This analysis is for bars in Morgantown, West Virginia
addr <- read.csv("BarMorgantown.csv")
addr <- addr%>%
dplyr::select(names(addr)[c(4,6,14,23:24,41,42)])
results <- st_as_sf(addr, coords=c("Longitude", "Latitude"), crs=4269,agr="constant")
results.proj<-st_transform(results,
crs = 32150)
mv1 <- mapview(results.proj)
mapshot(mv1, file = paste0(getwd(), "/map1.png"))
## PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, please make sure the phantomjs executable can be found via the PATH variable.
mv1
library(tmap)
library(tmaptools)
mean_feature<-apply(st_coordinates(results.proj), MARGIN = 2, FUN = mean)
mean_feature<-data.frame(place="meanfeature", x=mean_feature[1], y= mean_feature[2])
mean_feature<-st_as_sf(mean_feature, coords = c("x", "y"), crs= 32150)
tmap_mode("view")
## tmap mode set to interactive viewing
tm_basemap("OpenStreetMap.Mapnik")+
tm_shape(results.proj, size = .2)+
tm_dots(col = "green")+
tm_shape(mean_feature)+
tm_dots(col = "red", size = .2)
median_feature<-apply(st_coordinates(results.proj),
MARGIN = 2,
FUN = median)
median_feature<-data.frame(place="medianfeature",
x=median_feature[1],
y= median_feature[2])
median_feature<-st_as_sf(median_feature,
coords = c("x", "y"),
crs= 32150)
tmap_mode("view")
## tmap mode set to interactive viewing
tm_basemap("OpenStreetMap.Mapnik")+
tm_shape(results.proj)+
tm_dots(col = "green", size = .2)+
tm_shape(mean_feature)+
tm_dots(col = "red", size=.2)+
tm_shape(median_feature)+
tm_dots(col = "blue", size = .2)
chull <- st_convex_hull(st_union(results))
tmap_mode("view")
## tmap mode set to interactive viewing
tm_basemap("OpenStreetMap.Mapnik")+
tm_shape(results.proj)+
tm_dots(col = "green")+
tm_shape(chull)+
tm_polygons(col = "grey", alpha = .5)
library(SpatialKDE)
grid_groc <- results.proj %>%
create_grid_rectangular(cell_size = 1000, side_offset = 2000)
kde <- results.proj%>%
kde(band_width = 2000, kernel= "quartic", grid = grid_groc)
tm_shape(kde)+
tm_polygons(col = "kde_value", palette= "viridis", title = "Density Estimate")+
tm_shape(results.proj)+
tm_dots()
## Getting data from the 2015-2019 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
spjoin<-st_join(results.proj, mgt_acs2)
head(spjoin)
## Simple feature collection with 6 features and 7 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: 556581.7 ymin: 125256.8 xmax: 560676.8 ymax: 128394
## Projected CRS: NAD83 / West Virginia North
## Business.Name Physical.Address
## 1 Boston Beanery Restaurant and Tavern 383 Patteson Dr
## 2 LongHorn Steakhouse 1427 University Town Centre Dr
## 3 Morgantown Brewing Co 1291 University Ave
## 4 Mountain State Brewing Co 54 Clay St
## 5 Texas Roadhouse 3505 Monongahela Blvd
## 6 Mario's Fishbowl Bar & Grill 3117 University Ave
## Physical.ZIP Corporate.Employee.Size Revenue...Yr GEOID totpop
## 1 26505 $5,018,000 54061012000 5363
## 2 26501 23,724 $4,665,000 54061011200 4695
## 3 26505 $2,718,000 54061010102 5417
## 4 26501 $2,378,000 54061011000 4276
## 5 26505 35,554 $2,262,000 54061010400 4421
## 6 26505 $2,262,000 54061010400 4421
## geometry
## 1 POINT (559867.8 127985.2)
## 2 POINT (556581.7 128225.4)
## 3 POINT (560676.8 125605.3)
## 4 POINT (560373.9 125256.8)
## 5 POINT (558163.4 128394)
## 6 POINT (559606.8 128234.5)
tmap_mode("view")
## tmap mode set to interactive viewing
tm_basemap("OpenStreetMap.Mapnik")+
tm_shape(spjoin, is.master = T)+
tm_dots("totpop", size = .1)+
tm_shape(mgt_acs2)+
tm_polygons(palette = "red", alpha = .1)
mgt_acs2$nbar<- lengths(st_intersects(mgt_acs2, results.proj))
mgt_acs2$bar_pc <- 1000*(mgt_acs2$nbar/mgt_acs2$totpop)
tmap_mode("plot")
## tmap mode set to plotting
m<-tm_basemap("OpenStreetMap.Mapnik")+
tm_shape(mgt_acs2)+
tm_polygons("bar_pc")+
tm_shape(spjoin, is.master = T)+
tm_dots( size = .01)
m
library(spatstat)
bar.pp<-as.ppp(as(results.proj, "Spatial"))
plot(nearest.neighbour(bar.pp))