Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflowsulampua <- read_excel(path = "inflowsulampua.xlsx")
datainflowsulampua
## # A tibble: 11 x 12
##    Provinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Sulampua       25056. 31011. 63774. 4.16e4 4.03e4 45737. 44126. 52672. 60202.
##  2 Sulawesi Utara  5671.  6635. 21646. 7.37e3 6.29e3  7266.  7044.  7781.  7809.
##  3 Sulawesi Teng~  1563.  1885.  1520. 3.00e3 2.59e3  2665.  2806.  3701.  4042.
##  4 Sulawesi Sela~ 10593. 13702. 17770. 1.94e4 1.96e4 21043. 18803. 21894. 24749.
##  5 Sulawesi Teng~   659.   964.  6093. 2.26e3 2.38e3  3491.  3618.  3632.  4390.
##  6 Sulawesi Barat     0      0      0  0      4.92e1   536.   746.   606.   542.
##  7 Gorontalo          0      0      0  0      0          0      0   1088.  1983.
##  8 Maluku Utara     586.   633. 10273. 1.01e3 1.01e3  1259.  1339.  1530.  1924.
##  9 Maluku          1273.  1147.  4341. 1.78e3 1.79e3  2367.  2484.  3210.  4056.
## 10 Papua           4710.  6047.  2131. 6.79e3 6.10e3  6291.  6353.  8076.  9259.
## 11 Papua Barat        0      0      0  1.17e1 5.18e2   818.   933.  1153.  1448.
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
sulampua2018 <- select(datainflowsulampua, '2018')
sulampua2018
## # A tibble: 11 x 1
##    `2018`
##     <dbl>
##  1 52672.
##  2  7781.
##  3  3701.
##  4 21894.
##  5  3632.
##  6   606.
##  7  1088.
##  8  1530.
##  9  3210.
## 10  8076.
## 11  1153.
library(tidyverse)
sulampuanon2018 <- select(datainflowsulampua, -'2018')
sulampuanon2018
## # A tibble: 11 x 11
##    Provinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2019` `2020`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Sulampua       25056. 31011. 63774. 4.16e4 4.03e4 45737. 44126. 60202. 52812.
##  2 Sulawesi Utara  5671.  6635. 21646. 7.37e3 6.29e3  7266.  7044.  7809.  6324.
##  3 Sulawesi Teng~  1563.  1885.  1520. 3.00e3 2.59e3  2665.  2806.  4042.  3052.
##  4 Sulawesi Sela~ 10593. 13702. 17770. 1.94e4 1.96e4 21043. 18803. 24749. 21551.
##  5 Sulawesi Teng~   659.   964.  6093. 2.26e3 2.38e3  3491.  3618.  4390.  3353.
##  6 Sulawesi Barat     0      0      0  0      4.92e1   536.   746.   542.   329.
##  7 Gorontalo          0      0      0  0      0          0      0   1983.  2227.
##  8 Maluku Utara     586.   633. 10273. 1.01e3 1.01e3  1259.  1339.  1924.  1876.
##  9 Maluku          1273.  1147.  4341. 1.78e3 1.79e3  2367.  2484.  4056.  2909.
## 10 Papua           4710.  6047.  2131. 6.79e3 6.10e3  6291.  6353.  9259.  9556.
## 11 Papua Barat        0      0      0  1.17e1 5.18e2   818.   933.  1448.  1635.
## # ... with 1 more variable: `2021` <dbl>
sulampua2019 <- datainflowsulampua %>% select('2019')
sulampua2019
## # A tibble: 11 x 1
##    `2019`
##     <dbl>
##  1 60202.
##  2  7809.
##  3  4042.
##  4 24749.
##  5  4390.
##  6   542.
##  7  1983.
##  8  1924.
##  9  4056.
## 10  9259.
## 11  1448.
library(dplyr)
sulampuatahun <- datainflowsulampua %>% rename('2022' = '2018')
head(sulampuatahun)
## # A tibble: 6 x 12
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2022` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Sulampua 25056. 31011. 63774. 41607. 4.03e4 45737. 44126. 52672. 60202. 52812.
## 2 Sulawes~  5671.  6635. 21646.  7374. 6.29e3  7266.  7044.  7781.  7809.  6324.
## 3 Sulawes~  1563.  1885.  1520.  3000. 2.59e3  2665.  2806.  3701.  4042.  3052.
## 4 Sulawes~ 10593. 13702. 17770. 19384. 1.96e4 21043. 18803. 21894. 24749. 21551.
## 5 Sulawes~   659.   964.  6093.  2256. 2.38e3  3491.  3618.  3632.  4390.  3353.
## 6 Sulawes~     0      0      0      0  4.92e1   536.   746.   606.   542.   329.
## # ... with 1 more variable: `2021` <dbl>
library(dplyr)
sulampuasulut <- datainflowsulampua %>%
    filter(Provinsi == 'Sulawesi Utara') %>%
    select('2018','2019')
sulampuasulut
## # A tibble: 1 x 2
##   `2018` `2019`
##    <dbl>  <dbl>
## 1  7781.  7809.
library(dplyr)
sulampuaup1 <- datainflowsulampua %>%
  filter(Provinsi == 'Sulawesi Utara', Provinsi == 'Sulawesi Tengah') %>%
  select('2018','2019')
sulampuaup1
## # A tibble: 0 x 2
## # ... with 2 variables: 2018 <dbl>, 2019 <dbl>
str(datainflowsulampua)
## tibble [11 x 12] (S3: tbl_df/tbl/data.frame)
##  $ Provinsi: chr [1:11] "Sulampua" "Sulawesi Utara" "Sulawesi Tengah" "Sulawesi Selatan" ...
##  $ 2011    : num [1:11] 25056 5671 1563 10593 659 ...
##  $ 2012    : num [1:11] 31011 6635 1885 13702 964 ...
##  $ 2013    : num [1:11] 63774 21646 1520 17770 6093 ...
##  $ 2014    : num [1:11] 41607 7374 3000 19384 2256 ...
##  $ 2015    : num [1:11] 40309 6286 2593 19583 2385 ...
##  $ 2016    : num [1:11] 45737 7266 2665 21043 3491 ...
##  $ 2017    : num [1:11] 44126 7044 2806 18803 3618 ...
##  $ 2018    : num [1:11] 52672 7781 3701 21894 3632 ...
##  $ 2019    : num [1:11] 60202 7809 4042 24749 4390 ...
##  $ 2020    : num [1:11] 52812 6324 3052 21551 3353 ...
##  $ 2021    : num [1:11] 45714 4671 2453 18335 3270 ...
str(datainflowsulampua %>% group_by(Provinsi))
## grouped_df [11 x 12] (S3: grouped_df/tbl_df/tbl/data.frame)
##  $ Provinsi: chr [1:11] "Sulampua" "Sulawesi Utara" "Sulawesi Tengah" "Sulawesi Selatan" ...
##  $ 2011    : num [1:11] 25056 5671 1563 10593 659 ...
##  $ 2012    : num [1:11] 31011 6635 1885 13702 964 ...
##  $ 2013    : num [1:11] 63774 21646 1520 17770 6093 ...
##  $ 2014    : num [1:11] 41607 7374 3000 19384 2256 ...
##  $ 2015    : num [1:11] 40309 6286 2593 19583 2385 ...
##  $ 2016    : num [1:11] 45737 7266 2665 21043 3491 ...
##  $ 2017    : num [1:11] 44126 7044 2806 18803 3618 ...
##  $ 2018    : num [1:11] 52672 7781 3701 21894 3632 ...
##  $ 2019    : num [1:11] 60202 7809 4042 24749 4390 ...
##  $ 2020    : num [1:11] 52812 6324 3052 21551 3353 ...
##  $ 2021    : num [1:11] 45714 4671 2453 18335 3270 ...
##  - attr(*, "groups")= tibble [11 x 2] (S3: tbl_df/tbl/data.frame)
##   ..$ Provinsi: chr [1:11] "Gorontalo" "Maluku" "Maluku Utara" "Papua" ...
##   ..$ .rows   : list<int> [1:11] 
##   .. ..$ : int 7
##   .. ..$ : int 9
##   .. ..$ : int 8
##   .. ..$ : int 10
##   .. ..$ : int 11
##   .. ..$ : int 1
##   .. ..$ : int 6
##   .. ..$ : int 4
##   .. ..$ : int 3
##   .. ..$ : int 5
##   .. ..$ : int 2
##   .. ..@ ptype: int(0) 
##   ..- attr(*, ".drop")= logi TRUE
sulampuaup3 <- datainflowsulampua %>%
    group_by(Provinsi)
sulampuaup3
## # A tibble: 11 x 12
## # Groups:   Provinsi [11]
##    Provinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Sulampua       25056. 31011. 63774. 4.16e4 4.03e4 45737. 44126. 52672. 60202.
##  2 Sulawesi Utara  5671.  6635. 21646. 7.37e3 6.29e3  7266.  7044.  7781.  7809.
##  3 Sulawesi Teng~  1563.  1885.  1520. 3.00e3 2.59e3  2665.  2806.  3701.  4042.
##  4 Sulawesi Sela~ 10593. 13702. 17770. 1.94e4 1.96e4 21043. 18803. 21894. 24749.
##  5 Sulawesi Teng~   659.   964.  6093. 2.26e3 2.38e3  3491.  3618.  3632.  4390.
##  6 Sulawesi Barat     0      0      0  0      4.92e1   536.   746.   606.   542.
##  7 Gorontalo          0      0      0  0      0          0      0   1088.  1983.
##  8 Maluku Utara     586.   633. 10273. 1.01e3 1.01e3  1259.  1339.  1530.  1924.
##  9 Maluku          1273.  1147.  4341. 1.78e3 1.79e3  2367.  2484.  3210.  4056.
## 10 Papua           4710.  6047.  2131. 6.79e3 6.10e3  6291.  6353.  8076.  9259.
## 11 Papua Barat        0      0      0  1.17e1 5.18e2   818.   933.  1153.  1448.
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
datainflowsulampua %>%
    filter(Provinsi == 'Sulawesi Utara') %>%
    count('2018', sort = TRUE)
## # A tibble: 1 x 2
##   `"2018"`     n
##   <chr>    <int>
## 1 2018         1
sulampuasulutup1 <- datainflowsulampua %>%
    mutate('2016' = datainflowsulampua$'2017'/2)
sulampuasulutup1 
## # A tibble: 11 x 12
##    Provinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Sulampua       25056. 31011. 63774. 4.16e4 4.03e4 22063. 44126. 52672. 60202.
##  2 Sulawesi Utara  5671.  6635. 21646. 7.37e3 6.29e3  3522.  7044.  7781.  7809.
##  3 Sulawesi Teng~  1563.  1885.  1520. 3.00e3 2.59e3  1403.  2806.  3701.  4042.
##  4 Sulawesi Sela~ 10593. 13702. 17770. 1.94e4 1.96e4  9402. 18803. 21894. 24749.
##  5 Sulawesi Teng~   659.   964.  6093. 2.26e3 2.38e3  1809.  3618.  3632.  4390.
##  6 Sulawesi Barat     0      0      0  0      4.92e1   373.   746.   606.   542.
##  7 Gorontalo          0      0      0  0      0          0      0   1088.  1983.
##  8 Maluku Utara     586.   633. 10273. 1.01e3 1.01e3   669.  1339.  1530.  1924.
##  9 Maluku          1273.  1147.  4341. 1.78e3 1.79e3  1242.  2484.  3210.  4056.
## 10 Papua           4710.  6047.  2131. 6.79e3 6.10e3  3176.  6353.  8076.  9259.
## 11 Papua Barat        0      0      0  1.17e1 5.18e2   467.   933.  1153.  1448.
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
ggplot(data = datainflowsulampua, mapping = aes(x = Provinsi, y = `2018`)) +
  geom_point() +
  theme(axis.text.x = element_text(angle = 90))

Referensi

https://rpubs.com/suhartono-uinmaliki/868598