Universitas Islam Negeri Maulana Malik Ibrahim Malang

Program Studi Teknik Informatika

Pengertian Inflow Outflow Uang Kartal

Banyaknya uang yang beredar di masyarakat akan berpengaruh pada kondisi perekonomian suatu negara. Bank Indonesia memiliki tujuan tunggal untuk mencapai dan menjaga kestabilan nilai rupiah. Oleh karena itu, BI sebagai bank sentral menyusun perencanaan untuk memenuhi kebutuhan uang rupiah. Perencanaan tersebut dapat dilakukan dengan melakukan peramalan untuk inflow dan outflow uang kartal. Inflow merupakan uang yang masuk ke BI melalui kegiatan penyetoran, sedangkan outflow merupakan uang yang keluar dari BI melalui kegiatan penarikan.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowpertahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 11 x 13
##    tahun ...2  Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dbl> <lgl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1  2011 NA      57900.  2308.           23238.            9385.  3012.
##  2  2012 NA      65911.  2620.           25981.           11192.  4447.
##  3  2013 NA      98369. 36337.           18120.           14056.  8933.
##  4  2014 NA      86024.  4567.           30503.           14103.  6358.
##  5  2015 NA      86549.  4710.           30254.           13309.  7156.
##  6  2016 NA      97764.  5775.           34427.           14078.  8211.
##  7  2017 NA     103748.  5514.           35617.           15312.  8553.
##  8  2018 NA     117495.  5799.           41769.           15058. 10730.
##  9  2019 NA     133762.  7509.           47112.           14750. 10915.
## 10  2020 NA     109345.  6641.           36609.           10696.  9148.
## 11  2021 NA      89270.  3702.           31840.           10748.  7769.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path = "outflow.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>

1. visualisasi Prediksi Data Inflow Uang Kartal Sumatera Barat Setiap Periode

plot(datainflow$`Sumatera Barat`, type = "l", col = "red")

2. visualisasi Prediksi Data Outflow Uang Kartal Suumatera Barat Setiap Periode

plot(dataoutflow$`Sumatera Barat`, type = "l", col = "blue")

3. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sumatera Barat Setiap Periode

plot(datainflow$`Sumatera Barat`, type = "l", col = "red")
lines(dataoutflow$`Sumatera Barat`, type = "l", col = "blue")

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sumatera Barat Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "Inflowperbulan.xlsx")
datainflowperbulan
## # A tibble: 12 x 12
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## 11 2011-11-01 00:00:00    5670.  287.            1943.             854.  285. 
## 12 2011-12-01 00:00:00    3496.  176.            1608.             513.  161. 
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflowperbulan <- read_excel(path = "DataOutflowBulanan.xlsx")
dataoutflowperbulan
## # A tibble: 12 x 12
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## 11 2011-11-01 00:00:00    5610.  595.            1598.             350.  874.
## 12 2011-12-01 00:00:00   12634.  750.            4140.             734. 2160.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$`Sumatera Barat`, type = "l", col = "blue")
lines(dataoutflowperbulan$`Sumatera Barat`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

SumateraBarattimeseries <- datainflowperbulan$`Sumatera Barat`
plot.ts(SumateraBarattimeseries , type = "l", col = "red")

logSumateraBarat <- log(datainflowperbulan$`Sumatera Barat`)
plot.ts(logSumateraBarat)

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
SumateraBaratSMA3 <- SMA(datainflowperbulan$`Sumatera Barat`,n=3)
plot.ts(SumateraBaratSMA3 )

library(readxl)
SumateraBaratSMA3 <- SMA(datainflowperbulan$`Sumatera Barat`,n=8)
plot.ts(SumateraBaratSMA3 )

library(TTR)
SumateraBaratSMA3 <- SMA(datainflowperbulan$`Sumatera Barat`,n=3)
plot.ts(SumateraBaratSMA3 )

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sumatera Barat

SumateraBaratinflowtimeseries <- ts(datainflowperbulan$`Sumatera Barat`, frequency=12, start=c(2011,1))
SumateraBaratinflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  544.5248  450.0701  849.2939  539.1026  691.9377  592.4192  799.5802
##            Aug       Sep       Oct       Nov       Dec
## 2011  586.3581 2176.2413  787.3761  854.4358  513.2068
SumateraBaratoutflowtimeseries <- ts(dataoutflowperbulan$`Sumatera Barat`, frequency=12, start=c(2011,1))
SumateraBaratoutflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  306.7007  227.7420  347.2337  335.9599  327.7738  399.2404  448.5644
##            Aug       Sep       Oct       Nov       Dec
## 2011 1376.2599  147.7028  298.5722  349.7547  734.2252

Referensi

https://rpubs.com/suhartono-uinmaliki/861286