NOTES:

UK media in survey: Daily Mail (1) Guardian (2) Sun (3) Daily Mirror (4) The Scotsman & Scotland on Sunday (5) UK Times (6) Telegraph & Sunday Telegraph (7) BBC Radio (8) BBC Broadcast (9) The Independent (10)

UK media LIWC measures: DailyMail (1) Guardian (2)
Sun (3) Mirror (4) —— Scotsman (not in survey??) UKTimes (6) Telegraph (7) BBC (8, 9???) Independent (10)
—— National (not in survey??)

set up

libraries and data sets

library(psych)
library(lme4)
## Loading required package: Matrix
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(lmSupport)
library(sjPlot)
## Registered S3 methods overwritten by 'parameters':
##   method                           from      
##   as.double.parameters_kurtosis    datawizard
##   as.double.parameters_skewness    datawizard
##   as.double.parameters_smoothness  datawizard
##   as.numeric.parameters_kurtosis   datawizard
##   as.numeric.parameters_skewness   datawizard
##   as.numeric.parameters_smoothness datawizard
##   print.parameters_distribution    datawizard
##   print.parameters_kurtosis        datawizard
##   print.parameters_skewness        datawizard
##   summary.parameters_kurtosis      datawizard
##   summary.parameters_skewness      datawizard
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.3     v purrr   0.3.4
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x ggplot2::%+%()   masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x tidyr::expand()  masks Matrix::expand()
## x dplyr::filter()  masks stats::filter()
## x dplyr::lag()     masks stats::lag()
## x tidyr::pack()    masks Matrix::pack()
## x tidyr::unpack()  masks Matrix::unpack()
library(irr)
## Loading required package: lpSolve
library(optimx)
library(parallel)
library(minqa)
library(dfoptim)
library(ggcorrplot)

##############
# United States
##############

#import wave 1 survey data
d1.usa <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/Covid-19_NSF_RAPID_US_Cleaned1.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)
#import LIWC csv USA
liwc <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/LIWC_w1w2_Dec_2021.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import LIWC THREAT csv USA
liwcT <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/LIWC_22_USA.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)


##############
# United Kingdom
##############

#import UK survey data
d1.uk <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/Covid-19_NSF_RAPID_UK_Cleaned1.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import LIWC csv UK
liwcUK <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/LIWC_22_UK.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

#import LIWC THREAT csv UK
liwcUKT <- read.csv("C:/Users/Dani Grant/Dropbox/graduate school records/research projects/media polarization/LIWC_22_UK_threat.csv", header = T, na.strings = c("", " ", NA), stringsAsFactors = F)

LIWC wave 1 USA

###################################
# Create LIWC rating averages for wave 1
###################################

#move over measures of interest
w1 <- data.frame(liwc[liwc$Wave == 1,])
w1 <- w1[,c("mediaOutlet", "analytic", "affect", "cogproc", "posemo", "negemo")]

w1T <- liwcT[,c("mediaOutlet", "threat")]

# create wide data set for wave 1
w1w = w1 %>%
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("analytic",
         "affect",
         "cogproc",
         "posemo",
         "negemo",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

# create wide data set for wave 1 -- threat liwc 22
w1wT = w1T %>%
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("threat",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)


##################
### calculate averages for each ratings
##################

#affect
affect <- cbind(w1w[paste0("affect_",1:21)])
AF <- apply(affect, MARGIN = 1, FUN = mean, na.rm = T)
#cognitive processing
cogproc <- data.frame(w1w[paste0("cogproc_",1:21)])
CP <- apply(cogproc, MARGIN = 1, FUN = mean, na.rm = T)
#positive emotions
pos <- data.frame(w1w[paste0("posemo_",1:21)])
PE <- apply(pos, MARGIN = 1, FUN = mean, na.rm = T)
#negative emotions
neg <- data.frame(w1w[paste0("negemo_",1:21)])
NE <- apply(neg, MARGIN = 1, FUN = mean, na.rm = T)
#analytic 
analytic <- data.frame(w1w[paste0("analytic_",1:21)])
AN <- apply(analytic, MARGIN = 1, FUN = mean, na.rm = T)
#threat 
threat <- data.frame(w1wT[paste0("threat_",1:21)])
TR <- apply(threat, MARGIN = 1, FUN = mean, na.rm = T)

#add them all to new data.frame
w1 <- data.frame(w1w$mediaOutlet)
colnames(w1)[colnames(w1)=="w1w.mediaOutlet"] <- "mediaOutlet"
w1$affect <- AF
w1$cogproc <- CP
w1$analytic <- AN
w1$posemo <- PE
w1$negemo <- NE
w1$threat <- TR

LIWC wave 1 UK

###################################
# Create LIWC rating averages for  UK
###################################

w1UK <- liwcUK[,c("mediaOutlet", "analytic", "affect", "cogproc", "posemo", "negemo")] 

w1UKT <- liwcUKT[,c("mediaOutlet", "threat")]

# create wide data set for wave 2
w1wUK = w1UK %>%
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("analytic",
         "affect",
         "cogproc",
         "posemo",
         "negemo", #add threat
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

# create wide data set for wave 2 UK threat
w1wUKT = w1UKT %>%
  group_by(mediaOutlet) %>% 
  mutate(Visit = 1:n()) %>% 
  gather("threat",
         key = variable, 
         value = number) %>% 
  unite(combi, variable, Visit) %>%
  spread(combi, number)

##################
### calculate averages for each ratings
##################

#affect
affect <- cbind(w1wUK[paste0("affect_",1:21)])
AF <- apply(affect, MARGIN = 1, FUN = mean, na.rm = T)
#cognitive processing
cogproc <- data.frame(w1wUK[paste0("cogproc_",1:21)])
CP <- apply(cogproc, MARGIN = 1, FUN = mean, na.rm = T)
#positive emotions
pos <- data.frame(w1wUK[paste0("posemo_",1:21)])
PE <- apply(pos, MARGIN = 1, FUN = mean, na.rm = T)
#negative emotions
neg <- data.frame(w1wUK[paste0("negemo_",1:21)])
NE <- apply(neg, MARGIN = 1, FUN = mean, na.rm = T)
#analytic 
analytic <- data.frame(w1wUK[paste0("analytic_",1:21)])
AN <- apply(analytic, MARGIN = 1, FUN = mean, na.rm = T)
#threat 
threat <- data.frame(w1wUKT[paste0("threat_",1:21)])
TR <- apply(threat, MARGIN = 1, FUN = mean, na.rm = T)

#add them all to new data.frame
w1UK <- data.frame(w1wUK$mediaOutlet)
colnames(w1UK)[colnames(w1UK)=="w1wUK.mediaOutlet"] <- "mediaOutlet"
w1UK$affect <- AF
w1UK$cogproc <- CP
w1UK$analytic <- AN
w1UK$posemo <- PE
w1UK$negemo <- NE
w1UK$threat <- TR

prep wave 1 USA data

#delete any measures we don't want---exclude media exposure #3, #8, and #9
## missing Yahoo, Huff Post, Wash Post
d1 <- d1.usa[,c("s3", "vaxxAttitudes",
            "demStrength", "repStrength", "partyClose", 
            "risk3", "risk4", "risk5", "risk6",
            "mediaExposure_1", "mediaExposure_2", "mediaExposure_4",
            "mediaExposure_5", "mediaExposure_6", "mediaExposure_7", 
            "mediaExposure_10", "mediaExposure_11", "mediaExposure_12",
            "mediaExposure_13",  "mediaExposure_14", "mediaExposure_15")]

colnames(d1)[colnames(d1) == "s3"]  <- "participant"

#rename exposure
colnames(d1)[colnames(d1)=="mediaExposure_1"] <- "NYT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_2"] <- "WSJ_exp"
colnames(d1)[colnames(d1)=="mediaExposure_4"] <- "USAT_exp"
colnames(d1)[colnames(d1)=="mediaExposure_5"] <- "Fox_exp"
colnames(d1)[colnames(d1)=="mediaExposure_6"] <- "CNN_exp"
colnames(d1)[colnames(d1)=="mediaExposure_7"] <- "MSNBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_10"] <-"AOL_exp"
colnames(d1)[colnames(d1)=="mediaExposure_11"] <-"NPR_exp"
colnames(d1)[colnames(d1)=="mediaExposure_12"] <-"ABC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_13"] <-"NBC_exp"
colnames(d1)[colnames(d1)=="mediaExposure_14"] <-"CBS_exp"
colnames(d1)[colnames(d1)=="mediaExposure_15"] <-"PBS_exp"

#change to 0-4 rating
d1$ABC_exp   <- d1$ABC_exp   - 1
d1$CBS_exp   <- d1$CBS_exp   - 1
d1$CNN_exp   <- d1$CNN_exp   - 1
d1$Fox_exp   <- d1$Fox_exp   - 1
d1$MSNBC_exp <- d1$MSNBC_exp - 1
d1$NBC_exp   <- d1$NBC_exp   - 1
d1$NPR_exp   <- d1$NPR_exp   - 1
d1$NYT_exp   <- d1$NYT_exp   - 1
d1$PBS_exp   <- d1$PBS_exp   - 1
d1$USAT_exp  <- d1$USAT_exp  - 1
d1$WSJ_exp   <- d1$WSJ_exp   - 1
d1$AOL_exp   <- d1$AOL_exp   - 1

x <- cbind(d1$ABC_exp, 
           d1$CBS_exp, 
           d1$CNN_exp, 
           d1$Fox_exp, 
           d1$MSNBC_exp, 
           d1$NBC_exp, 
           d1$NPR_exp, 
           d1$NYT_exp, 
           d1$PBS_exp, 
           d1$USAT_exp, 
           d1$WSJ_exp, 
           d1$AOL_exp)

d1$sum.media.exp <- rowSums(x, na.rm = T)

## affect
d1$ABC_AF   <- w1$affect[w1$mediaOutlet == "ABC"]
d1$CBS_AF   <- w1$affect[w1$mediaOutlet == "CBS"]
d1$CNN_AF   <- w1$affect[w1$mediaOutlet == "CNN"]
d1$Fox_AF   <- w1$affect[w1$mediaOutlet == "Fox"]
d1$MSNBC_AF <- w1$affect[w1$mediaOutlet == "MSNBC"]
d1$NBC_AF   <- w1$affect[w1$mediaOutlet == "NBC"]
d1$NPR_AF   <- w1$affect[w1$mediaOutlet == "NPR"]
d1$NYT_AF   <- w1$affect[w1$mediaOutlet == "NYT"]
d1$PBS_AF   <- w1$affect[w1$mediaOutlet == "PBS"]
d1$USAT_AF  <- w1$affect[w1$mediaOutlet == "USAToday"]
d1$WSJ_AF   <- w1$affect[w1$mediaOutlet == "WSJ"]
d1$AOL_AF   <- w1$affect[w1$mediaOutlet == "AOL"]

## analytic thinking
d1$ABC_AN   <- w1$analytic[w1$mediaOutlet == "ABC"]
d1$CBS_AN   <- w1$analytic[w1$mediaOutlet == "CBS"]
d1$CNN_AN   <- w1$analytic[w1$mediaOutlet == "CNN"]
d1$Fox_AN   <- w1$analytic[w1$mediaOutlet == "Fox"]
d1$MSNBC_AN <- w1$analytic[w1$mediaOutlet == "MSNBC"]
d1$NBC_AN   <- w1$analytic[w1$mediaOutlet == "NBC"]
d1$NPR_AN   <- w1$analytic[w1$mediaOutlet == "NPR"]
d1$NYT_AN   <- w1$analytic[w1$mediaOutlet == "NYT"]
d1$PBS_AN   <- w1$analytic[w1$mediaOutlet == "PBS"]
d1$USAT_AN  <- w1$analytic[w1$mediaOutlet == "USAToday"]
d1$WSJ_AN   <- w1$analytic[w1$mediaOutlet == "WSJ"]
d1$AOL_AN   <- w1$analytic[w1$mediaOutlet == "AOL"]

## threat
d1$ABC_TR   <- w1$threat[w1$mediaOutlet == "ABC"]
d1$CBS_TR   <- w1$threat[w1$mediaOutlet == "CBS"]
d1$CNN_TR   <- w1$threat[w1$mediaOutlet == "CNN"]
d1$Fox_TR   <- w1$threat[w1$mediaOutlet == "Fox"]
d1$MSNBC_TR <- w1$threat[w1$mediaOutlet == "MSNBC"]
d1$NBC_TR   <- w1$threat[w1$mediaOutlet == "NBC"]
d1$NPR_TR   <- w1$threat[w1$mediaOutlet == "NPR"]
d1$NYT_TR   <- w1$threat[w1$mediaOutlet == "NYT"]
d1$PBS_TR   <- w1$threat[w1$mediaOutlet == "PBS"]
d1$USAT_TR  <- w1$threat[w1$mediaOutlet == "USAToday"]
d1$WSJ_TR   <- w1$threat[w1$mediaOutlet == "WSJ"]
d1$AOL_TR   <- w1$threat[w1$mediaOutlet == "AOL"]

#individual media affect
d1$ABC_AFexp <- d1$ABC_AF * d1$ABC_exp
d1$CBS_AFexp <- d1$CBS_AF * d1$CBS_exp
d1$CNN_AFexp <- d1$CNN_AF * d1$CNN_exp
d1$Fox_AFexp <- d1$Fox_AF * d1$Fox_exp
d1$MSNBC_AFexp <- d1$MSNBC_AF * d1$MSNBC_exp
d1$NBC_AFexp <- d1$NBC_AF * d1$NBC_exp
d1$NPR_AFexp <- d1$NPR_AF * d1$NPR_exp
d1$NYT_AFexp <- d1$NYT_AF * d1$NYT_exp
d1$PBS_AFexp <- d1$PBS_AF * d1$PBS_exp
d1$USAT_AFexp <- d1$USAT_AF * d1$USAT_exp
d1$WSJ_AFexp <- d1$WSJ_AF * d1$WSJ_exp
d1$AOL_AFexp <- d1$AOL_AF * d1$AOL_exp

x <- cbind(d1$ABC_AFexp, 
           d1$CBS_AFexp, 
           d1$CNN_AFexp, 
           d1$Fox_AFexp, 
           d1$MSNBC_AFexp, 
           d1$NBC_AFexp, 
           d1$NPR_AFexp, 
           d1$NYT_AFexp, 
           d1$PBS_AFexp, 
           d1$USAT_AFexp, 
           d1$WSJ_AFexp, 
           d1$AOL_AFexp)

d1$index_AFexp <- rowMeans(x, na.rm = T)

#individual media anylitic thinking
d1$ABC_ANexp <- d1$ABC_AN * d1$ABC_exp
d1$CBS_ANexp <- d1$CBS_AN * d1$CBS_exp
d1$CNN_ANexp <- d1$CNN_AN * d1$CNN_exp
d1$Fox_ANexp <- d1$Fox_AN * d1$Fox_exp
d1$MSNBC_ANexp <- d1$MSNBC_AN * d1$MSNBC_exp
d1$NBC_ANexp <- d1$NBC_AN * d1$NBC_exp
d1$NPR_ANexp <- d1$NPR_AN * d1$NPR_exp
d1$NYT_ANexp <- d1$NYT_AN * d1$NYT_exp
d1$PBS_ANexp <- d1$PBS_AN * d1$PBS_exp
d1$USAT_ANexp <- d1$USAT_AN * d1$USAT_exp
d1$WSJ_ANexp <- d1$WSJ_AN * d1$WSJ_exp
d1$AOL_ANexp <- d1$AOL_AN * d1$AOL_exp

x <- cbind(d1$ABC_ANexp, 
           d1$CBS_ANexp, 
           d1$CNN_ANexp, 
           d1$Fox_ANexp, 
           d1$MSNBC_ANexp, 
           d1$NBC_ANexp, 
           d1$NPR_ANexp, 
           d1$NYT_ANexp, 
           d1$PBS_ANexp, 
           d1$USAT_ANexp, 
           d1$WSJ_ANexp, 
           d1$AOL_ANexp)

d1$index_ANexp <- rowMeans(x, na.rm = T)

#individual media threat
d1$ABC_TRexp <- d1$ABC_TR * d1$ABC_exp
d1$CBS_TRexp <- d1$CBS_TR * d1$CBS_exp
d1$CNN_TRexp <- d1$CNN_TR * d1$CNN_exp
d1$Fox_TRexp <- d1$Fox_TR * d1$Fox_exp
d1$MSNBC_TRexp <- d1$MSNBC_TR * d1$MSNBC_exp
d1$NBC_TRexp <- d1$NBC_TR * d1$NBC_exp
d1$NPR_TRexp <- d1$NPR_TR * d1$NPR_exp
d1$NYT_TRexp <- d1$NYT_TR * d1$NYT_exp
d1$PBS_TRexp <- d1$PBS_TR * d1$PBS_exp
d1$USAT_TRexp <- d1$USAT_TR * d1$USAT_exp
d1$WSJ_TRexp <- d1$WSJ_TR * d1$WSJ_exp
d1$AOL_TRexp <- d1$AOL_TR * d1$AOL_exp

x <- cbind(d1$ABC_TRexp, 
           d1$CBS_TRexp, 
           d1$CNN_TRexp, 
           d1$Fox_TRexp, 
           d1$MSNBC_TRexp, 
           d1$NBC_TRexp, 
           d1$NPR_TRexp, 
           d1$NYT_TRexp, 
           d1$PBS_TRexp, 
           d1$USAT_TRexp, 
           d1$WSJ_TRexp, 
           d1$AOL_TRexp)

d1$index_TRexp <- rowMeans(x, na.rm = T)


#####################################################
# codes for party
####################################################

d1$partyCont <- NA
d1$partyCont[d1$demStrength == 1] <- -3
d1$partyCont[d1$demStrength == 2] <- -2
d1$partyCont[d1$partyClose  == 1] <- -1
d1$partyCont[d1$partyClose  == 3] <- 0
d1$partyCont[d1$partyClose  == 2] <- 1
d1$partyCont[d1$repStrength == 2] <- 2
d1$partyCont[d1$repStrength == 1] <- 3

## party factor
d1$party_factor <- NA
d1$party_factor[d1$partyCont < 0]  <- 'Democrat'
d1$party_factor[d1$partyCont == 0] <- 'Independent'
d1$party_factor[d1$partyCont > 0]  <- 'Republican'

## Order of party variable
d1$party_factor <- factor(d1$party_factor, 
                          levels = c('Democrat', 'Republican', 'Independent'))

## contrast codes
d1$DvR <- NA
d1$DvR[d1$party_factor == 'Democrat']    <- -.5
d1$DvR[d1$party_factor == 'Independent'] <- 0
d1$DvR[d1$party_factor == 'Republican']  <- .5

d1$IvDR <- NA
d1$IvDR[d1$party_factor == 'Democrat']    <- .33
d1$IvDR[d1$party_factor == 'Independent'] <- -.67
d1$IvDR[d1$party_factor == 'Republican']  <- .33

## dummy codes
d1$Rep_1[d1$party_factor == 'Democrat']    <- 0
d1$Rep_1[d1$party_factor == 'Republican']  <- 1
d1$Rep_1[d1$party_factor == 'Independent'] <- 0

d1$Ind_1[d1$party_factor == 'Democrat']    <- 0
d1$Ind_1[d1$party_factor == 'Republican']  <- 0
d1$Ind_1[d1$party_factor == 'Independent'] <- 1

d1$Dem_1[d1$party_factor == 'Democrat']    <- 1
d1$Dem_1[d1$party_factor == 'Republican']  <- 0
d1$Dem_1[d1$party_factor == 'Independent'] <- 0

## delete unnecessary columns
d1$party <- NULL
d1$demStrength <- NULL
d1$repStrength <- NULL
d1$partyClose <- NULL

colnames(d1)[colnames(d1) == "risk3"]  <- "healthRisk"
colnames(d1)[colnames(d1) == "risk4"]  <- "econRisk"
colnames(d1)[colnames(d1) == "risk5"]  <- "pEconRisk"
colnames(d1)[colnames(d1) == "risk6"]  <- "worstAB"

prep wave 1 UK data

d1UK <- d1.uk[,c("X", "vaxxAttitudes",
            "demStrength", "repStrength", "partyClose", 
            "risk3", "risk4", "risk5", "risk6",
            "mediaExposure_1", "mediaExposure_2", "mediaExposure_3", 
            "mediaExposure_4", "mediaExposure_6", "mediaExposure_7",
            "mediaExposure_9", "mediaExposure_10")]

d1UK$ownvote_conf <- NA
d1UK$overallvote_conf <- NA
d1UK$election_timing <- NA

colnames(d1UK)[colnames(d1UK) == "X"]  <- "participant"

#rename exposure
colnames(d1UK)[colnames(d1UK)=="mediaExposure_1"] <- "DAM_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_2"] <- "GAR_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_3"] <- "SUN_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_4"] <- "MIR_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_6"] <- "UKT_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_7"] <- "TEL_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_9"] <- "BBC_exp"
colnames(d1UK)[colnames(d1UK)=="mediaExposure_10"] <-"IND_exp"

#change to 0-4 rating

d1UK$DAM_exp   <- d1UK$DAM_exp - 1
d1UK$GAR_exp   <- d1UK$GAR_exp - 1
d1UK$SUN_exp   <- d1UK$SUN_exp - 1
d1UK$MIR_exp   <- d1UK$MIR_exp - 1
d1UK$UKT_exp <-   d1UK$UKT_exp - 1
d1UK$TEL_exp   <- d1UK$TEL_exp   - 1
d1UK$BBC_exp   <- d1UK$BBC_exp   - 1
d1UK$IND_exp   <- d1UK$IND_exp   - 1

x <- cbind(d1UK$DAM_exp, 
           d1UK$GAR_exp, 
           d1UK$SUN_exp, 
           d1UK$MIR_exp, 
           d1UK$UKT_exp, 
           d1UK$TEL_exp,
           d1UK$BBC_exp, 
           d1UK$IND_exp)

d1UK$sum.media.exp <- rowSums(x, na.rm = T)

## affect
d1UK$BBC_AF   <- w1UK$affect[w1UK$mediaOutlet == "BBC"]
d1UK$DAM_AF   <- w1UK$affect[w1UK$mediaOutlet == "DailyMail"]
d1UK$GAR_AF   <- w1UK$affect[w1UK$mediaOutlet == "GuardianObserve"]
d1UK$IND_AF   <- w1UK$affect[w1UK$mediaOutlet == "Independent"]
d1UK$MIR_AF   <- w1UK$affect[w1UK$mediaOutlet == "Mirror"]
d1UK$SUN_AF   <- w1UK$affect[w1UK$mediaOutlet == "Sun"]
d1UK$TEL_AF   <- w1UK$affect[w1UK$mediaOutlet == "Telegraph"]
d1UK$UKT_AF   <- w1UK$affect[w1UK$mediaOutlet == "UKTimes"]


## analytic
d1UK$BBC_AN   <- w1UK$analytic[w1UK$mediaOutlet == "BBC"]
d1UK$DAM_AN   <- w1UK$analytic[w1UK$mediaOutlet == "DailyMail"]
d1UK$GAR_AN   <- w1UK$analytic[w1UK$mediaOutlet == "GuardianObserve"]
d1UK$IND_AN   <- w1UK$analytic[w1UK$mediaOutlet == "Independent"]
d1UK$MIR_AN <-   w1UK$analytic[w1UK$mediaOutlet ==   "Mirror"]
d1UK$SUN_AN   <- w1UK$analytic[w1UK$mediaOutlet == "Sun"]
d1UK$TEL_AN   <- w1UK$analytic[w1UK$mediaOutlet == "Telegraph"]
d1UK$UKT_AN   <- w1UK$analytic[w1UK$mediaOutlet == "UKTimes"]

## threat
d1UK$BBC_TR   <- w1UK$threat[w1UK$mediaOutlet == "BBC"]
d1UK$DAM_TR   <- w1UK$threat[w1UK$mediaOutlet == "DailyMail"]
d1UK$GAR_TR   <- w1UK$threat[w1UK$mediaOutlet == "GuardianObserve"]
d1UK$IND_TR   <- w1UK$threat[w1UK$mediaOutlet == "Independent"]
d1UK$MIR_TR <-   w1UK$threat[w1UK$mediaOutlet ==  "Mirror"]
d1UK$SUN_TR   <- w1UK$threat[w1UK$mediaOutlet == "Sun"]
d1UK$TEL_TR   <- w1UK$threat[w1UK$mediaOutlet == "Telegraph"]
d1UK$UKT_TR   <- w1UK$threat[w1UK$mediaOutlet == "UKTimes"]

#individual media affect
d1UK$BBC_AFexp <-   d1UK$BBC_AF * d1UK$BBC_exp
d1UK$DAM_AFexp <-   d1UK$DAM_AF * d1UK$DAM_exp
d1UK$GAR_AFexp <-   d1UK$GAR_AF * d1UK$GAR_exp
d1UK$IND_AFexp <-   d1UK$IND_AF * d1UK$IND_exp
d1UK$MIR_AFexp <-   d1UK$MIR_AF * d1UK$MIR_exp
d1UK$SUN_AFexp <-   d1UK$SUN_AF * d1UK$SUN_exp
d1UK$TEL_AFexp <-   d1UK$TEL_AF * d1UK$TEL_exp
d1UK$UKT_AFexp <-   d1UK$UKT_AF * d1UK$UKT_exp

x <- cbind(d1UK$BBC_AFexp, 
           d1UK$DAM_AFexp, 
           d1UK$GAR_AFexp, 
           d1UK$IND_AFexp, 
           d1UK$MIR_AFexp, 
           d1UK$SUN_AFexp, 
           d1UK$TEL_AFexp, 
           d1UK$UKT_AFexp)

d1UK$index_AFexp <- rowMeans(x, na.rm = T)

#individual media analytic thinking
d1UK$BBC_ANexp <-   d1UK$BBC_AN * d1UK$BBC_exp
d1UK$DAM_ANexp <-   d1UK$DAM_AN * d1UK$DAM_exp
d1UK$GAR_ANexp <-   d1UK$GAR_AN * d1UK$GAR_exp
d1UK$IND_ANexp <-   d1UK$IND_AN * d1UK$IND_exp
d1UK$MIR_ANexp <-   d1UK$MIR_AN * d1UK$MIR_exp
d1UK$SUN_ANexp <-   d1UK$SUN_AN * d1UK$SUN_exp
d1UK$TEL_ANexp <-   d1UK$TEL_AN * d1UK$TEL_exp
d1UK$UKT_ANexp <-   d1UK$UKT_AN * d1UK$UKT_exp

x <- cbind(d1UK$BBC_ANexp, 
           d1UK$DAM_ANexp, 
           d1UK$GAR_ANexp, 
           d1UK$IND_ANexp, 
           d1UK$MIR_ANexp, 
           d1UK$SUN_ANexp, 
           d1UK$TEL_ANexp, 
           d1UK$UKT_ANexp)

d1UK$index_ANexp <- rowMeans(x, na.rm = T)

#individual media threat
d1UK$BBC_TRexp <-   d1UK$BBC_TR * d1UK$BBC_exp
d1UK$DAM_TRexp <-   d1UK$DAM_TR * d1UK$DAM_exp
d1UK$GAR_TRexp <-   d1UK$GAR_TR * d1UK$GAR_exp
d1UK$IND_TRexp <-   d1UK$IND_TR * d1UK$IND_exp
d1UK$MIR_TRexp <-   d1UK$MIR_TR * d1UK$MIR_exp
d1UK$SUN_TRexp <-   d1UK$SUN_TR * d1UK$SUN_exp
d1UK$TEL_TRexp <-   d1UK$TEL_TR * d1UK$TEL_exp
d1UK$UKT_TRexp <-   d1UK$UKT_TR * d1UK$UKT_exp

x <- cbind(d1UK$BBC_TRexp, 
           d1UK$DAM_TRexp, 
           d1UK$GAR_TRexp, 
           d1UK$IND_TRexp, 
           d1UK$MIR_TRexp, 
           d1UK$SUN_TRexp, 
           d1UK$TEL_TRexp, 
           d1UK$UKT_TRexp)

d1UK$index_TRexp <- rowMeans(x, na.rm = T)

#####################################################
# codes for party
####################################################

d1UK$partyCont <- NA
d1UK$partyCont[d1UK$demStrength == 1] <- -3
d1UK$partyCont[d1UK$demStrength == 2] <- -2
d1UK$partyCont[d1UK$partyClose  == 1] <- -1
d1UK$partyCont[d1UK$partyClose  == 3] <- 0
d1UK$partyCont[d1UK$partyClose  == 2] <- 1
d1UK$partyCont[d1UK$repStrength == 2] <- 2
d1UK$partyCont[d1UK$repStrength == 1] <- 3

## party factor
d1UK$party_factor <- NA
d1UK$party_factor[d1UK$partyCont < 0]  <- 'Democrat'
d1UK$party_factor[d1UK$partyCont == 0] <- 'Independent'
d1UK$party_factor[d1UK$partyCont > 0]  <- 'Republican'

## Order of party variable
d1UK$party_factor <- factor(d1UK$party_factor, 
                          levels = c('Democrat', 'Republican', 'Independent'))

## contrast codes
d1UK$DvR <- NA
d1UK$DvR[d1UK$party_factor == 'Democrat']    <- -.5
d1UK$DvR[d1UK$party_factor == 'Independent'] <- 0
d1UK$DvR[d1UK$party_factor == 'Republican']  <- .5

d1UK$IvDR <- NA
d1UK$IvDR[d1UK$party_factor == 'Democrat']    <- .33
d1UK$IvDR[d1UK$party_factor == 'Independent'] <- -.67
d1UK$IvDR[d1UK$party_factor == 'Republican']  <- .33

## dummy codes
d1UK$Rep_1[d1UK$party_factor == 'Democrat']    <- 0
d1UK$Rep_1[d1UK$party_factor == 'Republican']  <- 1
d1UK$Rep_1[d1UK$party_factor == 'Independent'] <- 0

d1UK$Ind_1[d1UK$party_factor == 'Democrat']    <- 0
d1UK$Ind_1[d1UK$party_factor == 'Republican']  <- 0
d1UK$Ind_1[d1UK$party_factor == 'Independent'] <- 1

d1UK$Dem_1[d1UK$party_factor == 'Democrat']    <- 1
d1UK$Dem_1[d1UK$party_factor == 'Republican']  <- 0
d1UK$Dem_1[d1UK$party_factor == 'Independent'] <- 0

## delete unnecessary columns
d1UK$party <- NULL
d1UK$demStrength <- NULL
d1UK$repStrength <- NULL
d1UK$partyClose <- NULL

colnames(d1UK)[colnames(d1UK) == "risk3"]  <- "healthRisk"
colnames(d1UK)[colnames(d1UK) == "risk4"]  <- "econRisk"
colnames(d1UK)[colnames(d1UK) == "risk5"]  <- "pEconRisk"
colnames(d1UK)[colnames(d1UK) == "risk6"]  <- "worstAB"

LONG merged data w1 USA + UK

d1.UK <- d1UK[,c("participant", "vaxxAttitudes",
            "party_factor", "DvR", "IvDR", "Rep_1", "Dem_1", "Ind_1", 
            "healthRisk", "econRisk", "pEconRisk", "worstAB",
             "index_AFexp", "index_ANexp", "index_TRexp", "sum.media.exp")]

d1.UK$country <- "UK"

d1.US <- d1[,c("participant", "vaxxAttitudes",
            "party_factor", "DvR", "IvDR", "Rep_1", "Dem_1", "Ind_1", 
            "healthRisk", "econRisk", "pEconRisk", "worstAB",
            "index_AFexp", "index_ANexp", "index_TRexp", "sum.media.exp")]

d1.US$country <- "US"


dm <- rbind.data.frame(d1.UK, d1.US)
dm$participant <- as.factor(dm$participant)

dm$USvUK <- NA
dm$USvUK[dm$country == "US"] <- -.5
dm$USvUK[dm$country == "UK"] <- .5

dm$US_0 <- NA
dm$US_0[dm$country == "US"] <- 0
dm$US_0[dm$country == "UK"] <- 1

dm$UK_0 <- NA
dm$UK_0[dm$country == "US"] <- 1
dm$UK_0[dm$country == "UK"] <- 0

wave 1 usa

##    mediaOutlet   affect   cogproc analytic   posemo   negemo    threat
## 1          ABC 3.920000  7.787500 79.10750 2.635000 1.232500 0.9775000
## 2          AOL 3.504762  6.856667 95.42000 2.103810 1.355238 1.0442857
## 3          CBS 3.890000  8.275000 78.76000 2.500000 1.330000 0.9250000
## 4          CNN 3.800000  9.780000 73.61000 2.280000 1.460000 0.7733333
## 5          Fox 4.390000 10.480000 60.43000 2.690000 1.650000 0.7433333
## 6        MSNBC 3.880000  9.930000 70.52000 2.360000 1.450000 0.7850000
## 7          NBC 6.590000  6.870000 80.54500 2.730000 3.810000 0.6700000
## 8          NPR 3.425000  9.825000 71.83000 2.125000 1.240000 0.8075000
## 9          NYT 3.537222  7.912222 93.49444 1.941111 1.535556 1.0095238
## 10         PBS 3.830000  8.970000 78.86000 2.320000 1.460000 0.9150000
## 11    USAToday 3.653333  8.883333 91.28000 2.206667 1.390000 0.9600000
## 12         WSJ 1.846000  4.416000 96.59800 1.014000 0.800000 0.8880000

wave 1 uk

##       mediaOutlet   affect  cogproc analytic   posemo   negemo    threat
## 1             BBC 3.738095 9.417619 79.84048 2.293810 1.400952 1.0247619
## 2       DailyMail 3.991667 8.436667 91.27500 2.181667 1.746667 1.1000000
## 3 GuardianObserve 3.551250 8.099375 93.39312 1.972500 1.526250 1.2350000
## 4     Independent 3.843750 9.095625 92.31937 2.099375 1.691875 1.2731250
## 5          Mirror 4.070909 7.661818 88.95909 2.531818 1.487273 0.9118182
## 6        National 4.062500 9.392500 91.00000 2.537500 1.470000 1.1100000
## 7             Sun 4.140000 8.094286 87.43429 2.542143 1.539286 0.8550000
## 8       Telegraph 3.770769 8.242308 92.57846 2.189231 1.533077 1.0369231
## 9         UKTimes 3.695238 7.991429 93.42571 2.088571 1.557143 1.1004762

descriptives

nrow(d1.UK) #1520
## [1] 1520
nrow(d1.US) #3311
## [1] 3311
print("United States")
## [1] "United States"
print("Affect")
## [1] "Affect"
tapply(d1.US$index_AFexp, d1.US$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##    5.469034    3.406757    3.935891
print("Analytic")
## [1] "Analytic"
tapply(d1.US$index_ANexp, d1.US$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##   108.65344    65.97917    78.10298
print("Threat")
## [1] "Threat"
tapply(d1.US$index_TRexp, d1.US$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##   1.1735885   0.7212608   0.8479896
print("United Kingdom")
## [1] "United Kingdom"
print("Affect")
## [1] "Affect"
tapply(d1.UK$index_AFexp, d1.UK$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##    3.370642    3.338829    2.738850
print("Analytic")
## [1] "Analytic"
tapply(d1.UK$index_ANexp, d1.UK$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##    78.63168    76.41622    63.13080
print("Threat")
## [1] "Threat"
tapply(d1.UK$index_TRexp, d1.UK$party_factor, mean, na.rm = T)
##    Democrat  Republican Independent 
##   0.9766135   0.9325797   0.7696900

sum media responses

sum(table(d1.US$vaxxAttitudes)) # 3051 responses for vaxxAttitudes in USA
## [1] 3051
sum(table(d1.UK$vaxxAttitudes)) # 1502 responses for vaxxAttitudes in UK
## [1] 1502
print("United States")
## [1] "United States"
sum(table(d1$ABC_exp)) #3051
## [1] 3051
sum(table(d1$CBS_exp)) #3051
## [1] 3051
sum(table(d1$CNN_exp)) #3053
## [1] 3053
sum(table(d1$Fox_exp))#3053
## [1] 3053
sum(table(d1$MSNBC_exp)) #3052
## [1] 3052
sum(table(d1$NBC_exp)) #3053
## [1] 3053
sum(table(d1$NPR_exp)) #3052
## [1] 3052
sum(table(d1$NYT_exp)) #3052
## [1] 3052
sum(table(d1$PBS_exp)) #3053
## [1] 3053
sum(table(d1$USAT_exp))#3053
## [1] 3053
sum(table(d1$WSJ_exp)) #3052
## [1] 3052
sum(table(d1$AOL_exp)) #3053
## [1] 3053
sum(table(d1$party_factor)) #3147
## [1] 3147
print("United Kingdom")
## [1] "United Kingdom"
sum(table(d1UK$DAM_exp)) #1500
## [1] 1500
sum(table(d1UK$GAR_exp)) #1502
## [1] 1502
sum(table(d1UK$SUN_exp)) #1502
## [1] 1502
sum(table(d1UK$MIR_exp)) #1502
## [1] 1502
sum(table(d1UK$UKT_exp)) #1502
## [1] 1502
sum(table(d1UK$TEL_exp)) #1502
## [1] 1502
sum(table(d1UK$BBC_exp)) #1502
## [1] 1502
sum(table(d1UK$IND_exp)) #1502
## [1] 1502
sum(table(d1UK$party_factor)) #1507
## [1] 1507

UK correlations

x <- cbind.data.frame(d1UK$vaxxAttitudes, 
                      d1UK$healthRisk, d1UK$econRisk, d1UK$pEconRisk, d1UK$worstAB, 
                      d1UK$index_AFexp, d1UK$index_ANexp, d1UK$index_TRexp)

cor <- cor(x, use = "complete.obs")

ggcorrplot(cor, type = "lower",
   lab = TRUE, title = "general correlations")

x1 <- cbind.data.frame(w1UK$affect, 
                       w1UK$analytic, 
                       w1UK$cogproc,
                       w1UK$posemo,
                       w1UK$negemo,
                       w1UK$threat)

cor1 <- cor(x1, use = "complete.obs")

ggcorrplot(cor1, type = "lower",
   lab = TRUE, title = "media analytic + affect correlations wave 1 & wave 2")

USA correlations

x <- cbind.data.frame(d1$vaxxAttitudes, 
                      d1$healthRisk, d1$econRisk, d1$pEconRisk, d1$worstAB, 
                      d1$index_AFexp, d1$index_ANexp, d1$index_TRexp)

cor <- cor(x, use = "complete.obs")

ggcorrplot(cor, type = "lower",
   lab = TRUE, title = "general correlations")

x1 <- cbind.data.frame(w1$affect, 
                       w1$analytic, 
                       w1$cogproc,
                       w1$posemo,
                       w1$negemo,
                       w1$threat)

cor1 <- cor(x1, use = "complete.obs")

ggcorrplot(cor1, type = "lower",
   lab = TRUE, title = "media analytic + affect correlations wave 1 & wave 2")

I United States

1. vaxxAttitudes ~ (AFFECT + ANALYTIC) * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp) + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7814 -1.5854  0.2658  1.7978  3.8167 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.017886   0.065554  -0.273 0.784993    
## DvR              -1.395220   0.146930  -9.496  < 2e-16 ***
## IvDR              0.589510   0.149672   3.939 8.38e-05 ***
## index_AFexp       0.400071   0.131402   3.045 0.002350 ** 
## index_ANexp       0.003505   0.011179   0.314 0.753868    
## sum.media.exp    -0.116321   0.095976  -1.212 0.225615    
## DvR:index_AFexp   0.782035   0.199563   3.919 9.10e-05 ***
## DvR:index_ANexp  -0.031875   0.009577  -3.328 0.000884 ***
## IvDR:index_AFexp -0.249645   0.244603  -1.021 0.307521    
## IvDR:index_ANexp  0.012590   0.011872   1.060 0.289009    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3032 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09379,    Adjusted R-squared:  0.0911 
## F-statistic: 34.87 on 9 and 3032 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d1)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7814 -1.5854  0.2658  1.7978  3.8167 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.874263   0.109222   8.004 1.69e-15 ***
## Rep_1             -1.395220   0.146930  -9.496  < 2e-16 ***
## Ind_1             -1.287121   0.169887  -7.576 4.69e-14 ***
## index_AFexp       -0.073329   0.147142  -0.498 0.618268    
## index_ANexp        0.023597   0.011660   2.024 0.043083 *  
## sum.media.exp     -0.116321   0.095976  -1.212 0.225615    
## Rep_1:index_AFexp  0.782035   0.199563   3.919 9.10e-05 ***
## Rep_1:index_ANexp -0.031875   0.009577  -3.328 0.000884 ***
## Ind_1:index_AFexp  0.640662   0.253752   2.525 0.011629 *  
## Ind_1:index_ANexp -0.028527   0.012292  -2.321 0.020360 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3032 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09379,    Adjusted R-squared:  0.0911 
## F-statistic: 34.87 on 9 and 3032 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7814 -1.5854  0.2658  1.7978  3.8167 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.520958   0.098994  -5.263 1.52e-07 ***
## Dem_1              1.395220   0.146930   9.496  < 2e-16 ***
## Ind_1              0.108100   0.163511   0.661 0.508589    
## index_AFexp        0.708705   0.181177   3.912 9.37e-05 ***
## index_ANexp       -0.008277   0.012615  -0.656 0.511763    
## sum.media.exp     -0.116321   0.095976  -1.212 0.225615    
## Dem_1:index_AFexp -0.782035   0.199563  -3.919 9.10e-05 ***
## Dem_1:index_ANexp  0.031875   0.009577   3.328 0.000884 ***
## Ind_1:index_AFexp -0.141373   0.274197  -0.516 0.606180    
## Ind_1:index_ANexp  0.003347   0.013291   0.252 0.801176    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3032 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09379,    Adjusted R-squared:  0.0911 
## F-statistic: 34.87 on 9 and 3032 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7814 -1.5854  0.2658  1.7978  3.8167 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.412858   0.130118  -3.173  0.00152 ** 
## Rep_1             -0.108100   0.163511  -0.661  0.50859    
## Dem_1              1.287121   0.169887   7.576 4.69e-14 ***
## index_AFexp        0.567333   0.239422   2.370  0.01787 *  
## index_ANexp       -0.004930   0.014836  -0.332  0.73970    
## sum.media.exp     -0.116321   0.095976  -1.212  0.22561    
## Rep_1:index_AFexp  0.141373   0.274197   0.516  0.60618    
## Rep_1:index_ANexp -0.003347   0.013291  -0.252  0.80118    
## Dem_1:index_AFexp -0.640662   0.253752  -2.525  0.01163 *  
## Dem_1:index_ANexp  0.028527   0.012292   2.321  0.02036 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.058 on 3032 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.09379,    Adjusted R-squared:  0.0911 
## F-statistic: 34.87 on 9 and 3032 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_ANexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_ANexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7145 -1.6353  0.2294  1.8119  3.3982 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.0214020  0.0646780   0.331 0.740743    
## DvR              -1.1985609  0.1354453  -8.849  < 2e-16 ***
## IvDR              0.5444572  0.1434898   3.794 0.000151 ***
## index_ANexp       0.0008956  0.0102429   0.087 0.930333    
## sum.media.exp     0.0313584  0.0691544   0.453 0.650254    
## DvR:index_ANexp   0.0054004  0.0012366   4.367  1.3e-05 ***
## IvDR:index_ANexp  0.0005394  0.0013426   0.402 0.687907    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08719,    Adjusted R-squared:  0.08539 
## F-statistic: 48.32 on 6 and 3035 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_ANexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7145 -1.6353  0.2294  1.8119  3.3982 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.800353   0.104572   7.654 2.61e-14 ***
## Rep_1             -1.198561   0.135445  -8.849  < 2e-16 ***
## Ind_1             -1.143738   0.162294  -7.047 2.25e-12 ***
## index_ANexp       -0.001627   0.010218  -0.159    0.874    
## sum.media.exp      0.031358   0.069154   0.453    0.650    
## Rep_1:index_ANexp  0.005400   0.001237   4.367 1.30e-05 ***
## Ind_1:index_ANexp  0.002161   0.001428   1.513    0.130    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08719,    Adjusted R-squared:  0.08539 
## F-statistic: 48.32 on 6 and 3035 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7145 -1.6353  0.2294  1.8119  3.3982 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.398208   0.093225  -4.271  2.0e-05 ***
## Dem_1              1.198561   0.135445   8.849  < 2e-16 ***
## Ind_1              0.054823   0.154958   0.354   0.7235    
## index_ANexp        0.003774   0.010251   0.368   0.7128    
## sum.media.exp      0.031358   0.069154   0.453   0.6503    
## Dem_1:index_ANexp -0.005400   0.001237  -4.367  1.3e-05 ***
## Ind_1:index_ANexp -0.003240   0.001527  -2.122   0.0339 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08719,    Adjusted R-squared:  0.08539 
## F-statistic: 48.32 on 6 and 3035 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7145 -1.6353  0.2294  1.8119  3.3982 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.3433843  0.1259344  -2.727  0.00643 ** 
## Rep_1             -0.0548233  0.1549581  -0.354  0.72352    
## Dem_1              1.1437376  0.1622940   7.047 2.25e-12 ***
## index_ANexp        0.0005342  0.0103558   0.052  0.95886    
## sum.media.exp      0.0313584  0.0691544   0.453  0.65025    
## Rep_1:index_ANexp  0.0032396  0.0015267   2.122  0.03393 *  
## Dem_1:index_ANexp -0.0021608  0.0014278  -1.513  0.13029    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08719,    Adjusted R-squared:  0.08539 
## F-statistic: 48.32 on 6 and 3035 DF,  p-value: < 2.2e-16

3. vaxxAttitudes ~ AFFECT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6788 -1.6072  0.2408  1.7900  3.4642 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.014933   0.064350  -0.232 0.816509    
## DvR              -1.260312   0.140485  -8.971  < 2e-16 ***
## IvDR              0.548277   0.145924   3.757 0.000175 ***
## index_AFexp       0.236597   0.114366   2.069 0.038651 *  
## sum.media.exp    -0.038836   0.037171  -1.045 0.296195    
## DvR:index_AFexp   0.122999   0.025748   4.777 1.86e-06 ***
## IvDR:index_AFexp  0.009522   0.027589   0.345 0.730012    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08965,    Adjusted R-squared:  0.08785 
## F-statistic: 49.81 on 6 and 3035 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_AFexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6788 -1.6072  0.2408  1.7900  3.4642 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.79615    0.10712   7.432 1.38e-13 ***
## Rep_1             -1.26031    0.14048  -8.971  < 2e-16 ***
## Ind_1             -1.17843    0.16611  -7.094 1.61e-12 ***
## index_AFexp        0.17824    0.11543   1.544   0.1227    
## sum.media.exp     -0.03884    0.03717  -1.045   0.2962    
## Rep_1:index_AFexp  0.12300    0.02575   4.777 1.86e-06 ***
## Ind_1:index_AFexp  0.05198    0.02942   1.766   0.0774 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08965,    Adjusted R-squared:  0.08785 
## F-statistic: 49.81 on 6 and 3035 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6788 -1.6072  0.2408  1.7900  3.4642 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.46416    0.09284  -5.000 6.07e-07 ***
## Dem_1              1.26031    0.14048   8.971  < 2e-16 ***
## Ind_1              0.08188    0.15768   0.519  0.60361    
## index_AFexp        0.30124    0.11533   2.612  0.00904 ** 
## sum.media.exp     -0.03884    0.03717  -1.045  0.29619    
## Dem_1:index_AFexp -0.12300    0.02575  -4.777 1.86e-06 ***
## Ind_1:index_AFexp -0.07102    0.03143  -2.260  0.02392 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08965,    Adjusted R-squared:  0.08785 
## F-statistic: 49.81 on 6 and 3035 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6788 -1.6072  0.2408  1.7900  3.4642 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.38228    0.12820  -2.982  0.00289 ** 
## Rep_1             -0.08188    0.15768  -0.519  0.60361    
## Dem_1              1.17843    0.16611   7.094 1.61e-12 ***
## index_AFexp        0.23022    0.11599   1.985  0.04725 *  
## sum.media.exp     -0.03884    0.03717  -1.045  0.29619    
## Rep_1:index_AFexp  0.07102    0.03143   2.260  0.02392 *  
## Dem_1:index_AFexp -0.05198    0.02942  -1.766  0.07742 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.061 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.08965,    Adjusted R-squared:  0.08785 
## F-statistic: 49.81 on 6 and 3035 DF,  p-value: < 2.2e-16

3. vaxxAttitudes ~ THREAT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_TRexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_TRexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6689 -1.5991  0.2306  1.8009  3.4268 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.003531   0.063677   0.055 0.955779    
## DvR              -1.210103   0.135900  -8.904  < 2e-16 ***
## IvDR              0.529604   0.143665   3.686 0.000231 ***
## index_TRexp      -1.169856   1.034523  -1.131 0.258222    
## sum.media.exp     0.122579   0.075356   1.627 0.103911    
## DvR:index_TRexp   0.509404   0.114657   4.443 9.19e-06 ***
## IvDR:index_TRexp  0.054731   0.124095   0.441 0.659213    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.0878, Adjusted R-squared:  0.08599 
## F-statistic: 48.68 on 6 and 3035 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_TRexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_TRexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media threat") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_TRexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_TRexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6689 -1.5991  0.2306  1.8009  3.4268 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.78335    0.10435   7.507 7.89e-14 ***
## Rep_1             -1.21010    0.13590  -8.904  < 2e-16 ***
## Ind_1             -1.13466    0.16271  -6.973 3.78e-12 ***
## index_TRexp       -1.40650    1.03380  -1.361    0.174    
## sum.media.exp      0.12258    0.07536   1.627    0.104    
## Rep_1:index_TRexp  0.50940    0.11466   4.443 9.19e-06 ***
## Ind_1:index_TRexp  0.19997    0.13201   1.515    0.130    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.0878, Adjusted R-squared:  0.08599 
## F-statistic: 48.68 on 6 and 3035 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_TRexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_TRexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6689 -1.5991  0.2306  1.8009  3.4268 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.42675    0.09183  -4.647 3.50e-06 ***
## Dem_1              1.21010    0.13590   8.904  < 2e-16 ***
## Ind_1              0.07545    0.15504   0.487   0.6266    
## index_TRexp       -0.89709    1.03510  -0.867   0.3862    
## sum.media.exp      0.12258    0.07536   1.627   0.1039    
## Dem_1:index_TRexp -0.50940    0.11466  -4.443 9.19e-06 ***
## Ind_1:index_TRexp -0.30943    0.14122  -2.191   0.0285 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.0878, Adjusted R-squared:  0.08599 
## F-statistic: 48.68 on 6 and 3035 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_TRexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_TRexp + 
##     sum.media.exp, data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6689 -1.5991  0.2306  1.8009  3.4268 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.35130    0.12600  -2.788  0.00534 ** 
## Rep_1             -0.07545    0.15504  -0.487  0.62656    
## Dem_1              1.13466    0.16271   6.973 3.78e-12 ***
## index_TRexp       -1.20653    1.04285  -1.157  0.24739    
## sum.media.exp      0.12258    0.07536   1.627  0.10391    
## Rep_1:index_TRexp  0.30943    0.14122   2.191  0.02852 *  
## Dem_1:index_TRexp -0.19997    0.13201  -1.515  0.12993    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.064 on 3035 degrees of freedom
##   (269 observations deleted due to missingness)
## Multiple R-squared:  0.0878, Adjusted R-squared:  0.08599 
## F-statistic: 48.68 on 6 and 3035 DF,  p-value: < 2.2e-16

5. ANALYTIC ~ AFFECT * party

a. contrast model

model1.cc <- lm(index_ANexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = index_ANexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.526  -1.874   0.297   1.799  99.938 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -1.1408600  0.1063953 -10.723  < 2e-16 ***
## DvR              -0.9263582  0.2322042  -3.989 6.78e-05 ***
## IvDR             -1.2068607  0.2413420  -5.001 6.04e-07 ***
## index_AFexp      -4.1379970  0.1890828 -21.885  < 2e-16 ***
## sum.media.exp     8.0838849  0.0614576 131.536  < 2e-16 ***
## DvR:index_AFexp   0.0004984  0.0425651   0.012  0.99066    
## IvDR:index_AFexp  0.1308585  0.0456307   2.868  0.00416 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.41 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9978, Adjusted R-squared:  0.9978 
## F-statistic: 2.256e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_ANexp ~ party_factor * index_AFexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("media analytic thinking ") + 
  xlim(0, 15) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

b. simple effects Dem

model1.dem <-  lm(index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.526  -1.874   0.297   1.799  99.938 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -1.0759449  0.1772003  -6.072 1.42e-09 ***
## Rep_1             -0.9263582  0.2322042  -3.989 6.78e-05 ***
## Ind_1              0.7436816  0.2747792   2.706  0.00684 ** 
## index_AFexp       -4.0950629  0.1908416 -21.458  < 2e-16 ***
## sum.media.exp      8.0838849  0.0614576 131.536  < 2e-16 ***
## Rep_1:index_AFexp  0.0004984  0.0425651   0.012  0.99066    
## Ind_1:index_AFexp -0.1306093  0.0486721  -2.683  0.00733 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.41 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9978, Adjusted R-squared:  0.9978 
## F-statistic: 2.256e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.526  -1.874   0.297   1.799  99.938 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -2.0023031  0.1532743 -13.064  < 2e-16 ***
## Dem_1              0.9263582  0.2322042   3.989 6.78e-05 ***
## Ind_1              1.6700398  0.2606678   6.407 1.72e-10 ***
## index_AFexp       -4.0945644  0.1906671 -21.475  < 2e-16 ***
## sum.media.exp      8.0838849  0.0614576 131.536  < 2e-16 ***
## Dem_1:index_AFexp -0.0004984  0.0425651  -0.012   0.9907    
## Ind_1:index_AFexp -0.1311077  0.0519734  -2.523   0.0117 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.41 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9978, Adjusted R-squared:  0.9978 
## F-statistic: 2.256e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.526  -1.874   0.297   1.799  99.938 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.33226    0.21206  -1.567  0.11726    
## Rep_1             -1.67004    0.26067  -6.407 1.72e-10 ***
## Dem_1             -0.74368    0.27478  -2.706  0.00684 ** 
## index_AFexp       -4.22567    0.19178 -22.034  < 2e-16 ***
## sum.media.exp      8.08388    0.06146 131.536  < 2e-16 ***
## Rep_1:index_AFexp  0.13111    0.05197   2.523  0.01170 *  
## Dem_1:index_AFexp  0.13061    0.04867   2.683  0.00733 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.41 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9978, Adjusted R-squared:  0.9978 
## F-statistic: 2.256e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

6. THREAT ~ AFFECT * party

a. contrast model

model1.cc <- lm(index_TRexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = index_TRexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11046 -0.01646  0.00012  0.01302  1.15133 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.0068829  0.0010368  -6.639 3.73e-11 ***
## DvR              -0.0043195  0.0022628  -1.909   0.0564 .  
## IvDR             -0.0106496  0.0023518  -4.528 6.18e-06 ***
## index_AFexp      -0.0442526  0.0018425 -24.017  < 2e-16 ***
## sum.media.exp     0.0870978  0.0005989 145.434  < 2e-16 ***
## DvR:index_AFexp   0.0004849  0.0004148   1.169   0.2424    
## IvDR:index_AFexp  0.0008969  0.0004447   2.017   0.0438 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03323 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9982, Adjusted R-squared:  0.9982 
## F-statistic: 2.757e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_TRexp ~ party_factor * index_AFexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("media threat ") + 
  xlim(0, 15) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

b. simple effects Dem

model1.dem <-  lm(index_TRexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = index_TRexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11046 -0.01646  0.00012  0.01302  1.15133 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.0082375  0.0017268  -4.771 1.92e-06 ***
## Rep_1             -0.0043195  0.0022628  -1.909  0.05636 .  
## Ind_1              0.0084898  0.0026776   3.171  0.00154 ** 
## index_AFexp       -0.0441991  0.0018597 -23.767  < 2e-16 ***
## sum.media.exp      0.0870978  0.0005989 145.434  < 2e-16 ***
## Rep_1:index_AFexp  0.0004849  0.0004148   1.169  0.24244    
## Ind_1:index_AFexp -0.0006544  0.0004743  -1.380  0.16775    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03323 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9982, Adjusted R-squared:  0.9982 
## F-statistic: 2.757e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_TRexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = index_TRexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11046 -0.01646  0.00012  0.01302  1.15133 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.0125570  0.0014936  -8.407  < 2e-16 ***
## Dem_1              0.0043195  0.0022628   1.909   0.0564 .  
## Ind_1              0.0128093  0.0025401   5.043 4.86e-07 ***
## index_AFexp       -0.0437142  0.0018580 -23.528  < 2e-16 ***
## sum.media.exp      0.0870978  0.0005989 145.434  < 2e-16 ***
## Dem_1:index_AFexp -0.0004849  0.0004148  -1.169   0.2424    
## Ind_1:index_AFexp -0.0011394  0.0005065  -2.250   0.0245 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03323 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9982, Adjusted R-squared:  0.9982 
## F-statistic: 2.757e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_TRexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = index_TRexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11046 -0.01646  0.00012  0.01302  1.15133 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.0002523  0.0020665   0.122  0.90283    
## Rep_1             -0.0128093  0.0025401  -5.043 4.86e-07 ***
## Dem_1             -0.0084898  0.0026776  -3.171  0.00154 ** 
## index_AFexp       -0.0448535  0.0018688 -24.001  < 2e-16 ***
## sum.media.exp      0.0870978  0.0005989 145.434  < 2e-16 ***
## Rep_1:index_AFexp  0.0011394  0.0005065   2.250  0.02454 *  
## Dem_1:index_AFexp  0.0006544  0.0004743   1.380  0.16775    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03323 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9982, Adjusted R-squared:  0.9982 
## F-statistic: 2.757e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

7. THREAT ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(index_TRexp ~ (DvR + IvDR) * index_ANexp + sum.media.exp, data = d1)
summary(model1.cc)
## 
## Call:
## lm(formula = index_TRexp ~ (DvR + IvDR) * index_ANexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.081727 -0.009300  0.000370  0.009997  0.290134 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       9.923e-04  6.258e-04   1.586 0.112914    
## DvR               4.569e-03  1.310e-03   3.487 0.000495 ***
## IvDR             -9.715e-04  1.389e-03  -0.700 0.484276    
## index_ANexp       8.249e-03  9.909e-05  83.243  < 2e-16 ***
## sum.media.exp     1.714e-02  6.690e-04  25.623  < 2e-16 ***
## DvR:index_ANexp   1.621e-05  1.196e-05   1.354 0.175708    
## IvDR:index_ANexp -9.642e-06  1.300e-05  -0.742 0.458202    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.01998 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9993, Adjusted R-squared:  0.9993 
## F-statistic: 7.631e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_TRexp ~ party_factor * index_ANexp, data = d1)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("media threat ") + 
  xlim(0, 15) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 51 row(s) containing missing values (geom_path).
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?

b. simple effects Dem

model1.dem <-  lm(index_TRexp ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.dem)
## 
## Call:
## lm(formula = index_TRexp ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.081727 -0.009300  0.000370  0.009997  0.290134 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -1.613e-03  1.012e-03  -1.593 0.111226    
## Rep_1              4.569e-03  1.310e-03   3.487 0.000495 ***
## Ind_1              3.256e-03  1.571e-03   2.072 0.038311 *  
## index_ANexp        8.237e-03  9.885e-05  83.331  < 2e-16 ***
## sum.media.exp      1.714e-02  6.690e-04  25.623  < 2e-16 ***
## Rep_1:index_ANexp  1.621e-05  1.196e-05   1.354 0.175708    
## Ind_1:index_ANexp  1.774e-05  1.382e-05   1.284 0.199331    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.01998 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9993, Adjusted R-squared:  0.9993 
## F-statistic: 7.631e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_TRexp ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.rep)
## 
## Call:
## lm(formula = index_TRexp ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.081727 -0.009300  0.000370  0.009997  0.290134 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.956e-03  9.007e-04   3.282 0.001042 ** 
## Dem_1             -4.569e-03  1.310e-03  -3.487 0.000495 ***
## Ind_1             -1.313e-03  1.499e-03  -0.876 0.381182    
## index_ANexp        8.254e-03  9.917e-05  83.224  < 2e-16 ***
## sum.media.exp      1.714e-02  6.690e-04  25.623  < 2e-16 ***
## Dem_1:index_ANexp -1.621e-05  1.196e-05  -1.354 0.175708    
## Ind_1:index_ANexp  1.539e-06  1.477e-05   0.104 0.917050    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.01998 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9993, Adjusted R-squared:  0.9993 
## F-statistic: 7.631e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_TRexp ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, data = d1)
summary(model1.ind)
## 
## Call:
## lm(formula = index_TRexp ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, 
##     data = d1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.081727 -0.009300  0.000370  0.009997  0.290134 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.643e-03  1.219e-03   1.348   0.1778    
## Rep_1              1.313e-03  1.499e-03   0.876   0.3812    
## Dem_1             -3.256e-03  1.571e-03  -2.072   0.0383 *  
## index_ANexp        8.255e-03  1.002e-04  82.402   <2e-16 ***
## sum.media.exp      1.714e-02  6.690e-04  25.623   <2e-16 ***
## Rep_1:index_ANexp -1.539e-06  1.477e-05  -0.104   0.9170    
## Dem_1:index_ANexp -1.774e-05  1.382e-05  -1.284   0.1993    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.01998 on 3038 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared:  0.9993, Adjusted R-squared:  0.9993 
## F-statistic: 7.631e+05 on 6 and 3038 DF,  p-value: < 2.2e-16

II. United Kingdom

1. vaxxAttitudes ~ (AFFECT + ANALYTIC) * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1UK)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * (index_AFexp + index_ANexp) + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1853 -0.9735  0.5113  1.3487  4.4821 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.654818   0.095056   6.889 8.27e-12 ***
## DvR              -0.702085   0.197342  -3.558 0.000386 ***
## IvDR              0.342483   0.186750   1.834 0.066867 .  
## index_AFexp      -2.543045   0.639094  -3.979 7.25e-05 ***
## index_ANexp      -0.115258   0.025051  -4.601 4.56e-06 ***
## sum.media.exp     2.562079   0.365673   7.006 3.69e-12 ***
## DvR:index_AFexp   3.168158   1.039661   3.047 0.002350 ** 
## DvR:index_ANexp  -0.129760   0.044119  -2.941 0.003321 ** 
## IvDR:index_AFexp -0.245864   1.131145  -0.217 0.827959    
## IvDR:index_ANexp  0.009208   0.048199   0.191 0.848520    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.758 on 1492 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.06491,    Adjusted R-squared:  0.05926 
## F-statistic: 11.51 on 9 and 1492 DF,  p-value: < 2.2e-16

plot

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d1UK)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

m1 <- lm(vaxxAttitudes ~ party_factor * (index_AFexp + index_ANexp), data = d1UK)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1UK)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1853 -0.9735  0.5113  1.3487  4.4821 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.11888    0.11292   9.909  < 2e-16 ***
## Rep_1             -0.70208    0.19734  -3.558 0.000386 ***
## Ind_1             -0.69353    0.18750  -3.699 0.000224 ***
## index_AFexp       -4.20826    0.65057  -6.469 1.34e-10 ***
## index_ANexp       -0.04734    0.02670  -1.773 0.076396 .  
## sum.media.exp      2.56208    0.36567   7.006 3.69e-12 ***
## Rep_1:index_AFexp  3.16816    1.03966   3.047 0.002350 ** 
## Rep_1:index_ANexp -0.12976    0.04412  -2.941 0.003321 ** 
## Ind_1:index_AFexp  1.82994    1.12915   1.621 0.105307    
## Ind_1:index_ANexp -0.07409    0.04807  -1.541 0.123476    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.758 on 1492 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.06491,    Adjusted R-squared:  0.05926 
## F-statistic: 11.51 on 9 and 1492 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1UK)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1853 -0.9735  0.5113  1.3487  4.4821 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.416795   0.178557   2.334 0.019715 *  
## Dem_1              0.702085   0.197342   3.558 0.000386 ***
## Ind_1              0.008559   0.232525   0.037 0.970641    
## index_AFexp       -1.040101   1.006512  -1.033 0.301598    
## index_ANexp       -0.177100   0.040556  -4.367 1.35e-05 ***
## sum.media.exp      2.562079   0.365673   7.006 3.69e-12 ***
## Dem_1:index_AFexp -3.168158   1.039661  -3.047 0.002350 ** 
## Dem_1:index_ANexp  0.129760   0.044119   2.941 0.003321 ** 
## Ind_1:index_AFexp -1.338215   1.350720  -0.991 0.321972    
## Ind_1:index_ANexp  0.055672   0.057521   0.968 0.333276    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.758 on 1492 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.06491,    Adjusted R-squared:  0.05926 
## F-statistic: 11.51 on 9 and 1492 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + index_ANexp) + sum.media.exp, data = d1UK)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * (index_AFexp + 
##     index_ANexp) + sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1853 -0.9735  0.5113  1.3487  4.4821 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.425355   0.158759   2.679 0.007460 ** 
## Rep_1             -0.008559   0.232525  -0.037 0.970641    
## Dem_1              0.693525   0.187498   3.699 0.000224 ***
## index_AFexp       -2.378317   1.088816  -2.184 0.029094 *  
## index_ANexp       -0.121427   0.045309  -2.680 0.007444 ** 
## sum.media.exp      2.562079   0.365673   7.006 3.69e-12 ***
## Rep_1:index_AFexp  1.338215   1.350720   0.991 0.321972    
## Rep_1:index_ANexp -0.055672   0.057521  -0.968 0.333276    
## Dem_1:index_AFexp -1.829943   1.129150  -1.621 0.105307    
## Dem_1:index_ANexp  0.074088   0.048071   1.541 0.123476    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.758 on 1492 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.06491,    Adjusted R-squared:  0.05926 
## F-statistic: 11.51 on 9 and 1492 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_ANexp + sum.media.exp, data = d1UK)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_ANexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9677 -0.9956  0.5035  1.4135  2.5035 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.794239   0.093335   8.510  < 2e-16 ***
## DvR              -0.481645   0.179089  -2.689  0.00724 ** 
## IvDR              0.444366   0.177189   2.508  0.01225 *  
## index_ANexp      -0.096545   0.023091  -4.181 3.07e-05 ***
## sum.media.exp     1.132558   0.260858   4.342 1.51e-05 ***
## DvR:index_ANexp   0.003300   0.001791   1.842  0.06563 .  
## IvDR:index_ANexp -0.001394   0.001945  -0.717  0.47376    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.781 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.03796,    Adjusted R-squared:  0.0341 
## F-statistic: 9.831 on 6 and 1495 DF,  p-value: 1.185e-10

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_ANexp, data = d1UK)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1UK)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_ANexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9677 -0.9956  0.5035  1.4135  2.5035 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.181703   0.110867  10.659  < 2e-16 ***
## Rep_1             -0.481645   0.179089  -2.689 0.007237 ** 
## Ind_1             -0.685189   0.180840  -3.789 0.000157 ***
## index_ANexp       -0.098656   0.023066  -4.277 2.01e-05 ***
## sum.media.exp      1.132558   0.260858   4.342 1.51e-05 ***
## Rep_1:index_ANexp  0.003300   0.001791   1.842 0.065634 .  
## Ind_1:index_ANexp  0.003044   0.001983   1.535 0.125067    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.781 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.03796,    Adjusted R-squared:  0.0341 
## F-statistic: 9.831 on 6 and 1495 DF,  p-value: 1.185e-10

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1UK)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_ANexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9677 -0.9956  0.5035  1.4135  2.5035 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.7000580  0.1641494   4.265 2.13e-05 ***
## Dem_1              0.4816445  0.1790892   2.689  0.00724 ** 
## Ind_1             -0.2035441  0.2147675  -0.948  0.34341    
## index_ANexp       -0.0953551  0.0230229  -4.142 3.64e-05 ***
## sum.media.exp      1.1325582  0.2608575   4.342 1.51e-05 ***
## Dem_1:index_ANexp -0.0033004  0.0017915  -1.842  0.06563 .  
## Ind_1:index_ANexp -0.0002565  0.0022884  -0.112  0.91076    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.781 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.03796,    Adjusted R-squared:  0.0341 
## F-statistic: 9.831 on 6 and 1495 DF,  p-value: 1.185e-10

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, data = d1UK)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_ANexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9677 -0.9956  0.5035  1.4135  2.5035 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.4965139  0.1545376   3.213 0.001342 ** 
## Rep_1              0.2035441  0.2147675   0.948 0.343414    
## Dem_1              0.6851886  0.1808397   3.789 0.000157 ***
## index_ANexp       -0.0956117  0.0232735  -4.108 4.20e-05 ***
## sum.media.exp      1.1325582  0.2608575   4.342 1.51e-05 ***
## Rep_1:index_ANexp  0.0002565  0.0022884   0.112 0.910761    
## Dem_1:index_ANexp -0.0030439  0.0019833  -1.535 0.125067    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.781 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.03796,    Adjusted R-squared:  0.0341 
## F-statistic: 9.831 on 6 and 1495 DF,  p-value: 1.185e-10

3. vaxxAttitudes ~ AFFECT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1331 -0.9781  0.5366  1.3987  2.7756 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.89687    0.08044  11.150  < 2e-16 ***
## DvR              -0.39592    0.17974  -2.203  0.02776 *  
## IvDR              0.47530    0.17646   2.694  0.00715 ** 
## index_AFexp      -3.45326    0.58112  -5.942 3.49e-09 ***
## sum.media.exp     1.69871    0.27876   6.094 1.40e-09 ***
## DvR:index_AFexp   0.10664    0.04225   2.524  0.01170 *  
## IvDR:index_AFexp -0.04720    0.04514  -1.046  0.29592    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.771 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.04962,    Adjusted R-squared:  0.04581 
## F-statistic: 13.01 on 6 and 1495 DF,  p-value: 2.185e-14

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_AFexp, data = d1UK)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_AFexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1331 -0.9781  0.5366  1.3987  2.7756 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.25168    0.10201  12.271  < 2e-16 ***
## Rep_1             -0.39592    0.17974  -2.203 0.027764 *  
## Ind_1             -0.67326    0.18128  -3.714 0.000212 ***
## index_AFexp       -3.52215    0.58343  -6.037 1.98e-09 ***
## sum.media.exp      1.69871    0.27876   6.094 1.40e-09 ***
## Rep_1:index_AFexp  0.10664    0.04225   2.524 0.011702 *  
## Ind_1:index_AFexp  0.10052    0.04619   2.176 0.029684 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.771 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.04962,    Adjusted R-squared:  0.04581 
## F-statistic: 13.01 on 6 and 1495 DF,  p-value: 2.185e-14

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_AFexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1331 -0.9781  0.5366  1.3987  2.7756 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.855759   0.151672   5.642 2.01e-08 ***
## Dem_1              0.395918   0.179737   2.203   0.0278 *  
## Ind_1             -0.277340   0.213461  -1.299   0.1941    
## index_AFexp       -3.415513   0.579014  -5.899 4.52e-09 ***
## sum.media.exp      1.698707   0.278764   6.094 1.40e-09 ***
## Dem_1:index_AFexp -0.106636   0.042247  -2.524   0.0117 *  
## Ind_1:index_AFexp -0.006119   0.053243  -0.115   0.9085    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.771 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.04962,    Adjusted R-squared:  0.04581 
## F-statistic: 13.01 on 6 and 1495 DF,  p-value: 2.185e-14

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_AFexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1331 -0.9781  0.5366  1.3987  2.7756 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.578419   0.151497   3.818 0.000140 ***
## Rep_1              0.277340   0.213461   1.299 0.194058    
## Dem_1              0.673258   0.181279   3.714 0.000212 ***
## index_AFexp       -3.421632   0.582848  -5.871 5.34e-09 ***
## sum.media.exp      1.698707   0.278764   6.094 1.40e-09 ***
## Rep_1:index_AFexp  0.006119   0.053243   0.115 0.908523    
## Dem_1:index_AFexp -0.100518   0.046186  -2.176 0.029684 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.771 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.04962,    Adjusted R-squared:  0.04581 
## F-statistic: 13.01 on 6 and 1495 DF,  p-value: 2.185e-14

3. vaxxAttitudes ~ THREAT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ (DvR + IvDR) * index_TRexp + sum.media.exp, data = d1UK)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (DvR + IvDR) * index_TRexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.040 -1.014  0.553  1.433  2.359 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.01668    0.07922  12.834  < 2e-16 ***
## DvR              -0.36801    0.18186  -2.024 0.043189 *  
## IvDR              0.56079    0.17728   3.163 0.001591 ** 
## index_TRexp       3.25008    0.98249   3.308 0.000962 ***
## sum.media.exp    -0.39717    0.13308  -2.984 0.002888 ** 
## DvR:index_TRexp   0.28576    0.15065   1.897 0.058036 .  
## IvDR:index_TRexp -0.21059    0.16166  -1.303 0.192891    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.786 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.03332,    Adjusted R-squared:  0.02945 
## F-statistic:  8.59 on 6 and 1495 DF,  p-value: 3.345e-09

plot

m1 <- lm(vaxxAttitudes ~ party_factor * index_TRexp, data = d1UK)

plot_model(m1, type = "pred", terms = c("index_TRexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media threat") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <-  lm(vaxxAttitudes ~ (Rep_1 + Ind_1) * index_TRexp + sum.media.exp, data = d1UK)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Ind_1) * index_TRexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.040 -1.014  0.553  1.433  2.359 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.3857     0.1002  13.826  < 2e-16 ***
## Rep_1              -0.3680     0.1819  -2.024  0.04319 *  
## Ind_1              -0.7448     0.1824  -4.083 4.68e-05 ***
## index_TRexp         3.0377     0.9756   3.114  0.00188 ** 
## sum.media.exp      -0.3972     0.1331  -2.984  0.00289 ** 
## Rep_1:index_TRexp   0.2858     0.1506   1.897  0.05804 .  
## Ind_1:index_TRexp   0.3535     0.1651   2.141  0.03243 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.786 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.03332,    Adjusted R-squared:  0.02945 
## F-statistic:  8.59 on 6 and 1495 DF,  p-value: 3.345e-09

c. simple effects Rep

model1.rep <-  lm(vaxxAttitudes ~ (Dem_1 + Ind_1) * index_TRexp + sum.media.exp, data = d1UK)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Dem_1 + Ind_1) * index_TRexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.040 -1.014  0.553  1.433  2.359 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.01774    0.15186   6.702 2.91e-11 ***
## Dem_1              0.36801    0.18186   2.024  0.04319 *  
## Ind_1             -0.37679    0.21474  -1.755  0.07954 .  
## index_TRexp        3.32347    0.99228   3.349  0.00083 ***
## sum.media.exp     -0.39717    0.13308  -2.984  0.00289 ** 
## Dem_1:index_TRexp -0.28576    0.15065  -1.897  0.05804 .  
## Ind_1:index_TRexp  0.06771    0.19069   0.355  0.72259    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.786 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.03332,    Adjusted R-squared:  0.02945 
## F-statistic:  8.59 on 6 and 1495 DF,  p-value: 3.345e-09

d. simple effects Indep

model1.ind <-  lm(vaxxAttitudes ~ (Rep_1 + Dem_1) * index_TRexp + sum.media.exp, data = d1UK)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ (Rep_1 + Dem_1) * index_TRexp + 
##     sum.media.exp, data = d1UK)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.040 -1.014  0.553  1.433  2.359 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.64095    0.15249   4.203 2.79e-05 ***
## Rep_1              0.37679    0.21474   1.755 0.079535 .  
## Dem_1              0.74480    0.18242   4.083 4.68e-05 ***
## index_TRexp        3.39118    0.99423   3.411 0.000665 ***
## sum.media.exp     -0.39717    0.13308  -2.984 0.002888 ** 
## Rep_1:index_TRexp -0.06771    0.19069  -0.355 0.722591    
## Dem_1:index_TRexp -0.35347    0.16509  -2.141 0.032426 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.786 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.03332,    Adjusted R-squared:  0.02945 
## F-statistic:  8.59 on 6 and 1495 DF,  p-value: 3.345e-09

5. ANALYTIC ~ AFFECT * party

a. contrast model

model1.cc <- lm(index_ANexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.cc)
## 
## Call:
## lm(formula = index_ANexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0528 -1.5130  0.0573  1.4144 21.7089 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -2.11426    0.09050 -23.361  < 2e-16 ***
## DvR              -0.83019    0.20223  -4.105 4.26e-05 ***
## IvDR             -1.10769    0.19854  -5.579 2.86e-08 ***
## index_AFexp       1.78442    0.65382   2.729  0.00642 ** 
## sum.media.exp    10.43752    0.31364  33.278  < 2e-16 ***
## DvR:index_AFexp   0.06101    0.04753   1.284  0.19949    
## IvDR:index_AFexp  0.19826    0.05079   3.904 9.90e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.992 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.999,  Adjusted R-squared:  0.999 
## F-statistic: 2.449e+05 on 6 and 1495 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_ANexp ~ party_factor * index_AFexp, data = d1UK)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("media analytic thinking ") + 
  xlim(0, 15) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

b. simple effects Dem

model1.dem <-  lm(index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.dem)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0528 -1.5130  0.0573  1.4144 21.7089 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -2.06471    0.11477 -17.990  < 2e-16 ***
## Rep_1             -0.83019    0.20223  -4.105 4.26e-05 ***
## Ind_1              0.69260    0.20396   3.396 0.000702 ***
## index_AFexp        1.81933    0.65642   2.772 0.005648 ** 
## sum.media.exp     10.43752    0.31364  33.278  < 2e-16 ***
## Rep_1:index_AFexp  0.06101    0.04753   1.284 0.199485    
## Ind_1:index_AFexp -0.16775    0.05196  -3.228 0.001273 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.992 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.999,  Adjusted R-squared:  0.999 
## F-statistic: 2.449e+05 on 6 and 1495 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.rep)
## 
## Call:
## lm(formula = index_ANexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0528 -1.5130  0.0573  1.4144 21.7089 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -2.89490    0.17065 -16.964  < 2e-16 ***
## Dem_1              0.83019    0.20223   4.105 4.26e-05 ***
## Ind_1              1.52279    0.24017   6.340 3.03e-10 ***
## index_AFexp        1.88035    0.65146   2.886  0.00395 ** 
## sum.media.exp     10.43752    0.31364  33.278  < 2e-16 ***
## Dem_1:index_AFexp -0.06101    0.04753  -1.284  0.19949    
## Ind_1:index_AFexp -0.22877    0.05990  -3.819  0.00014 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.992 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.999,  Adjusted R-squared:  0.999 
## F-statistic: 2.449e+05 on 6 and 1495 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.ind)
## 
## Call:
## lm(formula = index_ANexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0528 -1.5130  0.0573  1.4144 21.7089 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -1.37211    0.17045  -8.050 1.68e-15 ***
## Rep_1             -1.52279    0.24017  -6.340 3.03e-10 ***
## Dem_1             -0.69260    0.20396  -3.396 0.000702 ***
## index_AFexp        1.65158    0.65577   2.519 0.011888 *  
## sum.media.exp     10.43752    0.31364  33.278  < 2e-16 ***
## Rep_1:index_AFexp  0.22877    0.05990   3.819 0.000140 ***
## Dem_1:index_AFexp  0.16775    0.05196   3.228 0.001273 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.992 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.999,  Adjusted R-squared:  0.999 
## F-statistic: 2.449e+05 on 6 and 1495 DF,  p-value: < 2.2e-16

6. THREAT ~ AFFECT * party

a. contrast model

model1.cc <- lm(index_TRexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.cc)
## 
## Call:
## lm(formula = index_TRexp ~ (DvR + IvDR) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11150 -0.02333 -0.00069  0.01555  0.69560 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.0162863  0.0015819 -10.295  < 2e-16 ***
## DvR              -0.0107314  0.0035347  -3.036  0.00244 ** 
## IvDR             -0.0089423  0.0034702  -2.577  0.01007 *  
## index_AFexp      -0.4054344  0.0114282 -35.477  < 2e-16 ***
## sum.media.exp     0.3297258  0.0054822  60.145  < 2e-16 ***
## DvR:index_AFexp   0.0006536  0.0008308   0.787  0.43159    
## IvDR:index_AFexp  0.0023812  0.0008878   2.682  0.00739 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03482 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.9979, Adjusted R-squared:  0.9978 
## F-statistic: 1.159e+05 on 6 and 1495 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_TRexp ~ party_factor * index_AFexp, data = d1UK)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("media threat ") + 
  xlim(0, 15) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

b. simple effects Dem

model1.dem <-  lm(index_TRexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.dem)
## 
## Call:
## lm(formula = index_TRexp ~ (Rep_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11150 -0.02333 -0.00069  0.01555  0.69560 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.0138716  0.0020061  -6.915 6.92e-12 ***
## Rep_1             -0.0107314  0.0035347  -3.036  0.00244 ** 
## Ind_1              0.0035766  0.0035650   1.003  0.31590    
## index_AFexp       -0.4049754  0.0114737 -35.296  < 2e-16 ***
## sum.media.exp      0.3297258  0.0054822  60.145  < 2e-16 ***
## Rep_1:index_AFexp  0.0006536  0.0008308   0.787  0.43159    
## Ind_1:index_AFexp -0.0020544  0.0009083  -2.262  0.02385 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03482 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.9979, Adjusted R-squared:  0.9978 
## F-statistic: 1.159e+05 on 6 and 1495 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_TRexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.rep)
## 
## Call:
## lm(formula = index_TRexp ~ (Dem_1 + Ind_1) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11150 -0.02333 -0.00069  0.01555  0.69560 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.0246029  0.0029828  -8.248 3.48e-16 ***
## Dem_1              0.0107314  0.0035347   3.036 0.002439 ** 
## Ind_1              0.0143080  0.0041979   3.408 0.000671 ***
## index_AFexp       -0.4043218  0.0113869 -35.508  < 2e-16 ***
## sum.media.exp      0.3297258  0.0054822  60.145  < 2e-16 ***
## Dem_1:index_AFexp -0.0006536  0.0008308  -0.787 0.431594    
## Ind_1:index_AFexp -0.0027080  0.0010471  -2.586 0.009796 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03482 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.9979, Adjusted R-squared:  0.9978 
## F-statistic: 1.159e+05 on 6 and 1495 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_TRexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, data = d1UK)
summary(model1.ind)
## 
## Call:
## lm(formula = index_TRexp ~ (Rep_1 + Dem_1) * index_AFexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11150 -0.02333 -0.00069  0.01555  0.69560 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -0.0102950  0.0029793  -3.455 0.000565 ***
## Rep_1             -0.0143080  0.0041979  -3.408 0.000671 ***
## Dem_1             -0.0035766  0.0035650  -1.003 0.315903    
## index_AFexp       -0.4070298  0.0114623 -35.510  < 2e-16 ***
## sum.media.exp      0.3297258  0.0054822  60.145  < 2e-16 ***
## Rep_1:index_AFexp  0.0027080  0.0010471   2.586 0.009796 ** 
## Dem_1:index_AFexp  0.0020544  0.0009083   2.262 0.023850 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03482 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.9979, Adjusted R-squared:  0.9978 
## F-statistic: 1.159e+05 on 6 and 1495 DF,  p-value: < 2.2e-16

7. THREAT ~ ANALYTIC * party

a. contrast model

model1.cc <- lm(index_TRexp ~ (DvR + IvDR) * index_ANexp + sum.media.exp, data = d1UK)
summary(model1.cc)
## 
## Call:
## lm(formula = index_TRexp ~ (DvR + IvDR) * index_ANexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.17331 -0.02048 -0.00025  0.02082  0.15157 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.035e-02  2.171e-03   9.373  < 2e-16 ***
## DvR              -4.994e-03  4.165e-03  -1.199 0.230697    
## IvDR              1.374e-02  4.121e-03   3.333 0.000879 ***
## index_ANexp       1.130e-02  5.370e-04  21.034  < 2e-16 ***
## sum.media.exp     7.714e-03  6.067e-03   1.271 0.203790    
## DvR:index_ANexp  -1.664e-04  4.167e-05  -3.994 6.82e-05 ***
## IvDR:index_ANexp -2.542e-05  4.524e-05  -0.562 0.574304    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04143 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.997,  Adjusted R-squared:  0.997 
## F-statistic: 8.18e+04 on 6 and 1495 DF,  p-value: < 2.2e-16

plot

m1 <- lm(index_TRexp ~ party_factor * index_ANexp, data = d1UK)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking") + 
  ylab("media threat ") + 
  xlim(0, 15) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 54 row(s) containing missing values (geom_path).
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?

b. simple effects Dem

model1.dem <-  lm(index_TRexp ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1UK)
summary(model1.dem)
## 
## Call:
## lm(formula = index_TRexp ~ (Rep_1 + Ind_1) * index_ANexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.17331 -0.02048 -0.00025  0.02082  0.15157 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.738e-02  2.579e-03  10.618  < 2e-16 ***
## Rep_1             -4.994e-03  4.165e-03  -1.199 0.230697    
## Ind_1             -1.623e-02  4.206e-03  -3.860 0.000118 ***
## index_ANexp        1.137e-02  5.365e-04  21.196  < 2e-16 ***
## sum.media.exp      7.714e-03  6.067e-03   1.271 0.203790    
## Rep_1:index_ANexp -1.664e-04  4.167e-05  -3.994 6.82e-05 ***
## Ind_1:index_ANexp -5.778e-05  4.613e-05  -1.253 0.210519    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04143 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.997,  Adjusted R-squared:  0.997 
## F-statistic: 8.18e+04 on 6 and 1495 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <-  lm(index_TRexp ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, data = d1UK)
summary(model1.rep)
## 
## Call:
## lm(formula = index_TRexp ~ (Dem_1 + Ind_1) * index_ANexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.17331 -0.02048 -0.00025  0.02082  0.15157 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.238e-02  3.818e-03   5.863 5.59e-09 ***
## Dem_1              4.994e-03  4.165e-03   1.199   0.2307    
## Ind_1             -1.124e-02  4.995e-03  -2.250   0.0246 *  
## index_ANexp        1.120e-02  5.355e-04  20.925  < 2e-16 ***
## sum.media.exp      7.714e-03  6.067e-03   1.271   0.2038    
## Dem_1:index_ANexp  1.664e-04  4.167e-05   3.994 6.82e-05 ***
## Ind_1:index_ANexp  1.086e-04  5.322e-05   2.041   0.0415 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04143 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.997,  Adjusted R-squared:  0.997 
## F-statistic: 8.18e+04 on 6 and 1495 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <-  lm(index_TRexp ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, data = d1UK)
summary(model1.ind)
## 
## Call:
## lm(formula = index_TRexp ~ (Rep_1 + Dem_1) * index_ANexp + sum.media.exp, 
##     data = d1UK)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.17331 -0.02048 -0.00025  0.02082  0.15157 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.114e-02  3.594e-03   3.100 0.001969 ** 
## Rep_1              1.124e-02  4.995e-03   2.250 0.024577 *  
## Dem_1              1.623e-02  4.206e-03   3.860 0.000118 ***
## index_ANexp        1.131e-02  5.413e-04  20.901  < 2e-16 ***
## sum.media.exp      7.714e-03  6.067e-03   1.271 0.203790    
## Rep_1:index_ANexp -1.086e-04  5.322e-05  -2.041 0.041450 *  
## Dem_1:index_ANexp  5.778e-05  4.613e-05   1.253 0.210519    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04143 on 1495 degrees of freedom
##   (18 observations deleted due to missingness)
## Multiple R-squared:  0.997,  Adjusted R-squared:  0.997 
## F-statistic: 8.18e+04 on 6 and 1495 DF,  p-value: < 2.2e-16

III. long by UK + USA models

1. vaxxAttitudes ~ USvUK + ANALYTIC * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ USvUK + (DvR + IvDR) * (index_ANexp), data = dm)

summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * (index_ANexp), 
##     data = dm)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.493 -1.325  0.308  1.600  3.247 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.4435926  0.0483695   9.171  < 2e-16 ***
## USvUK             0.7338275  0.0639625  11.473  < 2e-16 ***
## DvR              -0.9648791  0.1068596  -9.029  < 2e-16 ***
## IvDR              0.4809054  0.1108919   4.337 1.48e-05 ***
## index_ANexp       0.0051812  0.0004673  11.088  < 2e-16 ***
## DvR:index_ANexp   0.0047322  0.0010133   4.670 3.10e-06 ***
## IvDR:index_ANexp  0.0002462  0.0010969   0.224    0.822    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.983 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.095,  Adjusted R-squared:  0.0938 
## F-statistic: 79.37 on 6 and 4537 DF,  p-value: < 2.2e-16

- plot

m1 <- lm(vaxxAttitudes ~  country + index_ANexp * party_factor, data = dm)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

b. simple effects Dem

model1.dem <- lm(vaxxAttitudes ~ USvUK + index_ANexp * (Rep_1 + Ind_1), data = dm)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Rep_1 + Ind_1), 
##     data = dm)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.493 -1.325  0.308  1.600  3.247 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.0847309  0.0723705  14.989  < 2e-16 ***
## USvUK              0.7338275  0.0639625  11.473  < 2e-16 ***
## index_ANexp        0.0028963  0.0006144   4.714 2.50e-06 ***
## Rep_1             -0.9648791  0.1068596  -9.029  < 2e-16 ***
## Ind_1             -0.9633450  0.1219602  -7.899 3.51e-15 ***
## index_ANexp:Rep_1  0.0047322  0.0010133   4.670 3.10e-06 ***
## index_ANexp:Ind_1  0.0021199  0.0011494   1.844   0.0652 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.983 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.095,  Adjusted R-squared:  0.0938 
## F-statistic: 79.37 on 6 and 4537 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(vaxxAttitudes ~ USvUK + index_ANexp * (Dem_1 + Ind_1), data = dm)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Dem_1 + Ind_1), 
##     data = dm)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.493 -1.325  0.308  1.600  3.247 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.1198518  0.0781633   1.533   0.1253    
## USvUK              0.7338275  0.0639625  11.473  < 2e-16 ***
## index_ANexp        0.0076285  0.0008024   9.507  < 2e-16 ***
## Dem_1              0.9648791  0.1068596   9.029  < 2e-16 ***
## Ind_1              0.0015342  0.1242143   0.012   0.9901    
## index_ANexp:Dem_1 -0.0047322  0.0010133  -4.670  3.1e-06 ***
## index_ANexp:Ind_1 -0.0026123  0.0012644  -2.066   0.0389 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.983 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.095,  Adjusted R-squared:  0.0938 
## F-statistic: 79.37 on 6 and 4537 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(vaxxAttitudes ~ USvUK + index_ANexp * (Dem_1 + Rep_1), data = dm)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_ANexp * (Dem_1 + Rep_1), 
##     data = dm)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.493 -1.325  0.308  1.600  3.247 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.1213860  0.0980091   1.239   0.2156    
## USvUK              0.7338275  0.0639625  11.473  < 2e-16 ***
## index_ANexp        0.0050162  0.0009758   5.141 2.85e-07 ***
## Dem_1              0.9633450  0.1219602   7.899 3.51e-15 ***
## Rep_1             -0.0015342  0.1242143  -0.012   0.9901    
## index_ANexp:Dem_1 -0.0021199  0.0011494  -1.844   0.0652 .  
## index_ANexp:Rep_1  0.0026123  0.0012644   2.066   0.0389 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.983 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.095,  Adjusted R-squared:  0.0938 
## F-statistic: 79.37 on 6 and 4537 DF,  p-value: < 2.2e-16

2. vaxxAttitudes ~ USvUK + AFFECT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ USvUK + (DvR + IvDR) * index_AFexp, data = dm)

summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * index_AFexp, 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4739 -1.3336  0.3102  1.5933  3.3070 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.426820   0.048649   8.773  < 2e-16 ***
## USvUK             0.795842   0.064942  12.255  < 2e-16 ***
## DvR              -0.977148   0.109386  -8.933  < 2e-16 ***
## IvDR              0.462552   0.112105   4.126 3.76e-05 ***
## index_AFexp       0.113613   0.009970  11.396  < 2e-16 ***
## DvR:index_AFexp   0.101966   0.021586   4.724 2.39e-06 ***
## IvDR:index_AFexp  0.008532   0.023087   0.370    0.712    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.982 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09644,    Adjusted R-squared:  0.09524 
## F-statistic: 80.71 on 6 and 4537 DF,  p-value: < 2.2e-16

- plot

m1 <- lm(vaxxAttitudes ~  USvUK + index_AFexp * party_factor, data = dm)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lm(vaxxAttitudes ~ USvUK + index_AFexp * (Rep_1 + Ind_1), data = dm)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Rep_1 + Ind_1), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4739 -1.3336  0.3102  1.5933  3.3070 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.06804    0.07323  14.584  < 2e-16 ***
## USvUK              0.79584    0.06494  12.255  < 2e-16 ***
## index_AFexp        0.06545    0.01316   4.975 6.78e-07 ***
## Rep_1             -0.97715    0.10939  -8.933  < 2e-16 ***
## Ind_1             -0.95113    0.12318  -7.721 1.41e-14 ***
## index_AFexp:Rep_1  0.10197    0.02159   4.724 2.39e-06 ***
## index_AFexp:Ind_1  0.04245    0.02418   1.756   0.0792 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.982 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09644,    Adjusted R-squared:  0.09524 
## F-statistic: 80.71 on 6 and 4537 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(vaxxAttitudes ~ USvUK + index_AFexp * (Dem_1 + Ind_1), data = dm)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Dem_1 + Ind_1), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4739 -1.3336  0.3102  1.5933  3.3070 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.09089    0.07992   1.137    0.256    
## USvUK              0.79584    0.06494  12.255  < 2e-16 ***
## index_AFexp        0.16741    0.01713   9.772  < 2e-16 ***
## Dem_1              0.97715    0.10939   8.933  < 2e-16 ***
## Ind_1              0.02602    0.12627   0.206    0.837    
## index_AFexp:Dem_1 -0.10197    0.02159  -4.724 2.39e-06 ***
## index_AFexp:Ind_1 -0.05951    0.02673  -2.227    0.026 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.982 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09644,    Adjusted R-squared:  0.09524 
## F-statistic: 80.71 on 6 and 4537 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(vaxxAttitudes ~ USvUK + index_AFexp * (Dem_1 + Rep_1), data = dm)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_AFexp * (Dem_1 + Rep_1), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4739 -1.3336  0.3102  1.5933  3.3070 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.11691    0.09868   1.185   0.2362    
## USvUK              0.79584    0.06494  12.255  < 2e-16 ***
## index_AFexp        0.10790    0.02052   5.257 1.53e-07 ***
## Dem_1              0.95113    0.12318   7.721 1.41e-14 ***
## Rep_1             -0.02602    0.12627  -0.206   0.8367    
## index_AFexp:Dem_1 -0.04245    0.02418  -1.756   0.0792 .  
## index_AFexp:Rep_1  0.05951    0.02673   2.227   0.0260 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.982 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09644,    Adjusted R-squared:  0.09524 
## F-statistic: 80.71 on 6 and 4537 DF,  p-value: < 2.2e-16

3. vaxxAttitudes ~ USvUK + (AFFECT + ANALYTIC) * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ USvUK + (DvR + IvDR) * (index_AFexp + index_ANexp), data = dm)
summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * (index_AFexp + 
##     index_ANexp), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3789 -1.3191  0.3283  1.5755  3.4168 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.422440   0.048903   8.638  < 2e-16 ***
## USvUK             0.868662   0.079933  10.867  < 2e-16 ***
## DvR              -0.979157   0.110588  -8.854  < 2e-16 ***
## IvDR              0.450192   0.112571   3.999 6.46e-05 ***
## index_AFexp       0.235281   0.083341   2.823  0.00478 ** 
## index_ANexp      -0.005711   0.003904  -1.463  0.14362    
## DvR:index_AFexp   0.188111   0.142005   1.325  0.18534    
## DvR:index_ANexp  -0.004159   0.006664  -0.624  0.53258    
## IvDR:index_AFexp  0.067566   0.171463   0.394  0.69356    
## IvDR:index_ANexp -0.002768   0.008144  -0.340  0.73395    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.982 on 4534 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09703,    Adjusted R-squared:  0.09524 
## F-statistic: 54.13 on 9 and 4534 DF,  p-value: < 2.2e-16

- plots

m1 <- lm(vaxxAttitudes ~  USvUK + (index_AFexp + index_ANexp) * party_factor, data = dm)

plot_model(m1, type = "pred", terms = c("index_ANexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media analytic thinking ") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 
## Warning: Removed 3 row(s) containing missing values (geom_path).

m1 <- lm(vaxxAttitudes ~  USvUK + (index_AFexp + index_ANexp) * party_factor, data = dm)

plot_model(m1, type = "pred", terms = c("index_AFexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media affect") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 20) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lm(vaxxAttitudes ~ USvUK + (index_AFexp + index_ANexp) * (Rep_1 + Ind_1), data = dm)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (index_AFexp + index_ANexp) * 
##     (Rep_1 + Ind_1), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3789 -1.3191  0.3283  1.5755  3.4168 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.0605821  0.0733864  14.452  < 2e-16 ***
## USvUK              0.8686621  0.0799326  10.867  < 2e-16 ***
## index_AFexp        0.1635222  0.0918450   1.780   0.0751 .  
## index_ANexp       -0.0045449  0.0042760  -1.063   0.2879    
## Rep_1             -0.9791566  0.1105880  -8.854  < 2e-16 ***
## Ind_1             -0.9397702  0.1234272  -7.614 3.21e-14 ***
## index_AFexp:Rep_1  0.1881106  0.1420046   1.325   0.1853    
## index_AFexp:Ind_1  0.0264892  0.1749487   0.151   0.8797    
## index_ANexp:Rep_1 -0.0041591  0.0066640  -0.624   0.5326    
## index_ANexp:Ind_1  0.0006885  0.0083201   0.083   0.9341    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.982 on 4534 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09703,    Adjusted R-squared:  0.09524 
## F-statistic: 54.13 on 9 and 4534 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(vaxxAttitudes ~ USvUK + (index_AFexp + index_ANexp) * (Dem_1 + Ind_1), data = dm)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (index_AFexp + index_ANexp) * 
##     (Dem_1 + Ind_1), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3789 -1.3191  0.3283  1.5755  3.4168 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.081425   0.081361   1.001  0.31698    
## USvUK              0.868662   0.079933  10.867  < 2e-16 ***
## index_AFexp        0.351633   0.124888   2.816  0.00489 ** 
## index_ANexp       -0.008704   0.005846  -1.489  0.13661    
## Dem_1              0.979157   0.110588   8.854  < 2e-16 ***
## Ind_1              0.039386   0.127377   0.309  0.75717    
## index_AFexp:Dem_1 -0.188111   0.142005  -1.325  0.18534    
## index_AFexp:Ind_1 -0.161621   0.195639  -0.826  0.40878    
## index_ANexp:Dem_1  0.004159   0.006664   0.624  0.53258    
## index_ANexp:Ind_1  0.004848   0.009253   0.524  0.60038    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.982 on 4534 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09703,    Adjusted R-squared:  0.09524 
## F-statistic: 54.13 on 9 and 4534 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(vaxxAttitudes ~ USvUK + (index_AFexp + index_ANexp) * (Dem_1 + Rep_1), data = dm)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (index_AFexp + index_ANexp) * 
##     (Dem_1 + Rep_1), data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3789 -1.3191  0.3283  1.5755  3.4168 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.1208119  0.0987815   1.223    0.221    
## USvUK              0.8686621  0.0799326  10.867  < 2e-16 ***
## index_AFexp        0.1900114  0.1630470   1.165    0.244    
## index_ANexp       -0.0038564  0.0077402  -0.498    0.618    
## Dem_1              0.9397702  0.1234272   7.614 3.21e-14 ***
## Rep_1             -0.0393864  0.1273769  -0.309    0.757    
## index_AFexp:Dem_1 -0.0264892  0.1749487  -0.151    0.880    
## index_AFexp:Rep_1  0.1616215  0.1956395   0.826    0.409    
## index_ANexp:Dem_1 -0.0006885  0.0083201  -0.083    0.934    
## index_ANexp:Rep_1 -0.0048476  0.0092531  -0.524    0.600    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.982 on 4534 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09703,    Adjusted R-squared:  0.09524 
## F-statistic: 54.13 on 9 and 4534 DF,  p-value: < 2.2e-16

4. vaxxAttitudes ~ USvUK + THREAT * party

a. contrast model

model1.cc <- lm(vaxxAttitudes ~ USvUK + (DvR + IvDR) * (index_TRexp), data = dm)

summary(model1.cc)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + (DvR + IvDR) * (index_TRexp), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4706 -1.3219  0.3047  1.6181  3.2533 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.429414   0.049226   8.723  < 2e-16 ***
## USvUK             0.686882   0.063489  10.819  < 2e-16 ***
## DvR              -1.005061   0.107681  -9.334  < 2e-16 ***
## IvDR              0.494632   0.111738   4.427 9.79e-06 ***
## index_TRexp       0.468722   0.041995  11.161  < 2e-16 ***
## DvR:index_TRexp   0.457531   0.091200   5.017 5.45e-07 ***
## IvDR:index_TRexp  0.005454   0.098867   0.055    0.956    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.983 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09539,    Adjusted R-squared:  0.0942 
## F-statistic: 79.74 on 6 and 4537 DF,  p-value: < 2.2e-16

- plot

m1 <- lm(vaxxAttitudes ~  country + index_TRexp * party_factor, data = dm)

plot_model(m1, type = "pred", terms = c("index_TRexp", "party_factor"), 
           color = c("blue", "red", "purple")) + 
  ggtitle("") + 
  xlab("media threat") + 
  ylab("willingness to obtain the Covid-19 vaccine") + 
  xlim(0, 350) +
  theme_minimal()+ 
  labs(color ='partisan identity') 

b. simple effects Dem

model1.dem <- lm(vaxxAttitudes ~ USvUK + index_TRexp * (Rep_1 + Ind_1), data = dm)
summary(model1.dem)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_TRexp * (Rep_1 + Ind_1), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4706 -1.3219  0.3047  1.6181  3.2533 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.09517    0.07352  14.897  < 2e-16 ***
## USvUK              0.68688    0.06349  10.819  < 2e-16 ***
## index_TRexp        0.24176    0.05520   4.379 1.22e-05 ***
## Rep_1             -1.00506    0.10768  -9.334  < 2e-16 ***
## Ind_1             -0.99716    0.12301  -8.106 6.65e-16 ***
## index_TRexp:Rep_1  0.45753    0.09120   5.017 5.45e-07 ***
## index_TRexp:Ind_1  0.22331    0.10367   2.154   0.0313 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.983 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09539,    Adjusted R-squared:  0.0942 
## F-statistic: 79.74 on 6 and 4537 DF,  p-value: < 2.2e-16

c. simple effects Rep

model1.rep <- lm(vaxxAttitudes ~ USvUK + index_TRexp * (Dem_1 + Ind_1), data = dm)
summary(model1.rep)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_TRexp * (Dem_1 + Ind_1), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4706 -1.3219  0.3047  1.6181  3.2533 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.090112   0.079087   1.139   0.2546    
## USvUK              0.686882   0.063489  10.819  < 2e-16 ***
## index_TRexp        0.699288   0.072267   9.676  < 2e-16 ***
## Dem_1              1.005061   0.107681   9.334  < 2e-16 ***
## Ind_1              0.007899   0.125048   0.063   0.9496    
## index_TRexp:Dem_1 -0.457531   0.091200  -5.017 5.45e-07 ***
## index_TRexp:Ind_1 -0.234220   0.113842  -2.057   0.0397 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.983 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09539,    Adjusted R-squared:  0.0942 
## F-statistic: 79.74 on 6 and 4537 DF,  p-value: < 2.2e-16

d. simple effects Indep

model1.ind <- lm(vaxxAttitudes ~ USvUK + index_TRexp * (Dem_1 + Rep_1), data = dm)
summary(model1.ind)
## 
## Call:
## lm(formula = vaxxAttitudes ~ USvUK + index_TRexp * (Dem_1 + Rep_1), 
##     data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4706 -1.3219  0.3047  1.6181  3.2533 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.098011   0.098780   0.992   0.3211    
## USvUK              0.686882   0.063489  10.819  < 2e-16 ***
## index_TRexp        0.465068   0.087862   5.293 1.26e-07 ***
## Dem_1              0.997162   0.123009   8.106 6.65e-16 ***
## Rep_1             -0.007899   0.125048  -0.063   0.9496    
## index_TRexp:Dem_1 -0.223312   0.103672  -2.154   0.0313 *  
## index_TRexp:Rep_1  0.234220   0.113842   2.057   0.0397 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.983 on 4537 degrees of freedom
##   (287 observations deleted due to missingness)
## Multiple R-squared:  0.09539,    Adjusted R-squared:  0.0942 
## F-statistic: 79.74 on 6 and 4537 DF,  p-value: < 2.2e-16