 -1.602 0.109
## USvUK:Rep_1 0.44089 0.28639 1.539 0.124
## index_expAFAN:Dem_1 -0.64414 0.25628 -2.513 0.012 *
## index_expAFAN:Rep_1 0.23196 0.29145 0.796 0.426
## USvUK:index_expAFAN:Dem_1 -0.41934 0.51221 -0.819 0.413
## USvUK:index_expAFAN:Rep_1 -0.69162 0.58285 -1.187 0.235
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4531 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1023, Adjusted R-squared: 0.09988
## F-statistic: 43.01 on 12 and 4531 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ UK_0 * index_expAFAN * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0763 -1.3808 0.4499 1.5832 3.4831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.99307 0.08883 11.179 < 2e-16 ***
## UK_0 -0.99857 0.10783 -9.261 < 2e-16 ***
## index_expAFAN 0.80391 0.19340 4.157 3.29e-05 ***
## DvR -0.45885 0.20494 -2.239 0.025206 *
## IvDR 0.56169 0.19919 2.820 0.004826 **
## UK_0:index_expAFAN 0.11019 0.21279 0.518 0.604579
## UK_0:DvR -0.85584 0.24613 -3.477 0.000512 ***
## UK_0:IvDR -0.01699 0.24389 -0.070 0.944460
## index_expAFAN:DvR 0.73412 0.42258 1.737 0.082417 .
## index_expAFAN:IvDR -0.47900 0.45174 -1.060 0.289053
## UK_0:index_expAFAN:DvR 0.27497 0.46510 0.591 0.554403
## UK_0:index_expAFAN:IvDR 0.55616 0.49692 1.119 0.263114
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09995
## F-statistic: 46.87 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ US_0 * index_expAFAN * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0763 -1.3808 0.4499 1.5832 3.4831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.005504 0.061124 -0.090 0.928253
## US_0 0.998571 0.107829 9.261 < 2e-16 ***
## index_expAFAN 0.914105 0.088744 10.300 < 2e-16 ***
## DvR -1.314691 0.136314 -9.645 < 2e-16 ***
## IvDR 0.544694 0.140730 3.870 0.000110 ***
## US_0:index_expAFAN -0.110194 0.212786 -0.518 0.604579
## US_0:DvR 0.855838 0.246133 3.477 0.000512 ***
## US_0:IvDR 0.016992 0.243891 0.070 0.944460
## index_expAFAN:DvR 1.009090 0.194268 5.194 2.14e-07 ***
## index_expAFAN:IvDR 0.077162 0.207031 0.373 0.709383
## US_0:index_expAFAN:DvR -0.274974 0.465097 -0.591 0.554403
## US_0:index_expAFAN:IvDR -0.556158 0.496925 -1.119 0.263114
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.977 on 4532 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09995
## F-statistic: 46.87 on 11 and 4532 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * index_expAFAN,
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.426 -1.329 0.321 1.595 3.335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42777 0.04855 8.810 < 2e-16 ***
## USvUK 0.84321 0.06593 12.790 < 2e-16 ***
## DvR -0.97372 0.11007 -8.846 < 2e-16 ***
## IvDR 0.44278 0.11200 3.953 7.82e-05 ***
## index_expAFAN 0.91349 0.08038 11.365 < 2e-16 ***
## DvR:index_expAFAN 0.79291 0.17279 4.589 4.58e-06 ***
## IvDR:index_expAFAN 0.09738 0.18369 0.530 0.596
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09624, Adjusted R-squared: 0.09505
## F-statistic: 80.52 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_expAFAN * (Rep_1 +
## Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.426 -1.329 0.321 1.595 3.335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.06075 0.07290 14.552 < 2e-16 ***
## USvUK 0.84321 0.06593 12.790 < 2e-16 ***
## index_expAFAN 0.54917 0.10590 5.186 2.24e-07 ***
## Rep_1 -0.97372 0.11007 -8.846 < 2e-16 ***
## Ind_1 -0.92964 0.12270 -7.576 4.29e-14 ***
## index_expAFAN:Rep_1 0.79291 0.17279 4.589 4.58e-06 ***
## index_expAFAN:Ind_1 0.29908 0.19219 1.556 0.12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09624, Adjusted R-squared: 0.09505
## F-statistic: 80.52 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_expAFAN * (Dem_1 +
## Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.426 -1.329 0.321 1.595 3.335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.08703 0.08085 1.076 0.2818
## USvUK 0.84321 0.06593 12.790 < 2e-16 ***
## index_expAFAN 1.34208 0.13775 9.743 < 2e-16 ***
## Dem_1 0.97372 0.11007 8.846 < 2e-16 ***
## Ind_1 0.04408 0.12684 0.347 0.7282
## index_expAFAN:Dem_1 -0.79291 0.17279 -4.589 4.58e-06 ***
## index_expAFAN:Ind_1 -0.49383 0.21325 -2.316 0.0206 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09624, Adjusted R-squared: 0.09505
## F-statistic: 80.52 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_expAFAN * (Dem_1 +
## Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.426 -1.329 0.321 1.595 3.335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.13111 0.09832 1.333 0.1825
## USvUK 0.84321 0.06593 12.790 < 2e-16 ***
## index_expAFAN 0.84825 0.16338 5.192 2.17e-07 ***
## Dem_1 0.92964 0.12270 7.576 4.29e-14 ***
## Rep_1 -0.04408 0.12684 -0.347 0.7282
## index_expAFAN:Dem_1 -0.29908 0.19219 -1.556 0.1197
## index_expAFAN:Rep_1 0.49383 0.21325 2.316 0.0206 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4537 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09624, Adjusted R-squared: 0.09505
## F-statistic: 80.52 on 6 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * index_expAFAN +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2820 -1.3431 0.3187 1.5807 3.3521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.30057 0.16451 1.827 0.067759 .
## USvUK 0.89244 0.08971 9.948 < 2e-16 ***
## DvR -0.96805 0.11030 -8.777 < 2e-16 ***
## IvDR 0.44269 0.11200 3.952 7.85e-05 ***
## index_expAFAN 1.19585 0.35805 3.340 0.000845 ***
## sum.media.exp -0.11641 0.14385 -0.809 0.418413
## DvR:index_expAFAN 0.78462 0.17310 4.533 5.97e-06 ***
## IvDR:index_expAFAN 0.09787 0.18370 0.533 0.594216
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09637, Adjusted R-squared: 0.09498
## F-statistic: 69.11 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_expAFAN * (Rep_1 +
## Ind_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2820 -1.3431 0.3187 1.5807 3.3521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93068 0.17648 5.274 1.40e-07 ***
## USvUK 0.89244 0.08971 9.948 < 2e-16 ***
## index_expAFAN 0.83584 0.36973 2.261 0.0238 *
## Rep_1 -0.96805 0.11030 -8.777 < 2e-16 ***
## Ind_1 -0.92672 0.12276 -7.549 5.28e-14 ***
## sum.media.exp -0.11641 0.14385 -0.809 0.4184
## index_expAFAN:Rep_1 0.78462 0.17310 4.533 5.97e-06 ***
## index_expAFAN:Ind_1 0.29444 0.19228 1.531 0.1258
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09637, Adjusted R-squared: 0.09498
## F-statistic: 69.11 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_expAFAN * (Dem_1 +
## Ind_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2820 -1.3431 0.3187 1.5807 3.3521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03737 0.17369 -0.215 0.8297
## USvUK 0.89244 0.08971 9.948 < 2e-16 ***
## index_expAFAN 1.62046 0.37055 4.373 1.25e-05 ***
## Dem_1 0.96805 0.11030 8.777 < 2e-16 ***
## Ind_1 0.04134 0.12689 0.326 0.7446
## sum.media.exp -0.11641 0.14385 -0.809 0.4184
## index_expAFAN:Dem_1 -0.78462 0.17310 -4.533 5.97e-06 ***
## index_expAFAN:Ind_1 -0.49018 0.21331 -2.298 0.0216 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09637, Adjusted R-squared: 0.09498
## F-statistic: 69.11 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_expAFAN * (Dem_1 +
## Rep_1) + sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2820 -1.3431 0.3187 1.5807 3.3521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.003967 0.185338 0.021 0.98292
## USvUK 0.892439 0.089707 9.948 < 2e-16 ***
## index_expAFAN 1.130278 0.384906 2.937 0.00334 **
## Dem_1 0.926717 0.122763 7.549 5.28e-14 ***
## Rep_1 -0.041338 0.126892 -0.326 0.74461
## sum.media.exp -0.116408 0.143847 -0.809 0.41841
## index_expAFAN:Dem_1 -0.294441 0.192279 -1.531 0.12576
## index_expAFAN:Rep_1 0.490179 0.213308 2.298 0.02161 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 4536 degrees of freedom
## (287 observations deleted due to missingness)
## Multiple R-squared: 0.09637, Adjusted R-squared: 0.09498
## F-statistic: 69.11 on 7 and 4536 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (DvR + IvDR) * (index_ANexp),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3618 -1.0764 0.0340 0.9945 3.3507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.350591 0.036981 9.480 < 2e-16 ***
## USvUK -0.118938 0.073963 -1.608 0.10789
## DvR -0.836055 0.083747 -9.983 < 2e-16 ***
## IvDR -0.058082 0.084168 -0.690 0.49018
## index_ANexp 0.096687 0.037756 2.561 0.01047 *
## USvUK:DvR 1.096660 0.167494 6.547 6.50e-11 ***
## USvUK:IvDR 0.299450 0.168336 1.779 0.07533 .
## USvUK:index_ANexp -0.234314 0.075512 -3.103 0.00193 **
## DvR:index_ANexp 0.403528 0.081925 4.926 8.71e-07 ***
## IvDR:index_ANexp -0.003592 0.088608 -0.041 0.96766
## USvUK:DvR:index_ANexp -0.328535 0.163851 -2.005 0.04501 *
## USvUK:IvDR:index_ANexp -0.199056 0.177215 -1.123 0.26139
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08584, Adjusted R-squared: 0.08362
## F-statistic: 38.71 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_ANexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3618 -1.0764 0.0340 0.9945 3.3507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.74945 0.05185 14.455 < 2e-16 ***
## USvUK -0.56845 0.10369 -5.482 4.43e-08 ***
## index_ANexp -0.10626 0.04692 -2.265 0.0236 *
## Rep_1 -0.83606 0.08375 -9.983 < 2e-16 ***
## Ind_1 -0.35995 0.08955 -4.020 5.93e-05 ***
## USvUK:index_ANexp -0.13573 0.09384 -1.446 0.1481
## USvUK:Rep_1 1.09666 0.16749 6.547 6.50e-11 ***
## USvUK:Ind_1 0.24888 0.17910 1.390 0.1647
## index_ANexp:Rep_1 0.40353 0.08193 4.926 8.71e-07 ***
## index_ANexp:Ind_1 0.20536 0.09151 2.244 0.0249 *
## USvUK:index_ANexp:Rep_1 -0.32853 0.16385 -2.005 0.0450 *
## USvUK:index_ANexp:Ind_1 0.03479 0.18303 0.190 0.8493
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08584, Adjusted R-squared: 0.08362
## F-statistic: 38.71 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_ANexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3618 -1.0764 0.0340 0.9945 3.3507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08660 0.06577 -1.317 0.187975
## USvUK 0.52821 0.13154 4.016 6.02e-05 ***
## index_ANexp 0.29727 0.06716 4.426 9.81e-06 ***
## Dem_1 0.83606 0.08375 9.983 < 2e-16 ***
## Ind_1 0.47611 0.09827 4.845 1.31e-06 ***
## USvUK:index_ANexp -0.46427 0.13432 -3.457 0.000552 ***
## USvUK:Dem_1 -1.09666 0.16749 -6.547 6.50e-11 ***
## USvUK:Ind_1 -0.84778 0.19653 -4.314 1.64e-05 ***
## index_ANexp:Dem_1 -0.40353 0.08193 -4.926 8.71e-07 ***
## index_ANexp:Ind_1 -0.19817 0.10336 -1.917 0.055267 .
## USvUK:index_ANexp:Dem_1 0.32853 0.16385 2.005 0.045013 *
## USvUK:index_ANexp:Ind_1 0.36332 0.20672 1.758 0.078894 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08584, Adjusted R-squared: 0.08362
## F-statistic: 38.71 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_ANexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3618 -1.0764 0.0340 0.9945 3.3507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38951 0.07301 5.335 1.00e-07 ***
## USvUK -0.31957 0.14603 -2.188 0.0287 *
## index_ANexp 0.09909 0.07857 1.261 0.2073
## Dem_1 0.35995 0.08955 4.020 5.93e-05 ***
## Rep_1 -0.47611 0.09827 -4.845 1.31e-06 ***
## USvUK:index_ANexp -0.10095 0.15714 -0.642 0.5207
## USvUK:Dem_1 -0.24888 0.17910 -1.390 0.1647
## USvUK:Rep_1 0.84778 0.19653 4.314 1.64e-05 ***
## index_ANexp:Dem_1 -0.20536 0.09151 -2.244 0.0249 *
## index_ANexp:Rep_1 0.19817 0.10336 1.917 0.0553 .
## USvUK:index_ANexp:Dem_1 -0.03479 0.18303 -0.190 0.8493
## USvUK:index_ANexp:Rep_1 -0.36332 0.20672 -1.758 0.0789 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08584, Adjusted R-squared: 0.08362
## F-statistic: 38.71 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ UK_0 * index_ANexp * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3618 -1.0764 0.0340 0.9945 3.3507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29112 0.06111 4.764 1.96e-06 ***
## UK_0 0.11894 0.07396 1.608 0.10789
## index_ANexp -0.02047 0.06484 -0.316 0.75225
## DvR -0.28773 0.14010 -2.054 0.04005 *
## IvDR 0.09164 0.13773 0.665 0.50585
## UK_0:index_ANexp 0.23431 0.07551 3.103 0.00193 **
## UK_0:DvR -1.09666 0.16749 -6.547 6.50e-11 ***
## UK_0:IvDR -0.29945 0.16834 -1.779 0.07533 .
## index_ANexp:DvR 0.23926 0.14076 1.700 0.08924 .
## index_ANexp:IvDR -0.10312 0.15213 -0.678 0.49790
## UK_0:index_ANexp:DvR 0.32853 0.16385 2.005 0.04501 *
## UK_0:index_ANexp:IvDR 0.19906 0.17722 1.123 0.26139
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08584, Adjusted R-squared: 0.08362
## F-statistic: 38.71 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ US_0 * index_ANexp * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3618 -1.0764 0.0340 0.9945 3.3507
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.41006 0.04167 9.841 < 2e-16 ***
## US_0 -0.11894 0.07396 -1.608 0.10789
## index_ANexp 0.21384 0.03870 5.526 3.46e-08 ***
## DvR -1.38439 0.09180 -15.080 < 2e-16 ***
## IvDR -0.20781 0.09678 -2.147 0.03184 *
## US_0:index_ANexp -0.23431 0.07551 -3.103 0.00193 **
## US_0:DvR 1.09666 0.16749 6.547 6.50e-11 ***
## US_0:IvDR 0.29945 0.16834 1.779 0.07533 .
## index_ANexp:DvR 0.56780 0.08386 6.770 1.45e-11 ***
## index_ANexp:IvDR 0.09594 0.09090 1.055 0.29129
## US_0:index_ANexp:DvR -0.32853 0.16385 -2.005 0.04501 *
## US_0:index_ANexp:IvDR -0.19906 0.17722 -1.123 0.26139
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08584, Adjusted R-squared: 0.08362
## F-statistic: 38.71 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + (DvR + IvDR) * (index_ANexp),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2907 -1.0008 0.1247 1.1024 3.5448
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.25053 0.03444 7.274 4.09e-13 ***
## USvUK -0.38824 0.04556 -8.522 < 2e-16 ***
## DvR -1.07846 0.07607 -14.178 < 2e-16 ***
## IvDR -0.18772 0.07897 -2.377 0.0175 *
## index_ANexp 0.17786 0.03328 5.345 9.48e-08 ***
## DvR:index_ANexp 0.48494 0.07215 6.722 2.02e-11 ***
## IvDR:index_ANexp 0.08202 0.07812 1.050 0.2939
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06934, Adjusted R-squared: 0.06811
## F-statistic: 56.38 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_ANexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2907 -1.0008 0.1247 1.1024 3.5448
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.72781 0.05155 14.119 < 2e-16 ***
## USvUK -0.38824 0.04556 -8.522 < 2e-16 ***
## index_ANexp -0.03754 0.04376 -0.858 0.3910
## Rep_1 -1.07846 0.07607 -14.178 < 2e-16 ***
## Ind_1 -0.35151 0.08687 -4.046 5.29e-05 ***
## index_ANexp:Rep_1 0.48494 0.07215 6.722 2.02e-11 ***
## index_ANexp:Ind_1 0.16045 0.08187 1.960 0.0501 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06934, Adjusted R-squared: 0.06811
## F-statistic: 56.38 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_ANexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2907 -1.0008 0.1247 1.1024 3.5448
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.35065 0.05561 -6.306 3.14e-10 ***
## USvUK -0.38824 0.04556 -8.522 < 2e-16 ***
## index_ANexp 0.44740 0.05712 7.833 5.88e-15 ***
## Dem_1 1.07846 0.07607 14.178 < 2e-16 ***
## Ind_1 0.72695 0.08843 8.220 2.62e-16 ***
## index_ANexp:Dem_1 -0.48494 0.07215 -6.722 2.02e-11 ***
## index_ANexp:Ind_1 -0.32448 0.09004 -3.604 0.000317 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06934, Adjusted R-squared: 0.06811
## F-statistic: 56.38 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_ANexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2907 -1.0008 0.1247 1.1024 3.5448
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.37630 0.06981 5.390 7.39e-08 ***
## USvUK -0.38824 0.04556 -8.522 < 2e-16 ***
## index_ANexp 0.12291 0.06951 1.768 0.077066 .
## Dem_1 0.35151 0.08687 4.046 5.29e-05 ***
## Rep_1 -0.72695 0.08843 -8.220 2.62e-16 ***
## index_ANexp:Dem_1 -0.16045 0.08187 -1.960 0.050076 .
## index_ANexp:Rep_1 0.32448 0.09004 3.604 0.000317 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06934, Adjusted R-squared: 0.06811
## F-statistic: 56.38 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (DvR + IvDR) * index_AFexp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3550 -1.0637 0.0213 0.9997 3.3860
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34070 0.03762 9.056 < 2e-16 ***
## USvUK -0.09176 0.07524 -1.220 0.22271
## DvR -0.84892 0.08551 -9.927 < 2e-16 ***
## IvDR -0.06504 0.08537 -0.762 0.44623
## index_AFexp 0.20714 0.08608 2.406 0.01615 *
## USvUK:DvR 1.10404 0.17103 6.455 1.19e-10 ***
## USvUK:IvDR 0.30704 0.17075 1.798 0.07221 .
## USvUK:index_AFexp -0.53715 0.17216 -3.120 0.00182 **
## DvR:index_AFexp 0.87673 0.18746 4.677 3.00e-06 ***
## IvDR:index_AFexp -0.01098 0.20153 -0.054 0.95655
## USvUK:DvR:index_AFexp -0.58837 0.37493 -1.569 0.11665
## USvUK:IvDR:index_AFexp -0.43257 0.40307 -1.073 0.28324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.0867, Adjusted R-squared: 0.08449
## F-statistic: 39.14 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_AFexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3550 -1.0637 0.0213 0.9997 3.3860
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.74370 0.05297 14.039 < 2e-16 ***
## USvUK -0.54246 0.10595 -5.120 3.18e-07 ***
## index_AFexp -0.23485 0.10706 -2.194 0.0283 *
## Rep_1 -0.84892 0.08551 -9.927 < 2e-16 ***
## Ind_1 -0.35942 0.09092 -3.953 7.83e-05 ***
## USvUK:index_AFexp -0.38570 0.21412 -1.801 0.0717 .
## USvUK:Rep_1 1.10404 0.17103 6.455 1.19e-10 ***
## USvUK:Ind_1 0.24499 0.18184 1.347 0.1780
## index_AFexp:Rep_1 0.87673 0.18746 4.677 3.00e-06 ***
## index_AFexp:Ind_1 0.44935 0.20807 2.160 0.0309 *
## USvUK:index_AFexp:Rep_1 -0.58837 0.37493 -1.569 0.1166
## USvUK:index_AFexp:Ind_1 0.13838 0.41613 0.333 0.7395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.0867, Adjusted R-squared: 0.08449
## F-statistic: 39.14 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_AFexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3550 -1.0637 0.0213 0.9997 3.3860
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.10522 0.06713 -1.567 0.11709
## USvUK 0.56158 0.13426 4.183 2.93e-05 ***
## index_AFexp 0.64188 0.15389 4.171 3.09e-05 ***
## Dem_1 0.84892 0.08551 9.927 < 2e-16 ***
## Ind_1 0.48949 0.09983 4.903 9.76e-07 ***
## USvUK:index_AFexp -0.97408 0.30777 -3.165 0.00156 **
## USvUK:Dem_1 -1.10404 0.17103 -6.455 1.19e-10 ***
## USvUK:Ind_1 -0.85906 0.19967 -4.302 1.72e-05 ***
## index_AFexp:Dem_1 -0.87673 0.18746 -4.677 3.00e-06 ***
## index_AFexp:Ind_1 -0.42739 0.23561 -1.814 0.06975 .
## USvUK:index_AFexp:Dem_1 0.58837 0.37493 1.569 0.11665
## USvUK:index_AFexp:Ind_1 0.72675 0.47121 1.542 0.12307
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.0867, Adjusted R-squared: 0.08449
## F-statistic: 39.14 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_AFexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3550 -1.0637 0.0213 0.9997 3.3860
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38428 0.07389 5.200 2.08e-07 ***
## USvUK -0.29747 0.14779 -2.013 0.0442 *
## index_AFexp 0.21450 0.17841 1.202 0.2293
## Dem_1 0.35942 0.09092 3.953 7.83e-05 ***
## Rep_1 -0.48949 0.09983 -4.903 9.76e-07 ***
## USvUK:index_AFexp -0.24733 0.35682 -0.693 0.4883
## USvUK:Dem_1 -0.24499 0.18184 -1.347 0.1780
## USvUK:Rep_1 0.85906 0.19967 4.302 1.72e-05 ***
## index_AFexp:Dem_1 -0.44935 0.20807 -2.160 0.0309 *
## index_AFexp:Rep_1 0.42739 0.23561 1.814 0.0697 .
## USvUK:index_AFexp:Dem_1 -0.13838 0.41613 -0.333 0.7395
## USvUK:index_AFexp:Rep_1 -0.72675 0.47121 -1.542 0.1231
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.0867, Adjusted R-squared: 0.08449
## F-statistic: 39.14 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ UK_0 * index_AFexp * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3550 -1.0637 0.0213 0.9997 3.3860
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29482 0.06182 4.769 1.91e-06 ***
## UK_0 0.09176 0.07524 1.220 0.22271
## index_AFexp -0.06143 0.15239 -0.403 0.68688
## DvR -0.29690 0.14207 -2.090 0.03669 *
## IvDR 0.08848 0.13908 0.636 0.52468
## UK_0:index_AFexp 0.53715 0.17216 3.120 0.00182 **
## UK_0:DvR -1.10404 0.17103 -6.455 1.19e-10 ***
## UK_0:IvDR -0.30704 0.17075 -1.798 0.07221 .
## index_AFexp:DvR 0.58254 0.33173 1.756 0.07914 .
## index_AFexp:IvDR -0.22726 0.35689 -0.637 0.52429
## UK_0:index_AFexp:DvR 0.58837 0.37493 1.569 0.11665
## UK_0:index_AFexp:IvDR 0.43257 0.40307 1.073 0.28324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.0867, Adjusted R-squared: 0.08449
## F-statistic: 39.14 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ US_0 * index_AFexp * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3550 -1.0637 0.0213 0.9997 3.3860
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38658 0.04289 9.014 < 2e-16 ***
## US_0 -0.09176 0.07524 -1.220 0.22271
## index_AFexp 0.47571 0.08010 5.939 3.09e-09 ***
## DvR -1.40094 0.09523 -14.712 < 2e-16 ***
## IvDR -0.21855 0.09905 -2.207 0.02740 *
## US_0:index_AFexp -0.53715 0.17216 -3.120 0.00182 **
## US_0:DvR 1.10404 0.17103 6.455 1.19e-10 ***
## US_0:IvDR 0.30704 0.17075 1.798 0.07221 .
## index_AFexp:DvR 1.17092 0.17472 6.702 2.31e-11 ***
## index_AFexp:IvDR 0.20530 0.18733 1.096 0.27316
## US_0:index_AFexp:DvR -0.58837 0.37493 -1.569 0.11665
## US_0:index_AFexp:IvDR -0.43257 0.40307 -1.073 0.28324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.0867, Adjusted R-squared: 0.08449
## F-statistic: 39.14 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + (DvR + IvDR) * index_AFexp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2691 -1.0124 0.1244 1.1220 3.5369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.23440 0.03468 6.760 1.56e-11 ***
## USvUK -0.36412 0.04630 -7.864 4.63e-15 ***
## DvR -1.04597 0.07795 -13.419 < 2e-16 ***
## IvDR -0.20067 0.07992 -2.511 0.0121 *
## index_AFexp 0.40992 0.07107 5.768 8.55e-09 ***
## DvR:index_AFexp 0.92859 0.15385 6.036 1.71e-09 ***
## IvDR:index_AFexp 0.18396 0.16460 1.118 0.2638
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06879, Adjusted R-squared: 0.06756
## F-statistic: 55.9 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_AFexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2691 -1.0124 0.1244 1.1220 3.5369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.691166 0.052219 13.236 < 2e-16 ***
## USvUK -0.364120 0.046304 -7.864 4.63e-15 ***
## index_AFexp 0.006332 0.093797 0.068 0.946184
## Rep_1 -1.045971 0.077948 -13.419 < 2e-16 ***
## Ind_1 -0.322312 0.087840 -3.669 0.000246 ***
## index_AFexp:Rep_1 0.928595 0.153851 6.036 1.71e-09 ***
## index_AFexp:Ind_1 0.280337 0.172402 1.626 0.104006
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06879, Adjusted R-squared: 0.06756
## F-statistic: 55.9 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_AFexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2691 -1.0124 0.1244 1.1220 3.5369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.35481 0.05692 -6.234 4.97e-10 ***
## USvUK -0.36412 0.04630 -7.864 4.63e-15 ***
## index_AFexp 0.93493 0.12206 7.659 2.27e-14 ***
## Dem_1 1.04597 0.07795 13.419 < 2e-16 ***
## Ind_1 0.72366 0.08999 8.042 1.12e-15 ***
## index_AFexp:Dem_1 -0.92859 0.15385 -6.036 1.71e-09 ***
## index_AFexp:Ind_1 -0.64826 0.19053 -3.402 0.000674 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06879, Adjusted R-squared: 0.06756
## F-statistic: 55.9 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_AFexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2691 -1.0124 0.1244 1.1220 3.5369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.36885 0.07036 5.242 1.66e-07 ***
## USvUK -0.36412 0.04630 -7.864 4.63e-15 ***
## index_AFexp 0.28667 0.14635 1.959 0.050192 .
## Dem_1 0.32231 0.08784 3.669 0.000246 ***
## Rep_1 -0.72366 0.08999 -8.042 1.12e-15 ***
## index_AFexp:Dem_1 -0.28034 0.17240 -1.626 0.104006
## index_AFexp:Rep_1 0.64826 0.19053 3.402 0.000674 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06879, Adjusted R-squared: 0.06756
## F-statistic: 55.9 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (DvR + IvDR) * (index_AFexp +
## index_ANexp), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2923 -1.1104 0.0808 0.9820 3.4130
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.33863 0.04003 8.459 < 2e-16 ***
## USvUK -0.02746 0.08007 -0.343 0.7317
## DvR -0.85982 0.09290 -9.256 < 2e-16 ***
## IvDR -0.09622 0.08934 -1.077 0.2815
## index_AFexp -2.39526 1.94121 -1.234 0.2173
## index_ANexp 1.04963 0.82939 1.266 0.2057
## USvUK:DvR 1.03974 0.18579 5.596 2.32e-08 ***
## USvUK:IvDR 0.26539 0.17868 1.485 0.1375
## USvUK:index_AFexp -9.59068 3.88242 -2.470 0.0135 *
## USvUK:index_ANexp 3.96860 1.65878 2.392 0.0168 *
## DvR:index_AFexp 4.76951 4.18562 1.139 0.2546
## DvR:index_ANexp -1.62709 1.78231 -0.913 0.3613
## IvDR:index_AFexp 5.41866 4.57479 1.184 0.2363
## IvDR:index_ANexp -2.29802 1.95888 -1.173 0.2408
## USvUK:DvR:index_AFexp 8.71184 8.37125 1.041 0.2981
## USvUK:DvR:index_ANexp -3.97553 3.56463 -1.115 0.2648
## USvUK:IvDR:index_AFexp 11.83700 9.14958 1.294 0.1958
## USvUK:IvDR:index_ANexp -5.30719 3.91776 -1.355 0.1756
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.398 on 4529 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.09022, Adjusted R-squared: 0.0868
## F-statistic: 26.42 on 17 and 4529 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (index_AFexp + index_ANexp) *
## (Rep_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2923 -1.1104 0.0808 0.9820 3.4130
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.73678 0.05454 13.509 < 2e-16 ***
## USvUK -0.45974 0.10908 -4.215 2.55e-05 ***
## index_AFexp -2.99186 2.08664 -1.434 0.151694
## index_ANexp 1.10483 0.88621 1.247 0.212574
## Rep_1 -0.85982 0.09290 -9.256 < 2e-16 ***
## Ind_1 -0.33369 0.09380 -3.557 0.000378 ***
## USvUK:index_AFexp -10.04039 4.17328 -2.406 0.016174 *
## USvUK:index_ANexp 4.20499 1.77241 2.372 0.017711 *
## USvUK:Rep_1 1.03974 0.18579 5.596 2.32e-08 ***
## USvUK:Ind_1 0.25448 0.18760 1.356 0.175015
## index_AFexp:Rep_1 4.76951 4.18562 1.139 0.254556
## index_AFexp:Ind_1 -3.03391 4.57197 -0.664 0.506987
## index_ANexp:Rep_1 -1.62709 1.78231 -0.913 0.361338
## index_ANexp:Ind_1 1.48447 1.95663 0.759 0.448078
## USvUK:index_AFexp:Rep_1 8.71184 8.37125 1.041 0.298077
## USvUK:index_AFexp:Ind_1 -7.48108 9.14394 -0.818 0.413317
## USvUK:index_ANexp:Rep_1 -3.97553 3.56463 -1.115 0.264793
## USvUK:index_ANexp:Ind_1 3.31942 3.91326 0.848 0.396344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.398 on 4529 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.09022, Adjusted R-squared: 0.0868
## F-statistic: 26.42 on 17 and 4529 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (index_AFexp + index_ANexp) *
## (Dem_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2923 -1.1104 0.0808 0.9820 3.4130
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1230 0.0752 -1.636 0.101883
## USvUK 0.5800 0.1504 3.856 0.000117 ***
## index_AFexp 1.7776 3.6284 0.490 0.624211
## index_ANexp -0.5223 1.5464 -0.338 0.735578
## Dem_1 0.8598 0.0929 9.256 < 2e-16 ***
## Ind_1 0.5261 0.1071 4.911 9.40e-07 ***
## USvUK:index_AFexp -1.3285 7.2568 -0.183 0.854747
## USvUK:index_ANexp 0.2295 3.0928 0.074 0.940860
## USvUK:Dem_1 -1.0397 0.1858 -5.596 2.32e-08 ***
## USvUK:Ind_1 -0.7853 0.2143 -3.665 0.000251 ***
## index_AFexp:Dem_1 -4.7695 4.1856 -1.139 0.254556
## index_AFexp:Ind_1 -7.8034 5.4511 -1.432 0.152345
## index_ANexp:Dem_1 1.6271 1.7823 0.913 0.361338
## index_ANexp:Ind_1 3.1116 2.3312 1.335 0.182019
## USvUK:index_AFexp:Dem_1 -8.7118 8.3712 -1.041 0.298077
## USvUK:index_AFexp:Ind_1 -16.1929 10.9022 -1.485 0.137535
## USvUK:index_ANexp:Dem_1 3.9755 3.5646 1.115 0.264793
## USvUK:index_ANexp:Ind_1 7.2950 4.6623 1.565 0.117733
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.398 on 4529 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.09022, Adjusted R-squared: 0.0868
## F-statistic: 26.42 on 17 and 4529 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (index_AFexp + index_ANexp) *
## (Dem_1 + Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2923 -1.1104 0.0808 0.9820 3.4130
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.40309 0.07632 5.282 1.34e-07 ***
## USvUK -0.20527 0.15263 -1.345 0.178736
## index_AFexp -6.02577 4.06803 -1.481 0.138610
## index_ANexp 2.58930 1.74443 1.484 0.137793
## Dem_1 0.33369 0.09380 3.557 0.000378 ***
## Rep_1 -0.52613 0.10714 -4.911 9.40e-07 ***
## USvUK:index_AFexp -17.52147 8.13606 -2.154 0.031327 *
## USvUK:index_ANexp 7.52441 3.48886 2.157 0.031082 *
## USvUK:Dem_1 -0.25448 0.18760 -1.356 0.175015
## USvUK:Rep_1 0.78526 0.21428 3.665 0.000251 ***
## index_AFexp:Dem_1 3.03391 4.57197 0.664 0.506987
## index_AFexp:Rep_1 7.80342 5.45108 1.432 0.152345
## index_ANexp:Dem_1 -1.48447 1.95663 -0.759 0.448078
## index_ANexp:Rep_1 -3.11157 2.33116 -1.335 0.182019
## USvUK:index_AFexp:Dem_1 7.48108 9.14394 0.818 0.413317
## USvUK:index_AFexp:Rep_1 16.19292 10.90215 1.485 0.137535
## USvUK:index_ANexp:Dem_1 -3.31942 3.91326 -0.848 0.396344
## USvUK:index_ANexp:Rep_1 -7.29495 4.66233 -1.565 0.117733
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.398 on 4529 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.09022, Adjusted R-squared: 0.0868
## F-statistic: 26.42 on 17 and 4529 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ UK_0 * index_AFexp * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3550 -1.0637 0.0213 0.9997 3.3860
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29482 0.06182 4.769 1.91e-06 ***
## UK_0 0.09176 0.07524 1.220 0.22271
## index_AFexp -0.06143 0.15239 -0.403 0.68688
## DvR -0.29690 0.14207 -2.090 0.03669 *
## IvDR 0.08848 0.13908 0.636 0.52468
## UK_0:index_AFexp 0.53715 0.17216 3.120 0.00182 **
## UK_0:DvR -1.10404 0.17103 -6.455 1.19e-10 ***
## UK_0:IvDR -0.30704 0.17075 -1.798 0.07221 .
## index_AFexp:DvR 0.58254 0.33173 1.756 0.07914 .
## index_AFexp:IvDR -0.22726 0.35689 -0.637 0.52429
## UK_0:index_AFexp:DvR 0.58837 0.37493 1.569 0.11665
## UK_0:index_AFexp:IvDR 0.43257 0.40307 1.073 0.28324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.0867, Adjusted R-squared: 0.08449
## F-statistic: 39.14 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ US_0 * index_AFexp * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3550 -1.0637 0.0213 0.9997 3.3860
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38658 0.04289 9.014 < 2e-16 ***
## US_0 -0.09176 0.07524 -1.220 0.22271
## index_AFexp 0.47571 0.08010 5.939 3.09e-09 ***
## DvR -1.40094 0.09523 -14.712 < 2e-16 ***
## IvDR -0.21855 0.09905 -2.207 0.02740 *
## US_0:index_AFexp -0.53715 0.17216 -3.120 0.00182 **
## US_0:DvR 1.10404 0.17103 6.455 1.19e-10 ***
## US_0:IvDR 0.30704 0.17075 1.798 0.07221 .
## index_AFexp:DvR 1.17092 0.17472 6.702 2.31e-11 ***
## index_AFexp:IvDR 0.20530 0.18733 1.096 0.27316
## US_0:index_AFexp:DvR -0.58837 0.37493 -1.569 0.11665
## US_0:index_AFexp:IvDR -0.43257 0.40307 -1.073 0.28324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.0867, Adjusted R-squared: 0.08449
## F-statistic: 39.14 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + (DvR + IvDR) * (index_AFexp +
## index_ANexp), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2355 -1.0613 0.1569 1.0495 3.4143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24704 0.03472 7.116 1.29e-12 ***
## USvUK -0.21227 0.05676 -3.740 0.000186 ***
## DvR -0.98384 0.07849 -12.534 < 2e-16 ***
## IvDR -0.19183 0.07994 -2.400 0.016447 *
## index_AFexp 2.21610 0.59168 3.745 0.000182 ***
## index_ANexp -0.85086 0.27721 -3.069 0.002158 **
## DvR:index_AFexp -3.46321 1.00813 -3.435 0.000597 ***
## DvR:index_ANexp 2.07095 0.47314 4.377 1.23e-05 ***
## IvDR:index_AFexp -0.39092 1.21772 -0.321 0.748204
## IvDR:index_ANexp 0.27363 0.57837 0.473 0.636160
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.407 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.07677, Adjusted R-squared: 0.07494
## F-statistic: 41.92 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + (index_AFexp + index_ANexp) *
## (Rep_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2355 -1.0613 0.1569 1.0495 3.4143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.67566 0.05212 12.963 < 2e-16 ***
## USvUK -0.21227 0.05676 -3.740 0.000186 ***
## index_AFexp 3.81870 0.65155 5.861 4.93e-09 ***
## index_ANexp -1.79604 0.30337 -5.920 3.45e-09 ***
## Rep_1 -0.98384 0.07849 -12.534 < 2e-16 ***
## Ind_1 -0.30010 0.08766 -3.423 0.000624 ***
## index_AFexp:Rep_1 -3.46321 1.00813 -3.435 0.000597 ***
## index_AFexp:Ind_1 -1.34068 1.24229 -1.079 0.280554
## index_ANexp:Rep_1 2.07095 0.47314 4.377 1.23e-05 ***
## index_ANexp:Ind_1 0.76185 0.59082 1.289 0.197298
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.407 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.07677, Adjusted R-squared: 0.07494
## F-statistic: 41.92 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + (index_AFexp + index_ANexp) *
## (Dem_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2355 -1.0613 0.1569 1.0495 3.4143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.30818 0.05771 -5.340 9.74e-08 ***
## USvUK -0.21227 0.05676 -3.740 0.000186 ***
## index_AFexp 0.35549 0.88678 0.401 0.688528
## index_ANexp 0.27491 0.41518 0.662 0.507903
## Dem_1 0.98384 0.07849 12.534 < 2e-16 ***
## Ind_1 0.68375 0.09042 7.562 4.77e-14 ***
## index_AFexp:Dem_1 3.46321 1.00813 3.435 0.000597 ***
## index_AFexp:Ind_1 2.12253 1.38946 1.528 0.126683
## index_ANexp:Dem_1 -2.07095 0.47314 -4.377 1.23e-05 ***
## index_ANexp:Ind_1 -1.30911 0.65718 -1.992 0.046432 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.407 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.07677, Adjusted R-squared: 0.07494
## F-statistic: 41.92 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + (index_AFexp + index_ANexp) *
## (Dem_1 + Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2355 -1.0613 0.1569 1.0495 3.4143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.37557 0.07016 5.353 9.07e-08 ***
## USvUK -0.21227 0.05676 -3.740 0.000186 ***
## index_AFexp 2.47802 1.15801 2.140 0.032416 *
## index_ANexp -1.03420 0.54974 -1.881 0.060000 .
## Dem_1 0.30010 0.08766 3.423 0.000624 ***
## Rep_1 -0.68375 0.09042 -7.562 4.77e-14 ***
## index_AFexp:Dem_1 1.34068 1.24229 1.079 0.280554
## index_AFexp:Rep_1 -2.12253 1.38946 -1.528 0.126683
## index_ANexp:Dem_1 -0.76185 0.59082 -1.289 0.197298
## index_ANexp:Rep_1 1.30911 0.65718 1.992 0.046432 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.407 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.07677, Adjusted R-squared: 0.07494
## F-statistic: 41.92 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (DvR + IvDR) * (index_TRexp),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3573 -1.0697 0.0328 0.9942 3.3542
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.352883 0.037762 9.345 < 2e-16 ***
## USvUK -0.112611 0.075525 -1.491 0.13602
## DvR -0.850232 0.085918 -9.896 < 2e-16 ***
## IvDR -0.064669 0.085632 -0.755 0.45017
## index_TRexp 0.163027 0.085713 1.902 0.05723 .
## USvUK:DvR 1.076273 0.171836 6.263 4.12e-10 ***
## USvUK:IvDR 0.289844 0.171263 1.692 0.09064 .
## USvUK:index_TRexp -0.462396 0.171425 -2.697 0.00702 **
## DvR:index_TRexp 0.837244 0.187118 4.474 7.85e-06 ***
## IvDR:index_TRexp -0.009404 0.200334 -0.047 0.96256
## USvUK:DvR:index_TRexp -0.425785 0.374236 -1.138 0.25529
## USvUK:IvDR:index_TRexp -0.375446 0.400668 -0.937 0.34878
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08586, Adjusted R-squared: 0.08364
## F-statistic: 38.72 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_TRexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3573 -1.0697 0.0328 0.9942 3.3542
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.75666 0.05269 14.361 < 2e-16 ***
## USvUK -0.55510 0.10537 -5.268 1.44e-07 ***
## index_TRexp -0.25870 0.10590 -2.443 0.0146 *
## Rep_1 -0.85023 0.08592 -9.896 < 2e-16 ***
## Ind_1 -0.36045 0.09090 -3.965 7.45e-05 ***
## USvUK:index_TRexp -0.37340 0.21181 -1.763 0.0780 .
## USvUK:Rep_1 1.07627 0.17184 6.263 4.12e-10 ***
## USvUK:Ind_1 0.24829 0.18180 1.366 0.1721
## index_TRexp:Rep_1 0.83724 0.18712 4.474 7.85e-06 ***
## index_TRexp:Ind_1 0.42803 0.20639 2.074 0.0381 *
## USvUK:index_TRexp:Rep_1 -0.42578 0.37424 -1.138 0.2553
## USvUK:index_TRexp:Ind_1 0.16255 0.41277 0.394 0.6937
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08586, Adjusted R-squared: 0.08364
## F-statistic: 38.72 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_TRexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3573 -1.0697 0.0328 0.9942 3.3542
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09357 0.06787 -1.379 0.168032
## USvUK 0.52117 0.13574 3.840 0.000125 ***
## index_TRexp 0.57855 0.15427 3.750 0.000179 ***
## Dem_1 0.85023 0.08592 9.896 < 2e-16 ***
## Ind_1 0.48979 0.10047 4.875 1.12e-06 ***
## USvUK:index_TRexp -0.79919 0.30853 -2.590 0.009620 **
## USvUK:Dem_1 -1.07627 0.17184 -6.263 4.12e-10 ***
## USvUK:Ind_1 -0.82798 0.20093 -4.121 3.84e-05 ***
## index_TRexp:Dem_1 -0.83724 0.18712 -4.474 7.85e-06 ***
## index_TRexp:Ind_1 -0.40922 0.23490 -1.742 0.081560 .
## USvUK:index_TRexp:Dem_1 0.42578 0.37424 1.138 0.255288
## USvUK:index_TRexp:Ind_1 0.58834 0.46980 1.252 0.210519
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08586, Adjusted R-squared: 0.08364
## F-statistic: 38.72 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_TRexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3573 -1.0697 0.0328 0.9942 3.3542
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.39621 0.07408 5.349 9.30e-08 ***
## USvUK -0.30681 0.14815 -2.071 0.0384 *
## index_TRexp 0.16933 0.17714 0.956 0.3392
## Dem_1 0.36045 0.09090 3.965 7.45e-05 ***
## Rep_1 -0.48979 0.10047 -4.875 1.12e-06 ***
## USvUK:index_TRexp -0.21085 0.35429 -0.595 0.5518
## USvUK:Dem_1 -0.24829 0.18180 -1.366 0.1721
## USvUK:Rep_1 0.82798 0.20093 4.121 3.84e-05 ***
## index_TRexp:Dem_1 -0.42803 0.20639 -2.074 0.0381 *
## index_TRexp:Rep_1 0.40922 0.23490 1.742 0.0816 .
## USvUK:index_TRexp:Dem_1 -0.16255 0.41277 -0.394 0.6937
## USvUK:index_TRexp:Rep_1 -0.58834 0.46980 -1.252 0.2105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08586, Adjusted R-squared: 0.08364
## F-statistic: 38.72 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ UK_0 * index_TRexp * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3573 -1.0697 0.0328 0.9942 3.3542
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29658 0.06290 4.715 2.49e-06 ***
## UK_0 0.11261 0.07552 1.491 0.13602
## index_TRexp -0.06817 0.15571 -0.438 0.66154
## DvR -0.31210 0.14502 -2.152 0.03144 *
## IvDR 0.08025 0.14111 0.569 0.56956
## UK_0:index_TRexp 0.46240 0.17143 2.697 0.00702 **
## UK_0:DvR -1.07627 0.17184 -6.263 4.12e-10 ***
## UK_0:IvDR -0.28984 0.17126 -1.692 0.09064 .
## index_TRexp:DvR 0.62435 0.34036 1.834 0.06666 .
## index_TRexp:IvDR -0.19713 0.36361 -0.542 0.58775
## UK_0:index_TRexp:DvR 0.42578 0.37424 1.138 0.25529
## UK_0:index_TRexp:IvDR 0.37545 0.40067 0.937 0.34878
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08586, Adjusted R-squared: 0.08364
## F-statistic: 38.72 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ US_0 * index_TRexp * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3573 -1.0697 0.0328 0.9942 3.3542
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.40919 0.04181 9.787 < 2e-16 ***
## US_0 -0.11261 0.07552 -1.491 0.13602
## index_TRexp 0.39423 0.07171 5.498 4.06e-08 ***
## DvR -1.38837 0.09218 -15.062 < 2e-16 ***
## IvDR -0.20959 0.09706 -2.159 0.03086 *
## US_0:index_TRexp -0.46240 0.17143 -2.697 0.00702 **
## US_0:DvR 1.07627 0.17184 6.263 4.12e-10 ***
## US_0:IvDR 0.28984 0.17126 1.692 0.09064 .
## index_TRexp:DvR 1.05014 0.15559 6.749 1.67e-11 ***
## index_TRexp:IvDR 0.17832 0.16828 1.060 0.28937
## US_0:index_TRexp:DvR -0.42578 0.37424 -1.138 0.25529
## US_0:index_TRexp:IvDR -0.37545 0.40067 -0.937 0.34878
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08586, Adjusted R-squared: 0.08364
## F-statistic: 38.72 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + (DvR + IvDR) * (index_TRexp),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3055 -1.0138 0.1253 1.1247 3.5129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24675 0.03394 7.270 4.21e-13 ***
## USvUK -0.36075 0.04658 -7.745 1.17e-14 ***
## DvR -1.02633 0.07608 -13.489 < 2e-16 ***
## IvDR -0.20036 0.07857 -2.550 0.0108 *
## index_TRexp 0.35870 0.06529 5.494 4.14e-08 ***
## DvR:index_TRexp 0.83163 0.14048 5.920 3.46e-09 ***
## IvDR:index_TRexp 0.17737 0.15092 1.175 0.2400
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.414 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06806, Adjusted R-squared: 0.06683
## F-statistic: 55.26 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_TRexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3055 -1.0138 0.1253 1.1247 3.5129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.693803 0.050881 13.636 < 2e-16 ***
## USvUK -0.360748 0.046577 -7.745 1.17e-14 ***
## index_TRexp 0.001417 0.085823 0.017 0.986828
## Rep_1 -1.026334 0.076085 -13.489 < 2e-16 ***
## Ind_1 -0.312810 0.086196 -3.629 0.000288 ***
## index_TRexp:Rep_1 0.831626 0.140477 5.920 3.46e-09 ***
## index_TRexp:Ind_1 0.238442 0.157916 1.510 0.131132
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.414 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06806, Adjusted R-squared: 0.06683
## F-statistic: 55.26 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_TRexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3055 -1.0138 0.1253 1.1247 3.5129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.33253 0.05555 -5.986 2.31e-09 ***
## USvUK -0.36075 0.04658 -7.745 1.17e-14 ***
## index_TRexp 0.83304 0.11156 7.467 9.78e-14 ***
## Dem_1 1.02633 0.07608 13.489 < 2e-16 ***
## Ind_1 0.71352 0.08837 8.074 8.64e-16 ***
## index_TRexp:Dem_1 -0.83163 0.14048 -5.920 3.46e-09 ***
## index_TRexp:Ind_1 -0.59318 0.17460 -3.397 0.000686 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.414 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06806, Adjusted R-squared: 0.06683
## F-statistic: 55.26 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK + index_TRexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3055 -1.0138 0.1253 1.1247 3.5129
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38099 0.06931 5.497 4.08e-08 ***
## USvUK -0.36075 0.04658 -7.745 1.17e-14 ***
## index_TRexp 0.23986 0.13447 1.784 0.074532 .
## Dem_1 0.31281 0.08620 3.629 0.000288 ***
## Rep_1 -0.71352 0.08837 -8.074 8.64e-16 ***
## index_TRexp:Dem_1 -0.23844 0.15792 -1.510 0.131132
## index_TRexp:Rep_1 0.59318 0.17460 3.397 0.000686 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.414 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.06806, Adjusted R-squared: 0.06683
## F-statistic: 55.26 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (DvR + IvDR) * index_expAFAN,
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3042 -1.0643 0.0205 0.9994 3.3901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34008 0.03821 8.901 < 2e-16 ***
## USvUK -0.09071 0.07641 -1.187 0.23524
## DvR -0.85699 0.08720 -9.828 < 2e-16 ***
## IvDR -0.06714 0.08642 -0.777 0.43725
## index_expAFAN 0.15480 0.07540 2.053 0.04013 *
## USvUK:DvR 1.09527 0.17440 6.280 3.70e-10 ***
## USvUK:IvDR 0.30953 0.17284 1.791 0.07340 .
## USvUK:index_expAFAN -0.41773 0.15080 -2.770 0.00563 **
## DvR:index_expAFAN 0.71776 0.16480 4.355 1.36e-05 ***
## IvDR:index_expAFAN -0.02129 0.17609 -0.121 0.90378
## USvUK:DvR:index_expAFAN -0.35193 0.32959 -1.068 0.28568
## USvUK:IvDR:index_expAFAN -0.35155 0.35218 -0.998 0.31824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08587, Adjusted R-squared: 0.08365
## F-statistic: 38.73 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_expAFAN * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3042 -1.0643 0.0205 0.9994 3.3901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.74642 0.05366 13.910 < 2e-16 ***
## USvUK -0.53620 0.10732 -4.996 6.07e-07 ***
## index_expAFAN -0.21111 0.09341 -2.260 0.0239 *
## Rep_1 -0.85699 0.08720 -9.828 < 2e-16 ***
## Ind_1 -0.36135 0.09191 -3.932 8.56e-05 ***
## USvUK:index_expAFAN -0.35777 0.18682 -1.915 0.0555 .
## USvUK:Rep_1 1.09527 0.17440 6.280 3.70e-10 ***
## USvUK:Ind_1 0.23811 0.18382 1.295 0.1953
## index_expAFAN:Rep_1 0.71776 0.16480 4.355 1.36e-05 ***
## index_expAFAN:Ind_1 0.38017 0.18150 2.095 0.0363 *
## USvUK:index_expAFAN:Rep_1 -0.35193 0.32959 -1.068 0.2857
## USvUK:index_expAFAN:Ind_1 0.17558 0.36301 0.484 0.6286
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08587, Adjusted R-squared: 0.08365
## F-statistic: 38.73 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_expAFAN * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3042 -1.0643 0.0205 0.9994 3.3901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.11057 0.06873 -1.609 0.107743
## USvUK 0.55907 0.13746 4.067 4.84e-05 ***
## index_expAFAN 0.50665 0.13577 3.732 0.000192 ***
## Dem_1 0.85699 0.08720 9.828 < 2e-16 ***
## Ind_1 0.49564 0.10145 4.886 1.07e-06 ***
## USvUK:index_expAFAN -0.70971 0.27153 -2.614 0.008987 **
## USvUK:Dem_1 -1.09527 0.17440 -6.280 3.70e-10 ***
## USvUK:Ind_1 -0.85716 0.20290 -4.225 2.44e-05 ***
## index_expAFAN:Dem_1 -0.71776 0.16480 -4.355 1.36e-05 ***
## index_expAFAN:Ind_1 -0.33759 0.20652 -1.635 0.102190
## USvUK:index_expAFAN:Dem_1 0.35193 0.32959 1.068 0.285681
## USvUK:index_expAFAN:Ind_1 0.52751 0.41304 1.277 0.201619
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08587, Adjusted R-squared: 0.08365
## F-statistic: 38.73 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_expAFAN * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3042 -1.0643 0.0205 0.9994 3.3901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38506 0.07462 5.160 2.57e-07 ***
## USvUK -0.29809 0.14924 -1.997 0.0458 *
## index_expAFAN 0.16906 0.15562 1.086 0.2774
## Dem_1 0.36135 0.09191 3.932 8.56e-05 ***
## Rep_1 -0.49564 0.10145 -4.886 1.07e-06 ***
## USvUK:index_expAFAN -0.18219 0.31125 -0.585 0.5583
## USvUK:Dem_1 -0.23811 0.18382 -1.295 0.1953
## USvUK:Rep_1 0.85716 0.20290 4.225 2.44e-05 ***
## index_expAFAN:Dem_1 -0.38017 0.18150 -2.095 0.0363 *
## index_expAFAN:Rep_1 0.33759 0.20652 1.635 0.1022
## USvUK:index_expAFAN:Dem_1 -0.17558 0.36301 -0.484 0.6286
## USvUK:index_expAFAN:Rep_1 -0.52751 0.41304 -1.277 0.2016
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08587, Adjusted R-squared: 0.08365
## F-statistic: 38.73 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ UK_0 * index_expAFAN * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3042 -1.0643 0.0205 0.9994 3.3901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29472 0.06296 4.681 2.93e-06 ***
## UK_0 0.09071 0.07641 1.187 0.23524
## index_expAFAN -0.05407 0.13707 -0.394 0.69327
## DvR -0.30935 0.14525 -2.130 0.03324 *
## IvDR 0.08762 0.14118 0.621 0.53486
## UK_0:index_expAFAN 0.41773 0.15080 2.770 0.00563 **
## UK_0:DvR -1.09527 0.17440 -6.280 3.70e-10 ***
## UK_0:IvDR -0.30953 0.17284 -1.791 0.07340 .
## index_expAFAN:DvR 0.54180 0.29950 1.809 0.07052 .
## index_expAFAN:IvDR -0.19706 0.32017 -0.615 0.53826
## UK_0:index_expAFAN:DvR 0.35193 0.32959 1.068 0.28568
## UK_0:index_expAFAN:IvDR 0.35155 0.35218 0.998 0.31824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08587, Adjusted R-squared: 0.08365
## F-statistic: 38.73 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ US_0 * index_expAFAN * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3042 -1.0643 0.0205 0.9994 3.3901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38543 0.04330 8.901 < 2e-16 ***
## US_0 -0.09071 0.07641 -1.187 0.23524
## index_expAFAN 0.36366 0.06287 5.784 7.78e-09 ***
## DvR -1.40462 0.09653 -14.552 < 2e-16 ***
## IvDR -0.22191 0.09972 -2.225 0.02611 *
## US_0:index_expAFAN -0.41773 0.15080 -2.770 0.00563 **
## US_0:DvR 1.09527 0.17440 6.280 3.70e-10 ***
## US_0:IvDR 0.30953 0.17284 1.791 0.07340 .
## index_expAFAN:DvR 0.89373 0.13759 6.496 9.16e-11 ***
## index_expAFAN:IvDR 0.15449 0.14671 1.053 0.29239
## US_0:index_expAFAN:DvR -0.35193 0.32959 -1.068 0.28568
## US_0:index_expAFAN:IvDR -0.35155 0.35218 -0.998 0.31824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08587, Adjusted R-squared: 0.08365
## F-statistic: 38.73 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * (DvR + IvDR) * index_expAFAN +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2858 -1.0664 0.0287 0.9964 3.3984
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.18124 0.25886 0.700 0.4839
## USvUK -0.09965 0.07776 -1.281 0.2001
## DvR -0.85883 0.08726 -9.843 < 2e-16 ***
## IvDR -0.06957 0.08652 -0.804 0.4214
## index_expAFAN 0.52181 0.59636 0.875 0.3816
## sum.media.exp -0.13117 0.21142 -0.620 0.5350
## USvUK:DvR 1.09494 0.17441 6.278 3.75e-10 ***
## USvUK:IvDR 0.31188 0.17290 1.804 0.0713 .
## USvUK:index_expAFAN -0.26343 0.29086 -0.906 0.3651
## DvR:index_expAFAN 0.71528 0.16486 4.339 1.46e-05 ***
## IvDR:index_expAFAN -0.01845 0.17616 -0.105 0.9166
## USvUK:DvR:index_expAFAN -0.35342 0.32962 -1.072 0.2837
## USvUK:IvDR:index_expAFAN -0.35188 0.35221 -0.999 0.3178
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4534 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08594, Adjusted R-squared: 0.08353
## F-statistic: 35.53 on 12 and 4534 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_expAFAN * (Rep_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2858 -1.0664 0.0287 0.9964 3.3984
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.58770 0.26140 2.248 0.0246 *
## USvUK -0.54420 0.10810 -5.034 4.99e-07 ***
## index_expAFAN 0.15808 0.60237 0.262 0.7930
## Rep_1 -0.85883 0.08726 -9.843 < 2e-16 ***
## Ind_1 -0.35985 0.09195 -3.914 9.23e-05 ***
## sum.media.exp -0.13117 0.21142 -0.620 0.5350
## USvUK:index_expAFAN -0.20284 0.31188 -0.650 0.5155
## USvUK:Rep_1 1.09494 0.17441 6.278 3.75e-10 ***
## USvUK:Ind_1 0.23559 0.18388 1.281 0.2002
## index_expAFAN:Rep_1 0.71528 0.16486 4.339 1.46e-05 ***
## index_expAFAN:Ind_1 0.37608 0.18164 2.071 0.0385 *
## USvUK:index_expAFAN:Rep_1 -0.35342 0.32962 -1.072 0.2837
## USvUK:index_expAFAN:Ind_1 0.17517 0.36303 0.483 0.6295
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4534 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08594, Adjusted R-squared: 0.08353
## F-statistic: 35.53 on 12 and 4534 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_expAFAN * (Dem_1 + Ind_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2858 -1.0664 0.0287 0.9964 3.3984
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.27113 0.26777 -1.013 0.311
## USvUK 0.55074 0.13813 3.987 6.79e-05 ***
## index_expAFAN 0.87336 0.60647 1.440 0.150
## Dem_1 0.85883 0.08726 9.843 < 2e-16 ***
## Ind_1 0.49898 0.10160 4.911 9.37e-07 ***
## sum.media.exp -0.13117 0.21142 -0.620 0.535
## USvUK:index_expAFAN -0.55626 0.36731 -1.514 0.130
## USvUK:Dem_1 -1.09494 0.17441 -6.278 3.75e-10 ***
## USvUK:Ind_1 -0.85935 0.20294 -4.234 2.34e-05 ***
## index_expAFAN:Dem_1 -0.71528 0.16486 -4.339 1.46e-05 ***
## index_expAFAN:Ind_1 -0.33919 0.20655 -1.642 0.101
## USvUK:index_expAFAN:Dem_1 0.35342 0.32962 1.072 0.284
## USvUK:index_expAFAN:Ind_1 0.52859 0.41308 1.280 0.201
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4534 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08594, Adjusted R-squared: 0.08353
## F-statistic: 35.53 on 12 and 4534 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ USvUK * index_expAFAN * (Dem_1 + Rep_1) +
## sum.media.exp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2858 -1.0664 0.0287 0.9964 3.3984
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22785 0.26416 0.863 0.3884
## USvUK -0.30861 0.15021 -2.055 0.0400 *
## index_expAFAN 0.53417 0.60873 0.878 0.3803
## Dem_1 0.35985 0.09195 3.914 9.23e-05 ***
## Rep_1 -0.49898 0.10160 -4.911 9.37e-07 ***
## sum.media.exp -0.13117 0.21142 -0.620 0.5350
## USvUK:index_expAFAN -0.02767 0.39865 -0.069 0.9447
## USvUK:Dem_1 -0.23559 0.18388 -1.281 0.2002
## USvUK:Rep_1 0.85935 0.20294 4.234 2.34e-05 ***
## index_expAFAN:Dem_1 -0.37608 0.18164 -2.071 0.0385 *
## index_expAFAN:Rep_1 0.33919 0.20655 1.642 0.1006
## USvUK:index_expAFAN:Dem_1 -0.17517 0.36303 -0.483 0.6295
## USvUK:index_expAFAN:Rep_1 -0.52859 0.41308 -1.280 0.2007
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4534 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08594, Adjusted R-squared: 0.08353
## F-statistic: 35.53 on 12 and 4534 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ UK_0 * index_expAFAN * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3042 -1.0643 0.0205 0.9994 3.3901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29472 0.06296 4.681 2.93e-06 ***
## UK_0 0.09071 0.07641 1.187 0.23524
## index_expAFAN -0.05407 0.13707 -0.394 0.69327
## DvR -0.30935 0.14525 -2.130 0.03324 *
## IvDR 0.08762 0.14118 0.621 0.53486
## UK_0:index_expAFAN 0.41773 0.15080 2.770 0.00563 **
## UK_0:DvR -1.09527 0.17440 -6.280 3.70e-10 ***
## UK_0:IvDR -0.30953 0.17284 -1.791 0.07340 .
## index_expAFAN:DvR 0.54180 0.29950 1.809 0.07052 .
## index_expAFAN:IvDR -0.19706 0.32017 -0.615 0.53826
## UK_0:index_expAFAN:DvR 0.35193 0.32959 1.068 0.28568
## UK_0:index_expAFAN:IvDR 0.35155 0.35218 0.998 0.31824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08587, Adjusted R-squared: 0.08365
## F-statistic: 38.73 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = worstAB ~ US_0 * index_expAFAN * (DvR + IvDR), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3042 -1.0643 0.0205 0.9994 3.3901
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38543 0.04330 8.901 < 2e-16 ***
## US_0 -0.09071 0.07641 -1.187 0.23524
## index_expAFAN 0.36366 0.06287 5.784 7.78e-09 ***
## DvR -1.40462 0.09653 -14.552 < 2e-16 ***
## IvDR -0.22191 0.09972 -2.225 0.02611 *
## US_0:index_expAFAN -0.41773 0.15080 -2.770 0.00563 **
## US_0:DvR 1.09527 0.17440 6.280 3.70e-10 ***
## US_0:IvDR 0.30953 0.17284 1.791 0.07340 .
## index_expAFAN:DvR 0.89373 0.13759 6.496 9.16e-11 ***
## index_expAFAN:IvDR 0.15449 0.14671 1.053 0.29239
## US_0:index_expAFAN:DvR -0.35193 0.32959 -1.068 0.28568
## US_0:index_expAFAN:IvDR -0.35155 0.35218 -0.998 0.31824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.08587, Adjusted R-squared: 0.08365
## F-statistic: 38.73 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * (DvR + IvDR) * index_ANexp,
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3486 -0.6952 -0.0236 0.7278 3.3681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.96577 0.02924 135.644 < 2e-16 ***
## USvUK 0.01512 0.05847 0.259 0.7959
## DvR -0.53715 0.06621 -8.113 6.30e-16 ***
## IvDR -0.01166 0.06654 -0.175 0.8610
## index_ANexp 0.34053 0.02985 11.408 < 2e-16 ***
## USvUK:DvR 0.72331 0.13242 5.462 4.95e-08 ***
## USvUK:IvDR 0.15385 0.13308 1.156 0.2477
## USvUK:index_ANexp -0.15225 0.05970 -2.550 0.0108 *
## DvR:index_ANexp 0.16877 0.06477 2.606 0.0092 **
## IvDR:index_ANexp -0.00928 0.07005 -0.132 0.8946
## USvUK:DvR:index_ANexp -0.25465 0.12954 -1.966 0.0494 *
## USvUK:IvDR:index_ANexp -0.03403 0.14010 -0.243 0.8081
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.107 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1143, Adjusted R-squared: 0.1121
## F-statistic: 53.19 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_ANexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3486 -0.6952 -0.0236 0.7278 3.3681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.23049 0.04099 103.211 < 2e-16 ***
## USvUK -0.29576 0.08198 -3.608 0.000312 ***
## index_ANexp 0.25308 0.03709 6.823 1.01e-11 ***
## Rep_1 -0.53715 0.06621 -8.113 6.30e-16 ***
## Ind_1 -0.25692 0.07079 -3.629 0.000288 ***
## USvUK:index_ANexp -0.03616 0.07419 -0.487 0.626011
## USvUK:Rep_1 0.72331 0.13242 5.462 4.95e-08 ***
## USvUK:Ind_1 0.20780 0.14159 1.468 0.142271
## index_ANexp:Rep_1 0.16877 0.06477 2.606 0.009198 **
## index_ANexp:Ind_1 0.09366 0.07235 1.295 0.195520
## USvUK:index_ANexp:Rep_1 -0.25464 0.12954 -1.966 0.049381 *
## USvUK:index_ANexp:Ind_1 -0.09329 0.14470 -0.645 0.519132
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.107 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1143, Adjusted R-squared: 0.1121
## F-statistic: 53.19 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_ANexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3486 -0.6952 -0.0236 0.7278 3.3681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.69334 0.05199 71.033 < 2e-16 ***
## USvUK 0.42755 0.10399 4.111 4.00e-05 ***
## index_ANexp 0.42185 0.05309 7.945 2.42e-15 ***
## Dem_1 0.53715 0.06621 8.113 6.30e-16 ***
## Ind_1 0.28023 0.07769 3.607 0.000313 ***
## USvUK:index_ANexp -0.29080 0.10619 -2.739 0.006194 **
## USvUK:Dem_1 -0.72331 0.13242 -5.462 4.95e-08 ***
## USvUK:Ind_1 -0.51551 0.15537 -3.318 0.000914 ***
## index_ANexp:Dem_1 -0.16877 0.06477 -2.606 0.009198 **
## index_ANexp:Ind_1 -0.07510 0.08172 -0.919 0.358092
## USvUK:index_ANexp:Dem_1 0.25464 0.12954 1.966 0.049381 *
## USvUK:index_ANexp:Ind_1 0.16135 0.16343 0.987 0.323554
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.107 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1143, Adjusted R-squared: 0.1121
## F-statistic: 53.19 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_ANexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3486 -0.6952 -0.0236 0.7278 3.3681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.97357 0.05772 68.840 < 2e-16 ***
## USvUK -0.08796 0.11544 -0.762 0.446156
## index_ANexp 0.34675 0.06212 5.582 2.51e-08 ***
## Dem_1 0.25692 0.07079 3.629 0.000288 ***
## Rep_1 -0.28023 0.07769 -3.607 0.000313 ***
## USvUK:index_ANexp -0.12945 0.12423 -1.042 0.297466
## USvUK:Dem_1 -0.20780 0.14159 -1.468 0.142271
## USvUK:Rep_1 0.51551 0.15537 3.318 0.000914 ***
## index_ANexp:Dem_1 -0.09366 0.07235 -1.295 0.195520
## index_ANexp:Rep_1 0.07510 0.08172 0.919 0.358092
## USvUK:index_ANexp:Dem_1 0.09329 0.14470 0.645 0.519132
## USvUK:index_ANexp:Rep_1 -0.16135 0.16343 -0.987 0.323554
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.107 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1143, Adjusted R-squared: 0.1121
## F-statistic: 53.19 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ UK_0 * index_ANexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3486 -0.6952 -0.0236 0.7278 3.3681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.97333 0.04831 82.247 < 2e-16 ***
## UK_0 -0.01512 0.05847 -0.259 0.7959
## index_ANexp 0.26441 0.05126 5.158 2.60e-07 ***
## DvR -0.17550 0.11076 -1.585 0.1131
## IvDR 0.06527 0.10889 0.599 0.5489
## UK_0:index_ANexp 0.15225 0.05970 2.550 0.0108 *
## UK_0:DvR -0.72331 0.13242 -5.462 4.95e-08 ***
## UK_0:IvDR -0.15385 0.13308 -1.156 0.2477
## index_ANexp:DvR 0.04145 0.11128 0.372 0.7096
## index_ANexp:IvDR -0.02630 0.12027 -0.219 0.8269
## UK_0:index_ANexp:DvR 0.25464 0.12954 1.966 0.0494 *
## UK_0:index_ANexp:IvDR 0.03403 0.14010 0.243 0.8081
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.107 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1143, Adjusted R-squared: 0.1121
## F-statistic: 53.19 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ US_0 * index_ANexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3486 -0.6952 -0.0236 0.7278 3.3681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.958204 0.032944 120.151 < 2e-16 ***
## US_0 0.015123 0.058473 0.259 0.7959
## index_ANexp 0.416656 0.030594 13.619 < 2e-16 ***
## DvR -0.898805 0.072577 -12.384 < 2e-16 ***
## IvDR -0.088581 0.076515 -1.158 0.2470
## US_0:index_ANexp -0.152251 0.059698 -2.550 0.0108 *
## US_0:DvR 0.723309 0.132417 5.462 4.95e-08 ***
## US_0:IvDR 0.153851 0.133082 1.156 0.2477
## index_ANexp:DvR 0.296091 0.066302 4.466 8.17e-06 ***
## index_ANexp:IvDR 0.007735 0.071861 0.108 0.9143
## US_0:index_ANexp:DvR -0.254645 0.129537 -1.966 0.0494 *
## US_0:index_ANexp:IvDR -0.034030 0.140102 -0.243 0.8081
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.107 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1143, Adjusted R-squared: 0.1121
## F-statistic: 53.19 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (DvR + IvDR) * (index_ANexp),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2610 -0.7106 -0.0313 0.7345 3.2598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.90271 0.02714 143.824 < 2e-16 ***
## USvUK -0.14871 0.03589 -4.143 3.49e-05 ***
## DvR -0.69436 0.05993 -11.586 < 2e-16 ***
## IvDR -0.08550 0.06222 -1.374 0.169
## index_ANexp 0.39384 0.02622 15.022 < 2e-16 ***
## DvR:index_ANexp 0.22987 0.05684 4.044 5.34e-05 ***
## IvDR:index_ANexp 0.02185 0.06155 0.355 0.723
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.113 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1045, Adjusted R-squared: 0.1033
## F-statistic: 88.26 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_ANexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2610 -0.7106 -0.0313 0.7345 3.2598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.22167 0.04061 103.948 < 2e-16 ***
## USvUK -0.14871 0.03589 -4.143 3.49e-05 ***
## index_ANexp 0.28612 0.03448 8.299 < 2e-16 ***
## Rep_1 -0.69436 0.05993 -11.586 < 2e-16 ***
## Ind_1 -0.26168 0.06844 -3.823 0.000133 ***
## index_ANexp:Rep_1 0.22987 0.05684 4.044 5.34e-05 ***
## index_ANexp:Ind_1 0.09309 0.06450 1.443 0.149028
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.113 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1045, Adjusted R-squared: 0.1033
## F-statistic: 88.26 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_ANexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2610 -0.7106 -0.0313 0.7345 3.2598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.52732 0.04381 80.511 < 2e-16 ***
## USvUK -0.14871 0.03589 -4.143 3.49e-05 ***
## index_ANexp 0.51599 0.04500 11.467 < 2e-16 ***
## Dem_1 0.69436 0.05993 11.586 < 2e-16 ***
## Ind_1 0.43267 0.06967 6.210 5.77e-10 ***
## index_ANexp:Dem_1 -0.22987 0.05684 -4.044 5.34e-05 ***
## index_ANexp:Ind_1 -0.13678 0.07094 -1.928 0.0539 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.113 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1045, Adjusted R-squared: 0.1033
## F-statistic: 88.26 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_ANexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2610 -0.7106 -0.0313 0.7345 3.2598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.95999 0.05500 71.997 < 2e-16 ***
## USvUK -0.14871 0.03589 -4.143 3.49e-05 ***
## index_ANexp 0.37921 0.05476 6.925 4.98e-12 ***
## Dem_1 0.26168 0.06844 3.823 0.000133 ***
## Rep_1 -0.43267 0.06967 -6.210 5.77e-10 ***
## index_ANexp:Dem_1 -0.09309 0.06450 -1.443 0.149028
## index_ANexp:Rep_1 0.13678 0.07094 1.928 0.053887 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.113 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1045, Adjusted R-squared: 0.1033
## F-statistic: 88.26 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_AFexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3468 -0.6934 -0.0222 0.7157 3.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.94626 0.02970 132.868 < 2e-16 ***
## USvUK 0.04177 0.05940 0.703 0.4819
## index_AFexp 0.76397 0.06796 11.241 < 2e-16 ***
## DvR -0.54197 0.06751 -8.028 1.25e-15 ***
## IvDR -0.01969 0.06740 -0.292 0.7702
## USvUK:index_AFexp -0.26887 0.13592 -1.978 0.0480 *
## USvUK:DvR 0.72426 0.13502 5.364 8.55e-08 ***
## USvUK:IvDR 0.16421 0.13480 1.218 0.2232
## index_AFexp:DvR 0.35564 0.14800 2.403 0.0163 *
## index_AFexp:IvDR -0.01131 0.15911 -0.071 0.9433
## USvUK:index_AFexp:DvR -0.51603 0.29600 -1.743 0.0813 .
## USvUK:index_AFexp:IvDR -0.08519 0.31821 -0.268 0.7889
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1176, Adjusted R-squared: 0.1154
## F-statistic: 54.92 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_AFexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3468 -0.6934 -0.0222 0.7157 3.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.21074 0.04182 100.682 < 2e-16 ***
## USvUK -0.26616 0.08364 -3.182 0.001472 **
## index_AFexp 0.58241 0.08452 6.891 6.31e-12 ***
## Rep_1 -0.54197 0.06751 -8.028 1.25e-15 ***
## Ind_1 -0.25129 0.07178 -3.501 0.000468 ***
## USvUK:index_AFexp -0.03897 0.16904 -0.231 0.817702
## USvUK:Rep_1 0.72426 0.13502 5.364 8.55e-08 ***
## USvUK:Ind_1 0.19792 0.14356 1.379 0.168077
## index_AFexp:Rep_1 0.35564 0.14800 2.403 0.016300 *
## index_AFexp:Ind_1 0.18913 0.16426 1.151 0.249628
## USvUK:index_AFexp:Rep_1 -0.51603 0.29600 -1.743 0.081339 .
## USvUK:index_AFexp:Ind_1 -0.17283 0.32853 -0.526 0.598872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1176, Adjusted R-squared: 0.1154
## F-statistic: 54.92 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_AFexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3468 -0.6934 -0.0222 0.7157 3.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.66877 0.05300 69.225 < 2e-16 ***
## USvUK 0.45809 0.10600 4.322 1.58e-05 ***
## index_AFexp 0.93806 0.12149 7.721 1.41e-14 ***
## Dem_1 0.54197 0.06751 8.028 1.25e-15 ***
## Ind_1 0.29068 0.07882 3.688 0.000229 ***
## USvUK:index_AFexp -0.55500 0.24298 -2.284 0.022410 *
## USvUK:Dem_1 -0.72426 0.13502 -5.364 8.55e-08 ***
## USvUK:Ind_1 -0.52634 0.15763 -3.339 0.000848 ***
## index_AFexp:Dem_1 -0.35564 0.14800 -2.403 0.016300 *
## index_AFexp:Ind_1 -0.16651 0.18601 -0.895 0.370735
## USvUK:index_AFexp:Dem_1 0.51603 0.29600 1.743 0.081339 .
## USvUK:index_AFexp:Ind_1 0.34320 0.37201 0.923 0.356286
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1176, Adjusted R-squared: 0.1154
## F-statistic: 54.92 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_AFexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3468 -0.6934 -0.0222 0.7157 3.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.95945 0.05834 67.871 < 2e-16 ***
## USvUK -0.06825 0.11668 -0.585 0.558627
## index_AFexp 0.77155 0.14085 5.478 4.54e-08 ***
## Dem_1 0.25129 0.07178 3.501 0.000468 ***
## Rep_1 -0.29068 0.07882 -3.688 0.000229 ***
## USvUK:index_AFexp -0.21179 0.28170 -0.752 0.452189
## USvUK:Dem_1 -0.19792 0.14356 -1.379 0.168077
## USvUK:Rep_1 0.52634 0.15763 3.339 0.000848 ***
## index_AFexp:Dem_1 -0.18913 0.16426 -1.151 0.249628
## index_AFexp:Rep_1 0.16651 0.18601 0.895 0.370735
## USvUK:index_AFexp:Dem_1 0.17283 0.32853 0.526 0.598872
## USvUK:index_AFexp:Rep_1 -0.34320 0.37201 -0.923 0.356286
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1176, Adjusted R-squared: 0.1154
## F-statistic: 54.92 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ UK_0 * index_AFexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3468 -0.6934 -0.0222 0.7157 3.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.96714 0.04881 81.281 < 2e-16 ***
## UK_0 -0.04177 0.05940 -0.703 0.4819
## index_AFexp 0.62953 0.12031 5.232 1.75e-07 ***
## DvR -0.17984 0.11216 -1.603 0.1089
## IvDR 0.06241 0.10980 0.568 0.5698
## UK_0:index_AFexp 0.26887 0.13592 1.978 0.0480 *
## UK_0:DvR -0.72426 0.13502 -5.364 8.55e-08 ***
## UK_0:IvDR -0.16421 0.13480 -1.218 0.2232
## index_AFexp:DvR 0.09763 0.26189 0.373 0.7093
## index_AFexp:IvDR -0.05391 0.28176 -0.191 0.8483
## UK_0:index_AFexp:DvR 0.51603 0.29600 1.743 0.0813 .
## UK_0:index_AFexp:IvDR 0.08519 0.31821 0.268 0.7889
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1176, Adjusted R-squared: 0.1154
## F-statistic: 54.92 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ US_0 * index_AFexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3468 -0.6934 -0.0222 0.7157 3.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.92537 0.03386 115.939 < 2e-16 ***
## US_0 0.04177 0.05940 0.703 0.4819
## index_AFexp 0.89840 0.06324 14.206 < 2e-16 ***
## DvR -0.90409 0.07518 -12.026 < 2e-16 ***
## IvDR -0.10180 0.07820 -1.302 0.1930
## US_0:index_AFexp -0.26887 0.13592 -1.978 0.0480 *
## US_0:DvR 0.72426 0.13502 5.364 8.55e-08 ***
## US_0:IvDR 0.16421 0.13480 1.218 0.2232
## index_AFexp:DvR 0.61366 0.13794 4.449 8.84e-06 ***
## index_AFexp:IvDR 0.03128 0.14789 0.212 0.8325
## US_0:index_AFexp:DvR -0.51603 0.29600 -1.743 0.0813 .
## US_0:index_AFexp:IvDR -0.08519 0.31821 -0.268 0.7889
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1176, Adjusted R-squared: 0.1154
## F-statistic: 54.92 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (DvR + IvDR) * index_AFexp,
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2931 -0.7143 -0.0235 0.7306 3.2283
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88607 0.02726 142.568 < 2e-16 ***
## USvUK -0.09339 0.03640 -2.566 0.010326 *
## DvR -0.66903 0.06127 -10.919 < 2e-16 ***
## IvDR -0.09393 0.06283 -1.495 0.134977
## index_AFexp 0.87498 0.05586 15.663 < 2e-16 ***
## DvR:index_AFexp 0.42622 0.12094 3.524 0.000429 ***
## IvDR:index_AFexp 0.05033 0.12939 0.389 0.697300
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.108, Adjusted R-squared: 0.1069
## F-statistic: 91.66 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_AFexp * (Rep_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2931 -0.7143 -0.0235 0.7306 3.2283
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.18959 0.04105 102.068 < 2e-16 ***
## USvUK -0.09339 0.03640 -2.566 0.010326 *
## index_AFexp 0.67848 0.07373 9.202 < 2e-16 ***
## Rep_1 -0.66903 0.06127 -10.919 < 2e-16 ***
## Ind_1 -0.24059 0.06905 -3.484 0.000498 ***
## index_AFexp:Rep_1 0.42622 0.12094 3.524 0.000429 ***
## index_AFexp:Ind_1 0.16278 0.13552 1.201 0.229753
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.108, Adjusted R-squared: 0.1069
## F-statistic: 91.66 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_AFexp * (Dem_1 + Ind_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2931 -0.7143 -0.0235 0.7306 3.2283
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.52056 0.04474 78.691 < 2e-16 ***
## USvUK -0.09339 0.03640 -2.566 0.010326 *
## index_AFexp 1.10470 0.09595 11.514 < 2e-16 ***
## Dem_1 0.66903 0.06127 10.919 < 2e-16 ***
## Ind_1 0.42844 0.07074 6.057 1.5e-09 ***
## index_AFexp:Dem_1 -0.42622 0.12094 -3.524 0.000429 ***
## index_AFexp:Ind_1 -0.26344 0.14977 -1.759 0.078645 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.108, Adjusted R-squared: 0.1069
## F-statistic: 91.66 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_AFexp * (Dem_1 + Rep_1),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2931 -0.7143 -0.0235 0.7306 3.2283
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.94900 0.05531 71.398 < 2e-16 ***
## USvUK -0.09339 0.03640 -2.566 0.010326 *
## index_AFexp 0.84126 0.11504 7.313 3.07e-13 ***
## Dem_1 0.24059 0.06905 3.484 0.000498 ***
## Rep_1 -0.42844 0.07074 -6.057 1.50e-09 ***
## index_AFexp:Dem_1 -0.16278 0.13552 -1.201 0.229753
## index_AFexp:Rep_1 0.26344 0.14977 1.759 0.078645 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.108, Adjusted R-squared: 0.1069
## F-statistic: 91.66 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * (DvR + IvDR) * (index_AFexp +
## index_ANexp), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2319 -0.7065 -0.0272 0.7160 3.3276
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.91640 0.03161 123.890 < 2e-16 ***
## USvUK 0.04676 0.06322 0.740 0.4596
## DvR -0.56412 0.07335 -7.690 1.79e-14 ***
## IvDR -0.03715 0.07054 -0.527 0.5985
## index_AFexp 3.67378 1.53284 2.397 0.0166 *
## index_ANexp -1.29229 0.65491 -1.973 0.0485 *
## USvUK:DvR 0.68307 0.14671 4.656 3.32e-06 ***
## USvUK:IvDR 0.15106 0.14109 1.071 0.2844
## USvUK:index_AFexp 1.89269 3.06568 0.617 0.5370
## USvUK:index_ANexp -0.80706 1.30983 -0.616 0.5378
## DvR:index_AFexp 2.11423 3.30511 0.640 0.5224
## DvR:index_ANexp -0.76193 1.40737 -0.541 0.5883
## IvDR:index_AFexp 0.76319 3.61241 0.211 0.8327
## IvDR:index_ANexp -0.30276 1.54679 -0.196 0.8448
## USvUK:DvR:index_AFexp 2.44840 6.61021 0.370 0.7111
## USvUK:DvR:index_ANexp -1.24587 2.81475 -0.443 0.6581
## USvUK:IvDR:index_AFexp 2.57417 7.22481 0.356 0.7216
## USvUK:IvDR:index_ANexp -1.16767 3.09359 -0.377 0.7059
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.104 on 4529 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1206, Adjusted R-squared: 0.1173
## F-statistic: 36.54 on 17 and 4529 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (index_AFexp + index_ANexp) *
## (Rep_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2708 -0.6999 -0.0255 0.7262 3.2528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.17713 0.04102 101.835 < 2e-16 ***
## USvUK 0.02858 0.04467 0.640 0.52228
## index_AFexp 3.19345 0.51275 6.228 5.15e-10 ***
## index_ANexp -1.17998 0.23874 -4.942 7.99e-07 ***
## Rep_1 -0.63217 0.06177 -10.234 < 2e-16 ***
## Ind_1 -0.22466 0.06899 -3.257 0.00114 **
## index_AFexp:Rep_1 -1.68133 0.79337 -2.119 0.03413 *
## index_AFexp:Ind_1 0.05571 0.97765 0.057 0.95456
## index_ANexp:Rep_1 0.98813 0.37235 2.654 0.00799 **
## index_ANexp:Ind_1 0.03824 0.46496 0.082 0.93445
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1136, Adjusted R-squared: 0.1119
## F-statistic: 64.62 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (index_AFexp + index_ANexp) *
## (Dem_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2708 -0.6999 -0.0255 0.7262 3.2528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.54496 0.04542 78.056 < 2e-16 ***
## USvUK 0.02858 0.04467 0.640 0.52228
## index_AFexp 1.51213 0.69788 2.167 0.03031 *
## index_ANexp -0.19185 0.32673 -0.587 0.55712
## Dem_1 0.63217 0.06177 10.234 < 2e-16 ***
## Ind_1 0.40751 0.07116 5.727 1.09e-08 ***
## index_AFexp:Dem_1 1.68133 0.79337 2.119 0.03413 *
## index_AFexp:Ind_1 1.73704 1.09347 1.589 0.11223
## index_ANexp:Dem_1 -0.98813 0.37235 -2.654 0.00799 **
## index_ANexp:Ind_1 -0.94989 0.51719 -1.837 0.06633 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1136, Adjusted R-squared: 0.1119
## F-statistic: 64.62 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (index_AFexp + index_ANexp) *
## (Dem_1 + Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2708 -0.6999 -0.0255 0.7262 3.2528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.95247 0.05521 71.585 < 2e-16 ***
## USvUK 0.02858 0.04467 0.640 0.522282
## index_AFexp 3.24916 0.91132 3.565 0.000367 ***
## index_ANexp -1.14174 0.43263 -2.639 0.008342 **
## Dem_1 0.22466 0.06899 3.257 0.001136 **
## Rep_1 -0.40751 0.07116 -5.727 1.09e-08 ***
## index_AFexp:Dem_1 -0.05571 0.97765 -0.057 0.954561
## index_AFexp:Rep_1 -1.73704 1.09347 -1.589 0.112230
## index_ANexp:Dem_1 -0.03824 0.46496 -0.082 0.934452
## index_ANexp:Rep_1 0.94989 0.51719 1.837 0.066328 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1136, Adjusted R-squared: 0.1119
## F-statistic: 64.62 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ UK_0 * index_AFexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3468 -0.6934 -0.0222 0.7157 3.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.96714 0.04881 81.281 < 2e-16 ***
## UK_0 -0.04177 0.05940 -0.703 0.4819
## index_AFexp 0.62953 0.12031 5.232 1.75e-07 ***
## DvR -0.17984 0.11216 -1.603 0.1089
## IvDR 0.06241 0.10980 0.568 0.5698
## UK_0:index_AFexp 0.26887 0.13592 1.978 0.0480 *
## UK_0:DvR -0.72426 0.13502 -5.364 8.55e-08 ***
## UK_0:IvDR -0.16421 0.13480 -1.218 0.2232
## index_AFexp:DvR 0.09763 0.26189 0.373 0.7093
## index_AFexp:IvDR -0.05391 0.28176 -0.191 0.8483
## UK_0:index_AFexp:DvR 0.51603 0.29600 1.743 0.0813 .
## UK_0:index_AFexp:IvDR 0.08519 0.31821 0.268 0.7889
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1176, Adjusted R-squared: 0.1154
## F-statistic: 54.92 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ US_0 * index_AFexp * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3468 -0.6934 -0.0222 0.7157 3.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.92537 0.03386 115.939 < 2e-16 ***
## US_0 0.04177 0.05940 0.703 0.4819
## index_AFexp 0.89840 0.06324 14.206 < 2e-16 ***
## DvR -0.90409 0.07518 -12.026 < 2e-16 ***
## IvDR -0.10180 0.07820 -1.302 0.1930
## US_0:index_AFexp -0.26887 0.13592 -1.978 0.0480 *
## US_0:DvR 0.72426 0.13502 5.364 8.55e-08 ***
## US_0:IvDR 0.16421 0.13480 1.218 0.2232
## index_AFexp:DvR 0.61366 0.13794 4.449 8.84e-06 ***
## index_AFexp:IvDR 0.03128 0.14789 0.212 0.8325
## US_0:index_AFexp:DvR -0.51603 0.29600 -1.743 0.0813 .
## US_0:index_AFexp:IvDR -0.08519 0.31821 -0.268 0.7889
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1176, Adjusted R-squared: 0.1154
## F-statistic: 54.92 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (DvR + IvDR) * (index_AFexp +
## index_ANexp), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2708 -0.6999 -0.0255 0.7262 3.2528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.89122 0.02732 142.417 < 2e-16 ***
## USvUK 0.02858 0.04467 0.640 0.522282
## DvR -0.63217 0.06177 -10.234 < 2e-16 ***
## IvDR -0.09142 0.06291 -1.453 0.146224
## index_AFexp 2.64859 0.46564 5.688 1.37e-08 ***
## index_ANexp -0.83633 0.21816 -3.834 0.000128 ***
## DvR:index_AFexp -1.68133 0.79337 -2.119 0.034126 *
## DvR:index_ANexp 0.98813 0.37235 2.654 0.007987 **
## IvDR:index_AFexp -0.89637 0.95832 -0.935 0.349652
## IvDR:index_ANexp 0.45582 0.45516 1.001 0.316663
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1136, Adjusted R-squared: 0.1119
## F-statistic: 64.62 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (index_AFexp + index_ANexp) *
## (Rep_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2708 -0.6999 -0.0255 0.7262 3.2528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.17713 0.04102 101.835 < 2e-16 ***
## USvUK 0.02858 0.04467 0.640 0.52228
## index_AFexp 3.19345 0.51275 6.228 5.15e-10 ***
## index_ANexp -1.17998 0.23874 -4.942 7.99e-07 ***
## Rep_1 -0.63217 0.06177 -10.234 < 2e-16 ***
## Ind_1 -0.22466 0.06899 -3.257 0.00114 **
## index_AFexp:Rep_1 -1.68133 0.79337 -2.119 0.03413 *
## index_AFexp:Ind_1 0.05571 0.97765 0.057 0.95456
## index_ANexp:Rep_1 0.98813 0.37235 2.654 0.00799 **
## index_ANexp:Ind_1 0.03824 0.46496 0.082 0.93445
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1136, Adjusted R-squared: 0.1119
## F-statistic: 64.62 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (index_AFexp + index_ANexp) *
## (Dem_1 + Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2708 -0.6999 -0.0255 0.7262 3.2528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.54496 0.04542 78.056 < 2e-16 ***
## USvUK 0.02858 0.04467 0.640 0.52228
## index_AFexp 1.51213 0.69788 2.167 0.03031 *
## index_ANexp -0.19185 0.32673 -0.587 0.55712
## Dem_1 0.63217 0.06177 10.234 < 2e-16 ***
## Ind_1 0.40751 0.07116 5.727 1.09e-08 ***
## index_AFexp:Dem_1 1.68133 0.79337 2.119 0.03413 *
## index_AFexp:Ind_1 1.73704 1.09347 1.589 0.11223
## index_ANexp:Dem_1 -0.98813 0.37235 -2.654 0.00799 **
## index_ANexp:Ind_1 -0.94989 0.51719 -1.837 0.06633 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1136, Adjusted R-squared: 0.1119
## F-statistic: 64.62 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (index_AFexp + index_ANexp) *
## (Dem_1 + Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2708 -0.6999 -0.0255 0.7262 3.2528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.95247 0.05521 71.585 < 2e-16 ***
## USvUK 0.02858 0.04467 0.640 0.522282
## index_AFexp 3.24916 0.91132 3.565 0.000367 ***
## index_ANexp -1.14174 0.43263 -2.639 0.008342 **
## Dem_1 0.22466 0.06899 3.257 0.001136 **
## Rep_1 -0.40751 0.07116 -5.727 1.09e-08 ***
## index_AFexp:Dem_1 -0.05571 0.97765 -0.057 0.954561
## index_AFexp:Rep_1 -1.73704 1.09347 -1.589 0.112230
## index_ANexp:Dem_1 -0.03824 0.46496 -0.082 0.934452
## index_ANexp:Rep_1 0.94989 0.51719 1.837 0.066328 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 4537 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1136, Adjusted R-squared: 0.1119
## F-statistic: 64.62 on 9 and 4537 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * (DvR + IvDR) * (index_expAFAN),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3485 -0.6922 -0.0246 0.7175 3.3530
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.93719 0.03015 130.600 < 2e-16 ***
## USvUK 0.04054 0.06029 0.672 0.5014
## DvR -0.54884 0.06881 -7.977 1.89e-15 ***
## IvDR -0.02308 0.06819 -0.338 0.7351
## index_expAFAN 0.64148 0.05950 10.782 < 2e-16 ***
## USvUK:DvR 0.72656 0.13761 5.280 1.35e-07 ***
## USvUK:IvDR 0.16577 0.13639 1.215 0.2243
## USvUK:index_expAFAN -0.12974 0.11899 -1.090 0.2756
## DvR:index_expAFAN 0.28293 0.13004 2.176 0.0296 *
## IvDR:index_expAFAN -0.01255 0.13895 -0.090 0.9280
## USvUK:DvR:index_expAFAN -0.37424 0.26007 -1.439 0.1502
## USvUK:IvDR:index_expAFAN -0.06844 0.27790 -0.246 0.8055
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1177, Adjusted R-squared: 0.1155
## F-statistic: 54.98 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_expAFAN * (Rep_1 +
## Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3485 -0.6922 -0.0246 0.7175 3.3530
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.20399 0.04234 99.285 < 2e-16 ***
## USvUK -0.26803 0.08469 -3.165 0.001561 **
## index_expAFAN 0.49587 0.07371 6.728 1.94e-11 ***
## Rep_1 -0.54884 0.06881 -7.977 1.89e-15 ***
## Ind_1 -0.25135 0.07252 -3.466 0.000534 ***
## USvUK:index_expAFAN 0.03480 0.14741 0.236 0.813397
## USvUK:Rep_1 0.72656 0.13761 5.280 1.35e-07 ***
## USvUK:Ind_1 0.19751 0.14505 1.362 0.173359
## index_expAFAN:Rep_1 0.28293 0.13004 2.176 0.029625 *
## index_expAFAN:Ind_1 0.15402 0.14322 1.075 0.282264
## USvUK:index_expAFAN:Rep_1 -0.37424 0.26007 -1.439 0.150226
## USvUK:index_expAFAN:Ind_1 -0.11868 0.28644 -0.414 0.678646
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1177, Adjusted R-squared: 0.1155
## F-statistic: 54.98 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_expAFAN * (Dem_1 +
## Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3485 -0.6922 -0.0246 0.7175 3.3530
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.65515 0.05423 67.395 < 2e-16 ***
## USvUK 0.45853 0.10847 4.227 2.41e-05 ***
## index_expAFAN 0.77880 0.10713 7.270 4.22e-13 ***
## Dem_1 0.54884 0.06881 7.977 1.89e-15 ***
## Ind_1 0.29750 0.08005 3.716 0.000205 ***
## USvUK:index_expAFAN -0.33944 0.21426 -1.584 0.113207
## USvUK:Dem_1 -0.72656 0.13761 -5.280 1.35e-07 ***
## USvUK:Ind_1 -0.52905 0.16010 -3.304 0.000959 ***
## index_expAFAN:Dem_1 -0.28293 0.13004 -2.176 0.029625 *
## index_expAFAN:Ind_1 -0.12891 0.16296 -0.791 0.428946
## USvUK:index_expAFAN:Dem_1 0.37424 0.26007 1.439 0.150226
## USvUK:index_expAFAN:Ind_1 0.25556 0.32592 0.784 0.433021
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1177, Adjusted R-squared: 0.1155
## F-statistic: 54.98 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK * index_expAFAN * (Dem_1 +
## Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3485 -0.6922 -0.0246 0.7175 3.3530
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.95265 0.05888 67.131 < 2e-16 ***
## USvUK -0.07052 0.11776 -0.599 0.549281
## index_expAFAN 0.64989 0.12280 5.292 1.26e-07 ***
## Dem_1 0.25135 0.07252 3.466 0.000534 ***
## Rep_1 -0.29750 0.08005 -3.716 0.000205 ***
## USvUK:index_expAFAN -0.08388 0.24560 -0.342 0.732700
## USvUK:Dem_1 -0.19751 0.14505 -1.362 0.173359
## USvUK:Rep_1 0.52905 0.16010 3.304 0.000959 ***
## index_expAFAN:Dem_1 -0.15402 0.14322 -1.075 0.282264
## index_expAFAN:Rep_1 0.12891 0.16296 0.791 0.428946
## USvUK:index_expAFAN:Dem_1 0.11868 0.28644 0.414 0.678646
## USvUK:index_expAFAN:Rep_1 -0.25556 0.32592 -0.784 0.433021
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1177, Adjusted R-squared: 0.1155
## F-statistic: 54.98 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ UK_0 * index_expAFAN * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3485 -0.6922 -0.0246 0.7175 3.3530
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.95746 0.04968 79.661 < 2e-16 ***
## UK_0 -0.04054 0.06029 -0.672 0.501
## index_expAFAN 0.57661 0.10816 5.331 1.02e-07 ***
## DvR -0.18556 0.11461 -1.619 0.106
## IvDR 0.05981 0.11140 0.537 0.591
## UK_0:index_expAFAN 0.12974 0.11899 1.090 0.276
## UK_0:DvR -0.72656 0.13761 -5.280 1.35e-07 ***
## UK_0:IvDR -0.16577 0.13639 -1.215 0.224
## index_expAFAN:DvR 0.09581 0.23633 0.405 0.685
## index_expAFAN:IvDR -0.04677 0.25264 -0.185 0.853
## UK_0:index_expAFAN:DvR 0.37424 0.26007 1.439 0.150
## UK_0:index_expAFAN:IvDR 0.06844 0.27790 0.246 0.805
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1177, Adjusted R-squared: 0.1155
## F-statistic: 54.98 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ US_0 * index_expAFAN * (DvR + IvDR),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3485 -0.6922 -0.0246 0.7175 3.3530
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.91692 0.03417 114.640 < 2e-16 ***
## US_0 0.04054 0.06029 0.672 0.501
## index_expAFAN 0.70635 0.04961 14.238 < 2e-16 ***
## DvR -0.91212 0.07617 -11.975 < 2e-16 ***
## IvDR -0.10596 0.07869 -1.347 0.178
## US_0:index_expAFAN -0.12974 0.11899 -1.090 0.276
## US_0:DvR 0.72656 0.13761 5.280 1.35e-07 ***
## US_0:IvDR 0.16577 0.13639 1.215 0.224
## index_expAFAN:DvR 0.47005 0.10857 4.330 1.53e-05 ***
## index_expAFAN:IvDR 0.02167 0.11576 0.187 0.852
## US_0:index_expAFAN:DvR -0.37424 0.26007 -1.439 0.150
## US_0:index_expAFAN:IvDR -0.06844 0.27790 -0.246 0.805
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 4535 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1177, Adjusted R-squared: 0.1155
## F-statistic: 54.98 on 11 and 4535 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + (DvR + IvDR) * (index_expAFAN),
## data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3337 -0.7083 -0.0238 0.7337 3.2426
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88512 0.02720 142.849 <2e-16 ***
## USvUK -0.05256 0.03694 -1.423 0.1549
## DvR -0.64872 0.06164 -10.524 <2e-16 ***
## IvDR -0.09441 0.06275 -1.504 0.1325
## index_expAFAN 0.70941 0.04503 15.755 <2e-16 ***
## DvR:index_expAFAN 0.29050 0.09678 3.002 0.0027 **
## IvDR:index_expAFAN 0.03011 0.10293 0.293 0.7699
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1082, Adjusted R-squared: 0.107
## F-statistic: 91.81 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_expAFAN * (Rep_1 +
## Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3337 -0.7083 -0.0238 0.7337 3.2426
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.17833 0.04085 102.283 < 2e-16 ***
## USvUK -0.05256 0.03694 -1.423 0.154855
## index_expAFAN 0.57409 0.05933 9.676 < 2e-16 ***
## Rep_1 -0.64872 0.06164 -10.524 < 2e-16 ***
## Ind_1 -0.22995 0.06876 -3.344 0.000832 ***
## index_expAFAN:Rep_1 0.29050 0.09678 3.002 0.002701 **
## index_expAFAN:Ind_1 0.11514 0.10770 1.069 0.285070
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1082, Adjusted R-squared: 0.107
## F-statistic: 91.81 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_expAFAN * (Dem_1 +
## Ind_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3337 -0.7083 -0.0238 0.7337 3.2426
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.52961 0.04525 78.004 < 2e-16 ***
## USvUK -0.05256 0.03694 -1.423 0.1549
## index_expAFAN 0.86459 0.07713 11.209 < 2e-16 ***
## Dem_1 0.64872 0.06164 10.524 < 2e-16 ***
## Ind_1 0.41877 0.07104 5.895 4.03e-09 ***
## index_expAFAN:Dem_1 -0.29050 0.09678 -3.002 0.0027 **
## index_expAFAN:Ind_1 -0.17536 0.11947 -1.468 0.1422
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1082, Adjusted R-squared: 0.107
## F-statistic: 91.81 on 6 and 4540 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = riskSeverity ~ USvUK + index_expAFAN * (Dem_1 +
## Rep_1), data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3337 -0.7083 -0.0238 0.7337 3.2426
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.94838 0.05510 71.658 < 2e-16 ***
## USvUK -0.05256 0.03694 -1.423 0.154855
## index_expAFAN 0.68923 0.09156 7.528 6.18e-14 ***
## Dem_1 0.22995 0.06876 3.344 0.000832 ***
## Rep_1 -0.41877 0.07104 -5.895 4.03e-09 ***
## index_expAFAN:Dem_1 -0.11514 0.10770 -1.069 0.285070
## index_expAFAN:Rep_1 0.17536 0.11947 1.468 0.142227
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 4540 degrees of freedom
## (284 observations deleted due to missingness)
## Multiple R-squared: 0.1082, Adjusted R-squared: 0.107
## F-statistic: 91.81 on 6 and 4540 DF, p-value: < 2.2e-16
model3.cc <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
summary(model3.cc)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) *
## (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0993 -0.8189 0.0449 0.9365 5.4289
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.177454 0.052687 3.368 0.00077 ***
## index_ANexp.w1 -0.086434 0.066094 -1.308 0.19110
## index_ANexp.w2 0.200348 0.068679 2.917 0.00357 **
## DvR 0.296843 0.114103 2.602 0.00934 **
## IvDR 0.256713 0.122814 2.090 0.03671 *
## vaxxAttitudes.c.w1 0.720423 0.014885 48.398 < 2e-16 ***
## index_ANexp.w1:DvR -0.197339 0.145777 -1.354 0.17597
## index_ANexp.w1:IvDR -0.106068 0.152410 -0.696 0.48654
## index_ANexp.w2:DvR 0.103120 0.154872 0.666 0.50558
## index_ANexp.w2:IvDR 0.006891 0.156539 0.044 0.96489
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5477, Adjusted R-squared: 0.5458
## F-statistic: 289 on 9 and 2148 DF, p-value: < 2.2e-16
m1 <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)
plot_model(m1, type = "pred", terms = c("index_ANexp.w2", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media analytic thinking wave 2") +
ylab("willingness to obtain the Covid-19 vaccine wave 2") +
xlim(0, 3) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
m1 <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)
plot_model(m1, type = "pred", terms = c("index_ANexp.w1", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media analytic thinking wave 1") +
ylab("willingness to obtain the Covid-19 vaccine wave 2") +
xlim(0, 3) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
model2.dem <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.dem)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) *
## (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0993 -0.8189 0.0449 0.9365 5.4289
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.113748 0.087152 1.305 0.19198
## index_ANexp.w1 -0.022767 0.085447 -0.266 0.78992
## index_ANexp.w2 0.151062 0.087366 1.729 0.08394 .
## Ind_1 -0.108292 0.140318 -0.772 0.44034
## Rep_1 0.296843 0.114103 2.602 0.00934 **
## vaxxAttitudes.c.w1 0.720423 0.014885 48.398 < 2e-16 ***
## index_ANexp.w1:Ind_1 0.007398 0.158924 0.047 0.96287
## index_ANexp.w1:Rep_1 -0.197339 0.145777 -1.354 0.17597
## index_ANexp.w2:Ind_1 0.044669 0.161620 0.276 0.78228
## index_ANexp.w2:Rep_1 0.103120 0.154872 0.666 0.50558
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5477, Adjusted R-squared: 0.5458
## F-statistic: 289 on 9 and 2148 DF, p-value: < 2.2e-16
model2.rep <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.rep)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) *
## (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0993 -0.8189 0.0449 0.9365 5.4289
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.41059 0.07301 5.623 2.12e-08 ***
## index_ANexp.w1 -0.22011 0.11827 -1.861 0.06287 .
## index_ANexp.w2 0.25418 0.12791 1.987 0.04703 *
## Ind_1 -0.40513 0.13033 -3.108 0.00191 **
## Dem_1 -0.29684 0.11410 -2.602 0.00934 **
## vaxxAttitudes.c.w1 0.72042 0.01489 48.398 < 2e-16 ***
## index_ANexp.w1:Ind_1 0.20474 0.17840 1.148 0.25125
## index_ANexp.w1:Dem_1 0.19734 0.14578 1.354 0.17597
## index_ANexp.w2:Ind_1 -0.05845 0.18676 -0.313 0.75434
## index_ANexp.w2:Dem_1 -0.10312 0.15487 -0.666 0.50558
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5477, Adjusted R-squared: 0.5458
## F-statistic: 289 on 9 and 2148 DF, p-value: < 2.2e-16
model2.ind <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.ind)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_ANexp.w2) *
## (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0993 -0.8189 0.0449 0.9365 5.4289
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.005457 0.109561 0.050 0.96028
## index_ANexp.w1 -0.015369 0.134076 -0.115 0.90875
## index_ANexp.w2 0.195731 0.136115 1.438 0.15058
## Dem_1 0.108292 0.140318 0.772 0.44034
## Rep_1 0.405135 0.130335 3.108 0.00191 **
## vaxxAttitudes.c.w1 0.720423 0.014885 48.398 < 2e-16 ***
## index_ANexp.w1:Dem_1 -0.007398 0.158924 -0.047 0.96287
## index_ANexp.w1:Rep_1 -0.204737 0.178399 -1.148 0.25125
## index_ANexp.w2:Dem_1 -0.044669 0.161620 -0.276 0.78228
## index_ANexp.w2:Rep_1 0.058451 0.186763 0.313 0.75434
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5477, Adjusted R-squared: 0.5458
## F-statistic: 289 on 9 and 2148 DF, p-value: < 2.2e-16
model3.cc <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
summary(model3.cc)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) *
## (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0616 -0.8126 0.0416 0.9384 5.4207
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.179419 0.054368 3.300 0.000982 ***
## index_AFexp.w1 -0.154614 0.137349 -1.126 0.260420
## index_AFexp.w2 0.384968 0.144380 2.666 0.007725 **
## DvR 0.276877 0.118566 2.335 0.019624 *
## IvDR 0.272042 0.125946 2.160 0.030884 *
## vaxxAttitudes.c.w1 0.720446 0.014911 48.317 < 2e-16 ***
## index_AFexp.w1:DvR -0.383634 0.304112 -1.261 0.207270
## index_AFexp.w1:IvDR -0.222718 0.315838 -0.705 0.480784
## index_AFexp.w2:DvR 0.243539 0.326074 0.747 0.455216
## index_AFexp.w2:IvDR -0.009604 0.328517 -0.029 0.976681
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5473, Adjusted R-squared: 0.5454
## F-statistic: 288.5 on 9 and 2148 DF, p-value: < 2.2e-16
m1 <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)
plot_model(m1, type = "pred", terms = c("index_AFexp.w2", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media affect wave 2") +
ylab("willingness to obtain the Covid-19 vaccine wave 2") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
m1 <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)
plot_model(m1, type = "pred", terms = c("index_AFexp.w1", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media affect wave 1") +
ylab("willingness to obtain the Covid-19 vaccine wave 2") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
model2.dem <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.dem)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) *
## (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0616 -0.8126 0.0416 0.9384 5.4207
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.13075 0.09036 1.447 0.1480
## index_AFexp.w1 -0.03629 0.18211 -0.199 0.8420
## index_AFexp.w2 0.26003 0.18743 1.387 0.1655
## Ind_1 -0.13360 0.14422 -0.926 0.3544
## Rep_1 0.27688 0.11857 2.335 0.0196 *
## vaxxAttitudes.c.w1 0.72045 0.01491 48.317 <2e-16 ***
## index_AFexp.w1:Ind_1 0.03090 0.33166 0.093 0.9258
## index_AFexp.w1:Rep_1 -0.38363 0.30411 -1.261 0.2073
## index_AFexp.w2:Ind_1 0.13137 0.34115 0.385 0.7002
## index_AFexp.w2:Rep_1 0.24354 0.32607 0.747 0.4552
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5473, Adjusted R-squared: 0.5454
## F-statistic: 288.5 on 9 and 2148 DF, p-value: < 2.2e-16
model2.rep <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.rep)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) *
## (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0616 -0.8126 0.0416 0.9384 5.4207
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.40763 0.07614 5.354 9.54e-08 ***
## index_AFexp.w1 -0.41993 0.24385 -1.722 0.08520 .
## index_AFexp.w2 0.50357 0.26699 1.886 0.05941 .
## Ind_1 -0.41048 0.13399 -3.063 0.00221 **
## Dem_1 -0.27688 0.11857 -2.335 0.01962 *
## vaxxAttitudes.c.w1 0.72045 0.01491 48.317 < 2e-16 ***
## index_AFexp.w1:Ind_1 0.41453 0.36845 1.125 0.26068
## index_AFexp.w1:Dem_1 0.38363 0.30411 1.261 0.20727
## index_AFexp.w2:Ind_1 -0.11217 0.39067 -0.287 0.77406
## index_AFexp.w2:Dem_1 -0.24354 0.32607 -0.747 0.45522
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5473, Adjusted R-squared: 0.5454
## F-statistic: 288.5 on 9 and 2148 DF, p-value: < 2.2e-16
model2.ind <- lm(vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.ind)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_AFexp.w1 + index_AFexp.w2) *
## (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0616 -0.8126 0.0416 0.9384 5.4207
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002849 0.112012 -0.025 0.97971
## index_AFexp.w1 -0.005393 0.277337 -0.019 0.98449
## index_AFexp.w2 0.391403 0.285343 1.372 0.17030
## Dem_1 0.133603 0.144223 0.926 0.35436
## Rep_1 0.410481 0.133991 3.063 0.00221 **
## vaxxAttitudes.c.w1 0.720446 0.014911 48.317 < 2e-16 ***
## index_AFexp.w1:Dem_1 -0.030901 0.331655 -0.093 0.92578
## index_AFexp.w1:Rep_1 -0.414535 0.368449 -1.125 0.26068
## index_AFexp.w2:Dem_1 -0.131373 0.341149 -0.385 0.70021
## index_AFexp.w2:Rep_1 0.112166 0.390674 0.287 0.77406
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5473, Adjusted R-squared: 0.5454
## F-statistic: 288.5 on 9 and 2148 DF, p-value: < 2.2e-16
model3.cc <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) *
(DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
summary(model3.cc)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 +
## index_ANexp.w2 + index_AFexp.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1,
## data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2812 -0.8117 0.0348 0.9208 5.4002
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.18834 0.05648 3.334 0.000869 ***
## index_ANexp.w1 -0.80004 0.51185 -1.563 0.118189
## index_AFexp.w1 1.50711 1.06178 1.419 0.155924
## index_ANexp.w2 1.15149 0.56760 2.029 0.042612 *
## index_AFexp.w2 -2.02140 1.19307 -1.694 0.090356 .
## DvR 0.19895 0.12440 1.599 0.109905
## IvDR 0.30769 0.12992 2.368 0.017961 *
## vaxxAttitudes.c.w1 0.71964 0.01494 48.173 < 2e-16 ***
## index_ANexp.w1:DvR -0.60744 1.02171 -0.595 0.552219
## index_ANexp.w1:IvDR 0.46926 1.26192 0.372 0.710034
## index_AFexp.w1:DvR 0.78702 2.12912 0.370 0.711684
## index_AFexp.w1:IvDR -1.16089 2.61078 -0.445 0.656615
## index_ANexp.w2:DvR -1.22936 1.16558 -1.055 0.291674
## index_ANexp.w2:IvDR 0.53855 1.37905 0.391 0.696189
## index_AFexp.w2:DvR 2.89400 2.45400 1.179 0.238410
## index_AFexp.w2:IvDR -1.16530 2.89507 -0.403 0.687346
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.416 on 2142 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5499, Adjusted R-squared: 0.5468
## F-statistic: 174.5 on 15 and 2142 DF, p-value: < 2.2e-16
m1 <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) *
(party_factor) + vaxxAttitudes.c.w1, data = dw)
plot_model(m1, type = "pred", terms = c("index_ANexp.w2", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media analytic thinking wave 2") +
ylab("willingness to obtain the Covid-19 vaccine wave 2") +
xlim(0, 3) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
plot_model(m1, type = "pred", terms = c("index_ANexp.w1", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media analytic thinking wave 1") +
ylab("willingness to obtain the Covid-19 vaccine wave 2") +
xlim(0, 3) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
m1 <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 +
index_ANexp.w2 + index_AFexp.w2) *
(party_factor) + vaxxAttitudes.c.w1, data = dw)
plot_model(m1, type = "pred", terms = c("index_AFexp.w2", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media affect wave 2") +
ylab("willingness to obtain the Covid-19 vaccine wave 2") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
m1 <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 +
index_ANexp.w2 + index_AFexp.w2) *
(party_factor) + vaxxAttitudes.c.w1, data = dw)
plot_model(m1, type = "pred", terms = c("index_AFexp.w1", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media affect wave 1") +
ylab("willingness to obtain the Covid-19 vaccine wave 2") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
model3.dem <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) *
(Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
summary(model3.dem)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 +
## index_ANexp.w2 + index_AFexp.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1,
## data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2812 -0.8117 0.0348 0.9208 5.4002
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.19041 0.09347 2.037 0.04175 *
## index_ANexp.w1 -0.34146 0.58251 -0.586 0.55781
## index_AFexp.w1 0.73050 1.24094 0.589 0.55615
## index_ANexp.w2 1.94390 0.66886 2.906 0.00370 **
## index_AFexp.w2 -3.85295 1.43207 -2.690 0.00719 **
## Ind_1 -0.20821 0.14861 -1.401 0.16135
## Rep_1 0.19895 0.12440 1.599 0.10990
## vaxxAttitudes.c.w1 0.71964 0.01494 48.173 < 2e-16 ***
## index_ANexp.w1:Ind_1 -0.77298 1.29259 -0.598 0.54990
## index_ANexp.w1:Rep_1 -0.60744 1.02171 -0.595 0.55222
## index_AFexp.w1:Ind_1 1.55440 2.68794 0.578 0.56313
## index_AFexp.w1:Rep_1 0.78702 2.12912 0.370 0.71168
## index_ANexp.w2:Ind_1 -1.15323 1.41716 -0.814 0.41587
## index_ANexp.w2:Rep_1 -1.22936 1.16558 -1.055 0.29167
## index_AFexp.w2:Ind_1 2.61230 2.98692 0.875 0.38190
## index_AFexp.w2:Rep_1 2.89400 2.45400 1.179 0.23841
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.416 on 2142 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5499, Adjusted R-squared: 0.5468
## F-statistic: 174.5 on 15 and 2142 DF, p-value: < 2.2e-16
model3.rep <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) *
(Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
summary(model3.rep)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 +
## index_ANexp.w2 + index_AFexp.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1,
## data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2812 -0.8117 0.0348 0.9208 5.4002
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38935 0.08135 4.786 1.82e-06 ***
## index_ANexp.w1 -0.94890 0.83946 -1.130 0.25844
## index_AFexp.w1 1.51752 1.73001 0.877 0.38049
## index_ANexp.w2 0.71453 0.95451 0.749 0.45419
## index_AFexp.w2 -0.95895 1.99330 -0.481 0.63050
## Ind_1 -0.40716 0.13932 -2.922 0.00351 **
## Dem_1 -0.19895 0.12440 -1.599 0.10990
## vaxxAttitudes.c.w1 0.71964 0.01494 48.173 < 2e-16 ***
## index_ANexp.w1:Ind_1 -0.16554 1.42690 -0.116 0.90765
## index_ANexp.w1:Dem_1 0.60744 1.02171 0.595 0.55222
## index_AFexp.w1:Ind_1 0.76738 2.94514 0.261 0.79446
## index_AFexp.w1:Dem_1 -0.78702 2.12912 -0.370 0.71168
## index_ANexp.w2:Ind_1 0.07613 1.57306 0.048 0.96141
## index_ANexp.w2:Dem_1 1.22936 1.16558 1.055 0.29167
## index_AFexp.w2:Ind_1 -0.28170 3.29427 -0.086 0.93186
## index_AFexp.w2:Dem_1 -2.89400 2.45400 -1.179 0.23841
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.416 on 2142 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5499, Adjusted R-squared: 0.5468
## F-statistic: 174.5 on 15 and 2142 DF, p-value: < 2.2e-16
model3.ind <- lm(vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 + index_ANexp.w2 + index_AFexp.w2) *
(Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
summary(model3.ind)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_ANexp.w1 + index_AFexp.w1 +
## index_ANexp.w2 + index_AFexp.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1,
## data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2812 -0.8117 0.0348 0.9208 5.4002
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01781 0.11509 -0.155 0.87704
## index_ANexp.w1 -1.11444 1.15363 -0.966 0.33414
## index_AFexp.w1 2.28491 2.38380 0.959 0.33791
## index_ANexp.w2 0.79066 1.24940 0.633 0.52691
## index_AFexp.w2 -1.24065 2.62112 -0.473 0.63603
## Dem_1 0.20821 0.14861 1.401 0.16135
## Rep_1 0.40716 0.13932 2.922 0.00351 **
## vaxxAttitudes.c.w1 0.71964 0.01494 48.173 < 2e-16 ***
## index_ANexp.w1:Dem_1 0.77298 1.29259 0.598 0.54990
## index_ANexp.w1:Rep_1 0.16554 1.42690 0.116 0.90765
## index_AFexp.w1:Dem_1 -1.55440 2.68794 -0.578 0.56313
## index_AFexp.w1:Rep_1 -0.76738 2.94514 -0.261 0.79446
## index_ANexp.w2:Dem_1 1.15323 1.41716 0.814 0.41587
## index_ANexp.w2:Rep_1 -0.07613 1.57306 -0.048 0.96141
## index_AFexp.w2:Dem_1 -2.61230 2.98692 -0.875 0.38190
## index_AFexp.w2:Rep_1 0.28170 3.29427 0.086 0.93186
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.416 on 2142 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.5499, Adjusted R-squared: 0.5468
## F-statistic: 174.5 on 15 and 2142 DF, p-value: < 2.2e-16
model3.cc <- lm(vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) * (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
summary(model3.cc)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) *
## (DvR + IvDR) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0513 -0.8097 0.0410 0.9419 5.4217
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.179155 0.054928 3.262 0.00113 **
## index_expAFAN.w1 -0.106017 0.107880 -0.983 0.32585
## index_expAFAN.w2 0.280289 0.111698 2.509 0.01217 *
## DvR 0.268385 0.120394 2.229 0.02590 *
## IvDR 0.265257 0.126800 2.092 0.03656 *
## vaxxAttitudes.c.w1 0.720223 0.014912 48.297 < 2e-16 ***
## index_expAFAN.w1:DvR -0.270587 0.239230 -1.131 0.25815
## index_expAFAN.w1:IvDR -0.156149 0.247925 -0.630 0.52888
## index_expAFAN.w2:DvR 0.174703 0.252329 0.692 0.48879
## index_expAFAN.w2:IvDR -0.009558 0.254027 -0.038 0.96999
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.419 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.547, Adjusted R-squared: 0.5451
## F-statistic: 288.2 on 9 and 2148 DF, p-value: < 2.2e-16
m1 <- lm(vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) * party_factor + vaxxAttitudes.c.w1, data = dw)
plot_model(m1, type = "pred", terms = c("index_expAFAN.w1", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media affect wave 2") +
ylab("exposure * (affect/analytic)") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
plot_model(m1, type = "pred", terms = c("index_expAFAN.w2", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media affect wave 1") +
ylab("exposure * (Affect/analytic)") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
model2.dem <- lm(vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) * (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.dem)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) *
## (Ind_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0513 -0.8097 0.0410 0.9419 5.4217
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.13250 0.09107 1.455 0.1459
## index_expAFAN.w1 -0.02225 0.14422 -0.154 0.8774
## index_expAFAN.w2 0.18978 0.14617 1.298 0.1943
## Ind_1 -0.13106 0.14507 -0.903 0.3664
## Rep_1 0.26838 0.12039 2.229 0.0259 *
## vaxxAttitudes.c.w1 0.72022 0.01491 48.297 <2e-16 ***
## index_expAFAN.w1:Ind_1 0.02086 0.26094 0.080 0.9363
## index_expAFAN.w1:Rep_1 -0.27059 0.23923 -1.131 0.2581
## index_expAFAN.w2:Ind_1 0.09691 0.26442 0.366 0.7140
## index_expAFAN.w2:Rep_1 0.17470 0.25233 0.692 0.4888
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.419 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.547, Adjusted R-squared: 0.5451
## F-statistic: 288.2 on 9 and 2148 DF, p-value: < 2.2e-16
model2.rep <- lm(vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) * (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.rep)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) *
## (Ind_1 + Dem_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0513 -0.8097 0.0410 0.9419 5.4217
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.40088 0.07810 5.133 3.11e-07 ***
## index_expAFAN.w1 -0.29284 0.19105 -1.533 0.12546
## index_expAFAN.w2 0.36449 0.20585 1.771 0.07676 .
## Ind_1 -0.39945 0.13549 -2.948 0.00323 **
## Dem_1 -0.26838 0.12039 -2.229 0.02590 *
## vaxxAttitudes.c.w1 0.72022 0.01491 48.297 < 2e-16 ***
## index_expAFAN.w1:Ind_1 0.29144 0.28889 1.009 0.31317
## index_expAFAN.w1:Dem_1 0.27059 0.23923 1.131 0.25815
## index_expAFAN.w2:Ind_1 -0.07779 0.30162 -0.258 0.79649
## index_expAFAN.w2:Dem_1 -0.17470 0.25233 -0.692 0.48879
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.419 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.547, Adjusted R-squared: 0.5451
## F-statistic: 288.2 on 9 and 2148 DF, p-value: < 2.2e-16
model2.ind <- lm(vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) * (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
summary(model2.ind)
##
## Call:
## lm(formula = vaxxAttitudes.w2 ~ (index_expAFAN.w1 + index_expAFAN.w2) *
## (Dem_1 + Rep_1) + vaxxAttitudes.c.w1, data = dw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0513 -0.8097 0.0410 0.9419 5.4217
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001433 0.112521 0.013 0.98984
## index_expAFAN.w1 -0.001398 0.217560 -0.006 0.99487
## index_expAFAN.w2 0.286692 0.220581 1.300 0.19384
## Dem_1 0.131065 0.145074 0.903 0.36640
## Rep_1 0.399449 0.135490 2.948 0.00323 **
## vaxxAttitudes.c.w1 0.720223 0.014912 48.297 < 2e-16 ***
## index_expAFAN.w1:Dem_1 -0.020855 0.260942 -0.080 0.93631
## index_expAFAN.w1:Rep_1 -0.291442 0.288892 -1.009 0.31317
## index_expAFAN.w2:Dem_1 -0.096909 0.264425 -0.366 0.71404
## index_expAFAN.w2:Rep_1 0.077793 0.301619 0.258 0.79649
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.419 on 2148 degrees of freedom
## (1259 observations deleted due to missingness)
## Multiple R-squared: 0.547, Adjusted R-squared: 0.5451
## F-statistic: 288.2 on 9 and 2148 DF, p-value: < 2.2e-16
model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) *
(index_ANexp) +
(1 | participant), data = dl)
summary(model1.cc)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * (index_ANexp) + (1 | participant)
## Data: dl
##
## REML criterion at convergence: 21851.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.07086 -0.45918 0.03003 0.47244 2.99335
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.035 1.742
## Residual 1.241 1.114
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.009123 0.049337 0.185
## W1vW2 -0.275403 0.032744 -8.411
## DvR -0.815718 0.103719 -7.865
## IvDR 0.391216 0.103347 3.785
## index_ANexp 0.424440 0.042669 9.947
## DvR:index_ANexp 0.377193 0.087785 4.297
## IvDR:index_ANexp 0.092059 0.094907 0.970
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 DvR IvDR ind_AN DR:_AN
## W1vW2 0.006
## DvR -0.045 -0.017
## IvDR -0.237 -0.024 -0.059
## index_ANexp -0.667 0.091 -0.009 0.168
## DvR:ndx_ANx 0.011 0.031 -0.713 0.018 0.159
## IvDR:ndx_AN 0.159 -0.007 0.022 -0.688 -0.278 0.092
m1 <- lmer(vaxxAttitudes ~ W1vW2 + index_ANexp * party_factor +
(1 | participant), data = dl)
plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media analytic thinking ") +
ylab("willingness to obtain the Covid-19 vaccine") +
xlim(0, 3) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
model1.dem <- lmer(vaxxAttitudes ~ W1vW2 +
index_ANexp *
(Rep_1 + Ind_1) +
(1 | participant), data = dl)
summary(model1.dem)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Rep_1 + Ind_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21851.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.07085 -0.45918 0.03003 0.47244 2.99335
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.035 1.742
## Residual 1.241 1.114
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.54608 0.07698 7.094
## W1vW2 -0.27540 0.03274 -8.411
## index_ANexp 0.26622 0.05600 4.754
## Rep_1 -0.81572 0.10372 -7.865
## Ind_1 -0.79907 0.11833 -6.753
## index_ANexp:Rep_1 0.37719 0.08778 4.297
## index_ANexp:Ind_1 0.09654 0.10084 0.957
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AN Rep_1 Ind_1 i_AN:R
## W1vW2 0.004
## index_ANexp -0.774 0.041
## Rep_1 -0.729 -0.017 0.564
## Ind_1 -0.608 0.014 0.484 0.490
## indx_AN:R_1 0.495 0.031 -0.611 -0.713 -0.328
## indx_AN:I_1 0.420 0.020 -0.525 -0.331 -0.717 0.349
model1.rep <- lmer(vaxxAttitudes ~ W1vW2 +
index_ANexp *
(Dem_1 + Ind_1) +
(1 | participant), data = dl)
summary(model1.rep)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Dem_1 + Ind_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21851.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.07086 -0.45918 0.03003 0.47244 2.99335
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.035 1.742
## Residual 1.241 1.114
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.26963 0.07106 -3.795
## W1vW2 -0.27540 0.03274 -8.411
## index_ANexp 0.64342 0.06954 9.253
## Dem_1 0.81572 0.10372 7.865
## Ind_1 0.01664 0.11287 0.147
## index_ANexp:Dem_1 -0.37719 0.08778 -4.297
## index_ANexp:Ind_1 -0.28066 0.10816 -2.595
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AN Dem_1 Ind_1 i_AN:D
## W1vW2 -0.020
## index_ANexp -0.649 0.073
## Dem_1 -0.670 0.017 0.446
## Ind_1 -0.557 0.030 0.384 0.406
## indx_AN:D_1 0.504 -0.031 -0.770 -0.713 -0.311
## indx_AN:I_1 0.383 -0.007 -0.609 -0.270 -0.670 0.486
model1.ind <- lmer(vaxxAttitudes ~ W1vW2 +
index_ANexp *
(Dem_1 + Rep_1) +
(1 | participant), data = dl)
summary(model1.ind)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_ANexp * (Dem_1 + Rep_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21851.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.07085 -0.45918 0.03003 0.47244 2.99335
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.035 1.742
## Residual 1.241 1.114
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.25299 0.09408 -2.689
## W1vW2 -0.27540 0.03274 -8.411
## index_ANexp 0.36276 0.08585 4.225
## Dem_1 0.79907 0.11833 6.753
## Rep_1 -0.01664 0.11287 -0.147
## index_ANexp:Dem_1 -0.09654 0.10084 -0.957
## index_ANexp:Rep_1 0.28066 0.10816 2.595
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AN Dem_1 Rep_1 i_AN:D
## W1vW2 0.021
## index_ANexp -0.672 0.051
## Dem_1 -0.760 -0.014 0.527
## Rep_1 -0.779 -0.030 0.533 0.598
## indx_AN:D_1 0.558 -0.020 -0.832 -0.717 -0.448
## indx_AN:R_1 0.514 0.007 -0.766 -0.402 -0.670 0.649
model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * index_AFexp + (1 | participant), data = dl)
summary(model1.cc)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * index_AFexp + (1 | participant)
## Data: dl
##
## REML criterion at convergence: 21846.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.07554 -0.46464 0.02802 0.47296 2.97591
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.027 1.740
## Residual 1.243 1.115
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.00798 0.05051 -0.158
## W1vW2 -0.26871 0.03284 -8.183
## DvR -0.84623 0.10704 -7.906
## IvDR 0.39188 0.10544 3.717
## index_AFexp 0.88739 0.08886 9.986
## DvR:index_AFexp 0.82145 0.18405 4.463
## IvDR:index_AFexp 0.18141 0.19650 0.923
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 DvR IvDR ind_AF DR:_AF
## W1vW2 -0.010
## DvR -0.052 -0.015
## IvDR -0.225 -0.028 -0.064
## index_AFexp -0.686 0.108 -0.004 0.159
## DvR:ndx_AFx 0.014 0.032 -0.733 0.022 0.149
## IvDR:ndx_AF 0.151 -0.002 0.025 -0.702 -0.264 0.085
m1 <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * party_factor + (1 | participant), data = dl)
plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media analytic thinking ") +
ylab("willingness to obtain the Covid-19 vaccine") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
model1.dem <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Rep_1 + Ind_1) + (1 | participant), data = dl)
summary(model1.dem)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Rep_1 + Ind_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21846.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.07554 -0.46464 0.02802 0.47296 2.97591
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.027 1.740
## Residual 1.243 1.115
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.54446 0.07975 6.827
## W1vW2 -0.26871 0.03284 -8.183
## index_AFexp 0.53653 0.11859 4.524
## Rep_1 -0.84623 0.10704 -7.906
## Ind_1 -0.81500 0.12129 -6.720
## index_AFexp:Rep_1 0.82145 0.18405 4.463
## index_AFexp:Ind_1 0.22931 0.20975 1.093
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AF Rep_1 Ind_1 i_AF:R
## W1vW2 -0.008
## index_AFexp -0.791 0.055
## Rep_1 -0.732 -0.015 0.579
## Ind_1 -0.616 0.017 0.500 0.497
## indx_AF:R_1 0.510 0.032 -0.618 -0.733 -0.343
## indx_AF:I_1 0.437 0.016 -0.536 -0.345 -0.732 0.359
model1.rep <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Ind_1) + (1 | participant), data = dl)
summary(model1.rep)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Ind_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21846.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.07554 -0.46464 0.02802 0.47296 2.97591
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.027 1.740
## Residual 1.243 1.115
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.30178 0.07289 -4.140
## W1vW2 -0.26871 0.03284 -8.183
## index_AFexp 1.35798 0.14485 9.375
## Dem_1 0.84623 0.10704 7.906
## Ind_1 0.03124 0.11513 0.271
## index_AFexp:Dem_1 -0.82145 0.18405 -4.463
## index_AFexp:Ind_1 -0.59214 0.22397 -2.644
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AF Dem_1 Ind_1 i_AF:D
## W1vW2 -0.031
## index_AFexp -0.671 0.086
## Dem_1 -0.667 0.015 0.457
## Ind_1 -0.561 0.032 0.398 0.406
## indx_AF:D_1 0.518 -0.032 -0.765 -0.733 -0.321
## indx_AF:I_1 0.399 -0.011 -0.612 -0.280 -0.686 0.486
model1.ind <- lmer(vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Rep_1) + (1 | participant), data = dl)
summary(model1.ind)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_AFexp * (Dem_1 + Rep_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21846.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.07554 -0.46464 0.02802 0.47296 2.97591
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.027 1.740
## Residual 1.243 1.115
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.27054 0.09564 -2.829
## W1vW2 -0.26871 0.03284 -8.183
## index_AFexp 0.76584 0.17725 4.321
## Dem_1 0.81500 0.12129 6.720
## Rep_1 -0.03124 0.11513 -0.271
## index_AFexp:Dem_1 -0.22931 0.20975 -1.093
## index_AFexp:Rep_1 0.59214 0.22397 2.644
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AF Dem_1 Rep_1 i_AF:D
## W1vW2 0.015
## index_AFexp -0.685 0.056
## Dem_1 -0.754 -0.017 0.532
## Rep_1 -0.776 -0.032 0.541 0.591
## indx_AF:D_1 0.565 -0.016 -0.825 -0.732 -0.451
## indx_AF:R_1 0.521 0.011 -0.763 -0.404 -0.686 0.642
model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) *
(index_AFexp + index_ANexp) +
(1 | participant), data = dl)
summary(model1.cc)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * (index_AFexp + index_ANexp) +
## (1 | participant)
## Data: dl
##
## REML criterion at convergence: 21840.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.03524 -0.45882 0.02867 0.47043 2.97079
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.019 1.737
## Residual 1.246 1.116
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.00100 0.05193 0.019
## W1vW2 -0.27301 0.03321 -8.222
## DvR -0.89749 0.11094 -8.090
## IvDR 0.41950 0.10765 3.897
## index_AFexp 0.73033 0.75346 0.969
## index_ANexp 0.07068 0.36240 0.195
## DvR:index_AFexp 2.93045 1.42875 2.051
## DvR:index_ANexp -1.00819 0.68193 -1.478
## IvDR:index_AFexp -1.34855 1.75298 -0.769
## IvDR:index_ANexp 0.73747 0.84757 0.870
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 DvR IvDR ind_AF ind_AN DR:_AF DR:_AN IDR:_AF
## W1vW2 -0.042
## DvR -0.054 -0.013
## IvDR -0.209 -0.036 -0.068
## index_AFexp -0.298 0.134 -0.018 0.058
## index_ANexp 0.221 -0.122 0.019 -0.042 -0.993
## DvR:ndx_AFx -0.021 0.025 -0.347 0.003 0.194 -0.197
## DvR:ndx_ANx 0.024 -0.022 0.258 0.001 -0.197 0.202 -0.992
## IvDR:ndx_AF 0.047 0.014 0.001 -0.271 -0.411 0.417 0.092 -0.094
## IvDR:ndx_AN -0.032 -0.014 0.002 0.194 0.414 -0.423 -0.093 0.097 -0.994
m1 <- lmer(vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * party_factor +
(1 | participant), data = dl)
plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media analytic thinking ") +
ylab("willingness to obtain the Covid-19 vaccine") +
xlim(0, 3) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
m1 <- lmer(vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * party_factor +
(1 | participant), data = dl)
plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("media affect") +
ylab("willingness to obtain the Covid-19 vaccine") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
model1.dem <- lmer(vaxxAttitudes ~ W1vW2 +
(index_AFexp + index_ANexp) *
(Rep_1 + Ind_1) +
(1 | participant), data = dl)
summary(model1.dem)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Rep_1 +
## Ind_1) + (1 | participant)
## Data: dl
##
## REML criterion at convergence: 21840.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.03524 -0.45882 0.02867 0.47043 2.97079
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.019 1.737
## Residual 1.246 1.116
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.58818 0.08271 7.112
## W1vW2 -0.27301 0.03321 -8.222
## index_AFexp -1.17992 0.87704 -1.345
## index_ANexp 0.81814 0.41422 1.975
## Rep_1 -0.89749 0.11093 -8.090
## Ind_1 -0.86825 0.12439 -6.980
## index_AFexp:Rep_1 2.93045 1.42875 2.051
## index_AFexp:Ind_1 2.81377 1.83132 1.536
## index_ANexp:Rep_1 -1.00819 0.68192 -1.478
## index_ANexp:Ind_1 -1.24157 0.88242 -1.407
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AF ind_AN Rep_1 Ind_1 i_AF:R i_AF:I i_AN:R
## W1vW2 -0.033
## index_AFexp -0.367 0.104
## index_ANexp 0.266 -0.098 -0.991
## Rep_1 -0.734 -0.013 0.268 -0.194
## Ind_1 -0.624 0.026 0.232 -0.168 0.504
## indx_AF:R_1 0.221 0.025 -0.587 0.581 -0.347 -0.157
## indx_AF:I_1 0.170 -0.004 -0.451 0.446 -0.137 -0.286 0.302
## indx_AN:R_1 -0.158 -0.022 0.576 -0.581 0.258 0.114 -0.992 -0.296
## indx_AN:I_1 -0.120 0.005 0.438 -0.441 0.098 0.205 -0.294 -0.993 0.293
model1.rep <- lmer(vaxxAttitudes ~ W1vW2 +
(index_AFexp + index_ANexp) *
(Dem_1 + Ind_1) +
(1 | participant), data = dl)
summary(model1.rep)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Dem_1 +
## Ind_1) + (1 | participant)
## Data: dl
##
## REML criterion at convergence: 21840.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.03524 -0.45882 0.02867 0.47043 2.97079
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.019 1.737
## Residual 1.246 1.116
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.30931 0.07541 -4.102
## W1vW2 -0.27301 0.03321 -8.222
## index_AFexp 1.75053 1.15705 1.513
## index_ANexp -0.19005 0.55550 -0.342
## Dem_1 0.89749 0.11093 8.090
## Ind_1 0.02924 0.11772 0.248
## index_AFexp:Dem_1 -2.93045 1.42875 -2.051
## index_AFexp:Ind_1 -0.11668 1.95264 -0.060
## index_ANexp:Dem_1 1.00819 0.68192 1.478
## index_ANexp:Ind_1 -0.23338 0.94371 -0.247
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AF ind_AN Dem_1 Ind_1 i_AF:D i_AF:I i_AN:D
## W1vW2 -0.055
## index_AFexp -0.337 0.110
## index_ANexp 0.258 -0.100 -0.992
## Dem_1 -0.667 0.013 0.226 -0.172
## Ind_1 -0.568 0.039 0.194 -0.146 0.409
## indx_AF:D_1 0.268 -0.025 -0.790 0.784 -0.347 -0.161
## indx_AF:I_1 0.183 -0.022 -0.548 0.544 -0.126 -0.281 0.448
## indx_AN:D_1 -0.207 0.022 0.788 -0.795 0.258 0.123 -0.992 -0.448
## indx_AN:I_1 -0.138 0.020 0.540 -0.545 0.095 0.205 -0.442 -0.993 0.448
model1.ind <- lmer(vaxxAttitudes ~ W1vW2 +
(index_AFexp + index_ANexp) *
(Dem_1 + Rep_1) +
(1 | participant), data = dl)
summary(model1.ind)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + (index_AFexp + index_ANexp) * (Dem_1 +
## Rep_1) + (1 | participant)
## Data: dl
##
## REML criterion at convergence: 21840.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.03524 -0.45882 0.02867 0.47043 2.97079
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.019 1.737
## Residual 1.246 1.116
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.28007 0.09729 -2.879
## W1vW2 -0.27301 0.03321 -8.222
## index_AFexp 1.63386 1.63567 0.999
## index_ANexp -0.42343 0.79239 -0.534
## Dem_1 0.86825 0.12439 6.980
## Rep_1 -0.02924 0.11772 -0.248
## index_AFexp:Dem_1 -2.81377 1.83132 -1.536
## index_AFexp:Rep_1 0.11668 1.95264 0.060
## index_ANexp:Dem_1 1.24157 0.88242 1.407
## index_ANexp:Rep_1 0.23338 0.94371 0.247
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 ind_AF ind_AN Dem_1 Rep_1 i_AF:D i_AF:R i_AN:D
## W1vW2 0.005
## index_AFexp -0.255 0.052
## index_ANexp 0.184 -0.046 -0.994
## Dem_1 -0.748 -0.026 0.196 -0.140
## Rep_1 -0.770 -0.039 0.198 -0.141 0.581
## indx_AF:D_1 0.221 0.004 -0.878 0.873 -0.286 -0.173
## indx_AF:R_1 0.198 0.022 -0.806 0.802 -0.153 -0.281 0.717
## indx_AN:D_1 -0.159 -0.005 0.878 -0.883 0.205 0.124 -0.993 -0.717
## indx_AN:R_1 -0.141 -0.020 0.804 -0.809 0.109 0.205 -0.715 -0.993 0.723
model1.cc <- lmer(vaxxAttitudes ~ W1vW2 + (DvR + IvDR) *
index_expAFAN +
(1 | participant), data = dl)
summary(model1.cc)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## vaxxAttitudes ~ W1vW2 + (DvR + IvDR) * index_expAFAN + (1 | participant)
## Data: dl
##
## REML criterion at convergence: 21852.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.06367 -0.46372 0.02813 0.47394 2.96963
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.027 1.740
## Residual 1.245 1.116
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.006956 0.050995 -0.136
## W1vW2 -0.274263 0.032811 -8.359
## DvR -0.878980 0.108444 -8.105
## IvDR 0.390822 0.106146 3.682
## index_expAFAN 0.677190 0.069379 9.761
## DvR:index_expAFAN 0.668067 0.144152 4.634
## IvDR:index_expAFAN 0.140237 0.153284 0.915
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 DvR IvDR i_AFAN DR:_AF
## W1vW2 0.001
## DvR -0.047 -0.024
## IvDR -0.218 -0.025 -0.061
## indx_xpAFAN -0.693 0.093 -0.009 0.155
## DvR:nd_AFAN 0.009 0.040 -0.742 0.019 0.147
## IvDR:n_AFAN 0.146 -0.005 0.022 -0.707 -0.261 0.084
m1 <- lmer(vaxxAttitudes ~ W1vW2 + index_expAFAN * party_factor +
(1 | participant), data = dl)
plot_model(m1, type = "pred", terms = c("index_expAFAN", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("exposure * (affect/analytic)") +
ylab("vaccine intentions") +
xlim(0, 3) +
theme_minimal()+
labs(color ='partisan identity')
m1 <- lmer(vaxxAttitudes ~ W1vW2 + index_expAFAN * party_factor +
(1 | participant), data = dl)
plot_model(m1, type = "pred", terms = c("index_expAFAN", "party_factor"),
color = c("blue", "red", "purple")) +
ggtitle("") +
xlab("exposure * (affect/analytic)") +
ylab("vaccination intentions") +
xlim(0, 1.5) +
theme_minimal()+
labs(color ='partisan identity')
## Warning: Removed 3 row(s) containing missing values (geom_path).
model1.dem <- lmer(vaxxAttitudes ~ W1vW2 +
index_expAFAN *
(Rep_1 + Ind_1) +
(1 | participant), data = dl)
summary(model1.dem)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_expAFAN * (Rep_1 + Ind_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21852.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.06367 -0.46372 0.02813 0.47394 2.96963
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.027 1.740
## Residual 1.245 1.116
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.56151 0.08048 6.977
## W1vW2 -0.27426 0.03281 -8.359
## index_expAFAN 0.38944 0.09303 4.186
## Rep_1 -0.87898 0.10844 -8.105
## Ind_1 -0.83031 0.12210 -6.800
## index_expAFAN:Rep_1 0.66807 0.14415 4.634
## index_expAFAN:Ind_1 0.19380 0.16381 1.183
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 in_AFAN Rep_1 Ind_1 i_AFAN:R
## W1vW2 0.006
## indx_xpAFAN -0.796 0.036
## Rep_1 -0.730 -0.024 0.580
## Ind_1 -0.618 0.011 0.504 0.497
## in_AFAN:R_1 0.514 0.040 -0.619 -0.742 -0.346
## in_AFAN:I_1 0.441 0.022 -0.539 -0.347 -0.736 0.361
model1.rep <- lmer(vaxxAttitudes ~ W1vW2 +
index_expAFAN *
(Dem_1 + Ind_1) +
(1 | participant), data = dl)
summary(model1.rep)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_expAFAN * (Dem_1 + Ind_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21852.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.06367 -0.46372 0.02813 0.47394 2.96963
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.027 1.740
## Residual 1.245 1.116
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.31747 0.07415 -4.282
## W1vW2 -0.27426 0.03281 -8.359
## index_expAFAN 1.05750 0.11323 9.340
## Dem_1 0.87898 0.10844 8.105
## Ind_1 0.04867 0.11622 0.419
## index_expAFAN:Dem_1 -0.66807 0.14415 -4.634
## index_expAFAN:Ind_1 -0.47427 0.17478 -2.714
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 in_AFAN Dem_1 Ind_1 i_AFAN:D
## W1vW2 -0.028
## indx_xpAFAN -0.685 0.080
## Dem_1 -0.670 0.024 0.468
## Ind_1 -0.566 0.034 0.409 0.411
## in_AFAN:D_1 0.528 -0.040 -0.764 -0.742 -0.329
## in_AFAN:I_1 0.409 -0.012 -0.614 -0.287 -0.693 0.486
model1.ind <- lmer(vaxxAttitudes ~ W1vW2 +
index_expAFAN *
(Dem_1 + Rep_1) +
(1 | participant), data = dl)
summary(model1.ind)
## Linear mixed model fit by REML ['lmerMod']
## Formula: vaxxAttitudes ~ W1vW2 + index_expAFAN * (Dem_1 + Rep_1) + (1 |
## participant)
## Data: dl
##
## REML criterion at convergence: 21852.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.06367 -0.46372 0.02813 0.47394 2.96963
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 3.027 1.740
## Residual 1.245 1.116
## Number of obs: 5448, groups: participant, 3244
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.26881 0.09613 -2.796
## W1vW2 -0.27426 0.03281 -8.359
## index_expAFAN 0.58323 0.13811 4.223
## Dem_1 0.83031 0.12210 6.800
## Rep_1 -0.04867 0.11622 -0.419
## index_expAFAN:Dem_1 -0.19380 0.16381 -1.183
## index_expAFAN:Rep_1 0.47427 0.17478 2.714
##
## Correlation of Fixed Effects:
## (Intr) W1vW2 in_AFAN Dem_1 Rep_1 i_AFAN:D
## W1vW2 0.019
## indx_xpAFAN -0.689 0.050
## Dem_1 -0.753 -0.011 0.534
## Rep_1 -0.772 -0.034 0.542 0.587
## in_AFAN:D_1 0.566 -0.022 -0.823 -0.736 -0.450
## in_AFAN:R_1 0.522 0.012 -0.762 -0.405 -0.693 0.639