Universitas Islam Negeri Maulana Malik Ibrahim Malang
Program Studi Teknik Informatika
Banyaknya uang yang beredar di masyarakat akan berpengaruh pada kondisi perekonomian suatu negara. Bank Indonesia memiliki tujuan tunggal untuk mencapai dan menjaga kestabilan nilai rupiah. Oleh karena itu, BI sebagai bank sentral menyusun perencanaan untuk memenuhi kebutuhan uang rupiah. Perencanaan tersebut dapat dilakukan dengan melakukan peramalan untuk inflow dan outflow uang kartal. Inflow merupakan uang yang masuk ke BI melalui kegiatan penyetoran, sedangkan outflow merupakan uang yang keluar dari BI melalui kegiatan penarikan.
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowpertahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 11 x 13
## tahun ...2 Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dbl> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 NA 57900. 2308. 23238. 9385. 3012.
## 2 2012 NA 65911. 2620. 25981. 11192. 4447.
## 3 2013 NA 98369. 36337. 18120. 14056. 8933.
## 4 2014 NA 86024. 4567. 30503. 14103. 6358.
## 5 2015 NA 86549. 4710. 30254. 13309. 7156.
## 6 2016 NA 97764. 5775. 34427. 14078. 8211.
## 7 2017 NA 103748. 5514. 35617. 15312. 8553.
## 8 2018 NA 117495. 5799. 41769. 15058. 10730.
## 9 2019 NA 133762. 7509. 47112. 14750. 10915.
## 10 2020 NA 109345. 6641. 36609. 10696. 9148.
## 11 2021 NA 89270. 3702. 31840. 10748. 7769.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path = "outflow.xlsx")
dataoutflow
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 80092. 6338. 22176. 5300. 12434. 5819.
## 2 2012 85235. 6378. 22495. 6434. 13014. 6966.
## 3 2013 103288. 23278. 19235. 6511. 15460. 8747.
## 4 2014 102338. 8630. 26391. 7060. 15158. 10122.
## 5 2015 109186. 9637. 27877. 7471. 15789. 9803.
## 6 2016 121992. 11311. 31959. 9198. 17645. 10068.
## 7 2017 133606. 11760. 35243. 10754. 18128. 10749.
## 8 2018 135676. 11450. 36908. 8447. 17926. 12597.
## 9 2019 153484. 13087. 44051. 9465. 19277. 12644.
## 10 2020 140589. 12874. 39758. 8763. 19139. 8461.
## 11 2021 86627. 5770. 23453. 5941. 12631. 5128.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
plot(datainflow$`Sumatera Utara`, type = "l", col = "red")
plot(dataoutflow$`Sumatera Utara`, type = "l", col = "blue")
plot(datainflow$Jambi, type = "l", col = "red")
lines(dataoutflow$Jambi, type = "l", col = "blue")
library(readxl)
datainflowperbulan <- read_excel(path = "Inflowperbulan.xlsx")
datainflowperbulan
## # A tibble: 12 x 12
## Bulan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 4164. 124. 2068. 545. 94.2
## 2 2011-02-01 00:00:00 3338. 115. 1826. 450. 96.4
## 3 2011-03-01 00:00:00 4878. 154. 2028. 849. 288.
## 4 2011-04-01 00:00:00 3157. 122. 1429. 539. 160.
## 5 2011-05-01 00:00:00 3821. 123. 1539. 692. 195.
## 6 2011-06-01 00:00:00 3686. 151. 1637. 592. 101.
## 7 2011-07-01 00:00:00 4370. 107. 1791. 800. 143.
## 8 2011-08-01 00:00:00 3668. 184. 1256. 586. 134.
## 9 2011-09-01 00:00:00 12875. 606. 4172. 2176. 1014.
## 10 2011-10-01 00:00:00 4777. 158. 1941. 787. 341.
## 11 2011-11-01 00:00:00 5670. 287. 1943. 854. 285.
## 12 2011-12-01 00:00:00 3496. 176. 1608. 513. 161.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflowperbulan <- read_excel(path = "DataOutflowBulanan.xlsx")
dataoutflowperbulan
## # A tibble: 12 x 12
## Bulan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 3442. 350. 941. 307. 478.
## 2 2011-02-01 00:00:00 3989. 193. 990. 228. 400.
## 3 2011-03-01 00:00:00 4229. 230. 1209. 347. 621.
## 4 2011-04-01 00:00:00 6721. 529. 1653. 336. 1006.
## 5 2011-05-01 00:00:00 5787. 523. 1465. 328. 1000.
## 6 2011-06-01 00:00:00 7395. 406. 2167. 399. 1366.
## 7 2011-07-01 00:00:00 7154. 958. 1695. 449. 815.
## 8 2011-08-01 00:00:00 16043. 1046. 4104. 1376. 2729.
## 9 2011-09-01 00:00:00 1915. 124. 824. 148. 154.
## 10 2011-10-01 00:00:00 5174. 634. 1392. 299. 830.
## 11 2011-11-01 00:00:00 5610. 595. 1598. 350. 874.
## 12 2011-12-01 00:00:00 12634. 750. 4140. 734. 2160.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$`Sumatera Utara`, type = "l", col = "blue")
lines(dataoutflowperbulan$`Sumatera Utara`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))
SumateraUtaratimeseries <- datainflowperbulan$`Sumatera Utara`
plot.ts(SumateraUtaratimeseries , type = "l", col = "red")
logSumateraUtara <- log(datainflowperbulan$`Sumatera Utara`)
plot.ts(logSumateraUtara)
library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
SumateraUtaraSMA3 <- SMA(datainflowperbulan$`Sumatera Utara`,n=3)
plot.ts(SumateraUtaraSMA3 )
library(readxl)
SumateraUtaraSMA3 <- SMA(datainflowperbulan$`Sumatera Utara`,n=8)
plot.ts(SumateraUtaraSMA3 )
library(TTR)
SumateraUtaraSMA3 <- SMA(datainflowperbulan$`Sumatera Utara`,n=3)
plot.ts(SumateraUtaraSMA3 )
SumateraUtarainflowtimeseries <- ts(datainflowperbulan$`Sumatera Utara`, frequency=12, start=c(2011,1))
SumateraUtarainflowtimeseries
## Jan Feb Mar Apr May Jun Jul Aug
## 2011 2068.324 1826.264 2027.521 1429.155 1539.286 1636.546 1791.168 1255.777
## Sep Oct Nov Dec
## 2011 4171.742 1940.825 1942.864 1608.282
SumateraUtaraoutflowtimeseries <- ts(dataoutflowperbulan$`Sumatera Utara`, frequency=12, start=c(2011,1))
SumateraUtaraoutflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 940.7270 990.2344 1208.7307 1652.7141 1464.7969 2167.0247 1695.1657
## Aug Sep Oct Nov Dec
## 2011 4103.7915 824.0580 1392.1819 1597.5122 4139.5386