dat_try2019=
read_csv("cover19.csv")%>%
mutate(DM_Cover=as.numeric(DM_Cover)) %>%
unite("code",c(Plot,Subplot), sep="_", remove=FALSE) %>%
select(Plot,code,Species,DM_Cover) %>%
pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0) %>%
select (-"Oxalis stricta",-"Berberis trifoliolata", -"Vine A") %>%
filter(code !="41_3")
trt_try=
read.csv("trt.csv") %>%
unite("code",c(Plot,Subplot), sep="_", remove=FALSE) %>%
rename(herb=Herbivory.Tr, fire= Fire.Energy.Tr)
trt2019=
dat_try2019 %>%
inner_join(trt_try) %>%
select(Plot,code, herb, fire)
dat2019ord=
read.csv("cover19.csv")%>%
mutate(DM_Cover=as.numeric(DM_Cover)) %>%
unite("code",c(Plot,Subplot), sep="_") %>%
as_tibble() %>%
select(code,Species,DM_Cover) %>%
pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0) %>%
select (-"Oxalis stricta",-"Berberis trifoliolata", -"Vine A") %>%
filter(code !="41_3")%>%
select(-code)
dat19 =
read.csv("2019.biomass.csv") %>%
mutate(Cage=trimws(Cage))%>%
group_by(Plot, Quad, Cage, Fire) %>%
summarise(Biomass = sum(Biomass.g.m.2, na.rm = T))
dat19f =
read.csv("2019.biomass.csv") %>%
mutate(Cage=trimws(Cage)) %>%
filter(Forb.Grass=="Forb")
dat20 = read.csv("2020.biomass.csv") %>%
mutate(Cage=trimws(Cage))%>%
group_by(Plot, Quad, Cage, Fire) %>%
summarise(Biomass = sum(Biomass.g.m.2, na.rm = T))
dat20f =
read.csv("2020.biomass.csv") %>%
mutate(Cage=trimws(Cage)) %>%
filter(Forb.Grass=="Forb")
#biomass analysis
| Â | Total Biomass 2019 | Total Biomass 2020 | ||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | Conf. Int (95%) | p-Value | Estimates | Conf. Int (95%) | p-Value |
| (Intercept) | 147.20 | 106.76 – 202.96 | <0.001 | 339.05 | 248.58 – 429.51 | <0.001 |
| Exclosure (Yes) | 2.04 | 1.30 – 3.20 | 0.002 | 199.26 | 100.30 – 298.23 | <0.001 |
| Fire Energy (Low) | 1.04 | 0.66 – 1.64 | 0.866 | -5.62 | -131.20 – 119.96 | 0.929 |
| Fire Energy (High) | 0.83 | 0.50 – 1.38 | 0.474 | -111.90 | -241.27 – 17.48 | 0.089 |
|
Exclosure (Yes)*Fire Energy (Low) |
0.79 | 0.42 – 1.48 | 0.460 | -61.57 | -198.10 – 74.96 | 0.371 |
|
Exclosure (Yes)*Fire Energy (High) |
1.33 | 0.69 – 2.56 | 0.399 | 6.64 | -133.79 – 147.07 | 0.925 |
| Random Effects | ||||||
| σ2 |  | 27741.79 | ||||
| τ00 |  | 19904.00 Plot | ||||
| Observations | 143 | 141 | ||||
##grass and forb biomass
| Â | Grass Biomass | Forb Biomass | ||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | Conf. Int (95%) | p-Value | Estimates | Conf. Int (95%) | p-Value |
| (Intercept) | 69.44 | 38.91 – 123.92 | <0.001 | 77.88 | 49.40 – 122.78 | <0.001 |
| Exclosure (Yes) | 2.60 | 1.14 – 5.89 | 0.022 | 1.55 | 0.82 – 2.96 | 0.179 |
| Fire Energy (Low) | 1.42 | 0.62 – 3.22 | 0.404 | 0.70 | 0.37 – 1.34 | 0.281 |
| Fire Energy (High) | 0.41 | 0.18 – 0.94 | 0.034 | 1.26 | 0.66 – 2.40 | 0.483 |
|
Exclosure (Yes)*Fire Energy (Low) |
0.47 | 0.15 – 1.49 | 0.197 | 1.48 | 0.60 – 3.69 | 0.396 |
|
Exclosure (Yes)*Fire Energy (High) |
1.48 | 0.46 – 4.71 | 0.509 | 1.69 | 0.68 – 4.20 | 0.260 |
| Observations | 144 | 144 | ||||
| Â | Grass Biomass | Forb Biomass | ||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | Conf. Int (95%) | p-Value | Estimates | Conf. Int (95%) | p-Value |
| (Intercept) | 331.52 | 235.62 – 427.41 | <0.001 | 12.88 | 5.79 – 28.67 | <0.001 |
| Exclosure (Yes) | 114.05 | -9.03 – 237.14 | 0.069 | 5.01 | 2.06 – 12.20 | <0.001 |
| Fire Energy (Low) | -11.72 | -144.65 – 121.21 | 0.861 | 1.15 | 0.43 – 3.12 | 0.778 |
| Fire Energy (High) | -111.07 | -257.85 – 35.71 | 0.136 | 3.35 | 1.24 – 9.05 | 0.017 |
|
Exclosure (Yes)*Fire Energy (Low) |
1.66 | -168.56 – 171.87 | 0.985 | 0.40 | 0.13 – 1.22 | 0.108 |
|
Exclosure (Yes)*Fire Energy (High) |
10.91 | -173.28 – 195.09 | 0.906 | 0.55 | 0.17 – 1.75 | 0.307 |
| Random Effects | ||||||
| σ2 | 43186.51 |  | ||||
| τ00 | 10038.99 Plot |  | ||||
| Observations | 135 | 99 | ||||
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 2 0.64128 0.32064 19.553 3.337e-08 ***
## Residuals 138 2.26296 0.01640
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
## diff lwr upr p adj
## High Energy-Control 0.06566638 0.002711641 0.12862111 0.0387513
## Low Energy-Control -0.09896321 -0.160894221 -0.03703219 0.0006628
## Low Energy-High Energy -0.16462958 -0.227584320 -0.10167485 0.0000000
groupsHerb=trt2019$herb
disHerb <- vegdist(dat2019ord,method="bray")
modHerb <- betadisper(disHerb, groupsHerb)
anova(modHerb)
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 1 0.00759 0.0075944 0.3672 0.5455
## Residuals 139 2.87440 0.0206791
TukeyHSD(modHerb)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
## diff lwr upr p adj
## Control-Cage -0.01467836 -0.06256819 0.03321148 0.5454964
adon.results<-adonis(dat2019ord ~ trt2019$fire*trt2019$herb,strata=trt2019$Plot, method="bray",perm=999)
print(adon.results)
##
## Call:
## adonis(formula = dat2019ord ~ trt2019$fire * trt2019$herb, permutations = 999, method = "bray", strata = trt2019$Plot)
##
## Blocks: strata
## Permutation: free
## Number of permutations: 999
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
## trt2019$fire 2 2.890 1.44497 4.4060 0.06040 0.744
## trt2019$herb 1 0.343 0.34332 1.0469 0.00718 0.251
## trt2019$fire:trt2019$herb 2 0.336 0.16784 0.5118 0.00702 0.905
## Residuals 135 44.274 0.32796 0.92540
## Total 140 47.843 1.00000
dat_try2020=
read.csv("cover20.csv")%>%
mutate(DM_Cover=as.numeric(DM_Cover)) %>%
unite("code",c(Plot,Subplot), sep="_") %>%
as_tibble() %>%
select(code,Species,DM_Cover) %>%
pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0)
trt_try2020=
read.csv("trt.csv")%>%
unite("code",c(Plot,Subplot), sep="_", remove=FALSE) %>%
rename(herb=Herbivory.Tr, fire= Fire.Energy.Tr)
trt2020=
dat_try2020 %>%
inner_join(trt_try2020) %>%
select(Plot,code, herb, fire)
dat2020ord=
read.csv("cover20.csv")%>%
mutate(DM_Cover=as.numeric(DM_Cover)) %>%
unite("code",c(Plot,Subplot), sep="_") %>%
as_tibble() %>%
select(code,Species,DM_Cover) %>%
pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0) %>%
select(-code)
set.seed(106)
dat20_NMDS=metaMDS(dat2020ord,k=4,trymax =1000)
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.120954
## Run 1 stress 0.1207188
## ... New best solution
## ... Procrustes: rmse 0.01458404 max resid 0.1211542
## Run 2 stress 0.1208106
## ... Procrustes: rmse 0.005498439 max resid 0.05866822
## Run 3 stress 0.1208457
## ... Procrustes: rmse 0.007596885 max resid 0.07897238
## Run 4 stress 0.1208674
## ... Procrustes: rmse 0.01138681 max resid 0.1129392
## Run 5 stress 0.1206619
## ... New best solution
## ... Procrustes: rmse 0.004852536 max resid 0.05272744
## Run 6 stress 0.1251471
## Run 7 stress 0.1214091
## Run 8 stress 0.1209534
## ... Procrustes: rmse 0.0136288 max resid 0.1195356
## Run 9 stress 0.1207866
## ... Procrustes: rmse 0.007955399 max resid 0.08541724
## Run 10 stress 0.1206621
## ... Procrustes: rmse 0.0008873284 max resid 0.006413112
## ... Similar to previous best
## Run 11 stress 0.122984
## Run 12 stress 0.1214209
## Run 13 stress 0.1206616
## ... New best solution
## ... Procrustes: rmse 0.0005542569 max resid 0.004356755
## ... Similar to previous best
## Run 14 stress 0.120662
## ... Procrustes: rmse 0.0006469272 max resid 0.005365695
## ... Similar to previous best
## Run 15 stress 0.121414
## Run 16 stress 0.1208393
## ... Procrustes: rmse 0.01074132 max resid 0.116876
## Run 17 stress 0.1206616
## ... New best solution
## ... Procrustes: rmse 0.0003450684 max resid 0.002325966
## ... Similar to previous best
## Run 18 stress 0.1207643
## ... Procrustes: rmse 0.004425409 max resid 0.02047469
## Run 19 stress 0.1207885
## ... Procrustes: rmse 0.008054406 max resid 0.08784118
## Run 20 stress 0.1206613
## ... New best solution
## ... Procrustes: rmse 0.000342827 max resid 0.002218599
## ... Similar to previous best
## *** Solution reached
dat20_NMDS
##
## Call:
## metaMDS(comm = dat2020ord, k = 4, trymax = 1000)
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(sqrt(dat2020ord))
## Distance: bray
##
## Dimensions: 4
## Stress: 0.1206613
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'wisconsin(sqrt(dat2020ord))'
groupsHerb=trt2020$herb
disHerb <- vegdist(dat2020ord,method="bray")
modHerb <- betadisper(disHerb, groupsHerb)
anova(modHerb)
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 1 0.0342 0.034248 1.1908 0.277
## Residuals 140 4.0264 0.028760
TukeyHSD(modHerb)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
## diff lwr upr p adj
## Control-Cage 0.03106338 -0.02521519 0.08734196 0.2770375
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 2 0.1724 0.086203 2.2872 0.1054
## Residuals 139 5.2388 0.037690
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = distances ~ group, data = df)
##
## $group
## diff lwr upr p adj
## High Energy-Control 0.08268997 -0.01220775 0.17758769 0.1011038
## Low Energy-Control 0.06149055 -0.03340718 0.15638827 0.2777385
## Low Energy-High Energy -0.02119942 -0.11508216 0.07268332 0.8542733
adon.results<-adonis(dat2020ord ~ trt2020$fire*trt2020$herb, method="bray",perm=999, strata=trt2020$Plot)
print(adon.results)
##
## Call:
## adonis(formula = dat2020ord ~ trt2020$fire * trt2020$herb, permutations = 999, method = "bray", strata = trt2020$Plot)
##
## Blocks: strata
## Permutation: free
## Number of permutations: 999
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
## trt2020$fire 2 2.906 1.45287 5.5214 0.07349 0.202
## trt2020$herb 1 0.424 0.42403 1.6115 0.01072 0.056 .
## trt2020$fire:trt2020$herb 2 0.421 0.21058 0.8003 0.01065 0.490
## Residuals 136 35.786 0.26313 0.90513
## Total 141 39.537 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1