library(WDI)
hasılat <- WDI(country=c("US", "TR","JP"), indicator=c("GC.REV.XGRT.GD.ZS"), start=1960, end=2020)

names(hasılat) <- c("iso2c", "Ülke", "hasılat", "Sene")

head(hasılat)
##   iso2c  Ülke hasılat Sene
## 1    JP Japan      NA 2020
## 2    JP Japan      NA 2019
## 3    JP Japan      NA 2018
## 4    JP Japan      NA 2017
## 5    JP Japan      NA 2016
## 6    JP Japan      NA 2015
library(ggplot2)
ggplot(hasılat, aes(Sene, hasılat, color=Ülke, linetype=Ülke)) + geom_line()
## Warning: Removed 82 row(s) containing missing values (geom_path).

TR <- cbind(hasılat$hasılat[hasılat$Ülke == "Turkey"], hasılat$Sene[hasılat$Ülke == "Turkey"])
TR <- TR[order(TR[,2]),]
TR
##           [,1] [,2]
##  [1,]       NA 1960
##  [2,]       NA 1961
##  [3,]       NA 1962
##  [4,]       NA 1963
##  [5,]       NA 1964
##  [6,]       NA 1965
##  [7,]       NA 1966
##  [8,]       NA 1967
##  [9,]       NA 1968
## [10,]       NA 1969
## [11,]       NA 1970
## [12,]       NA 1971
## [13,] 16.39571 1972
## [14,] 16.29121 1973
## [15,] 14.44131 1974
## [16,] 16.87868 1975
## [17,] 17.45627 1976
## [18,] 17.69384 1977
## [19,] 18.42089 1978
## [20,] 17.87913 1979
## [21,] 18.07250 1980
## [22,] 18.26984 1981
## [23,]       NA 1982
## [24,] 16.56719 1983
## [25,] 12.32844 1984
## [26,] 13.73538 1985
## [27,] 13.73590 1986
## [28,] 13.88067 1987
## [29,] 13.50711 1988
## [30,] 13.67472 1989
## [31,] 13.65559 1990
## [32,] 14.29936 1991
## [33,] 16.05745 1992
## [34,] 17.85170 1993
## [35,] 19.25937 1994
## [36,] 17.93984 1995
## [37,] 18.33879 1996
## [38,] 21.87729 1997
## [39,] 17.21930 1998
## [40,]       NA 1999
## [41,]       NA 2000
## [42,]       NA 2001
## [43,]       NA 2002
## [44,]       NA 2003
## [45,]       NA 2004
## [46,]       NA 2005
## [47,]       NA 2006
## [48,]       NA 2007
## [49,] 30.83969 2008
## [50,] 31.63349 2009
## [51,] 31.53884 2010
## [52,] 30.66820 2011
## [53,] 30.78838 2012
## [54,] 30.83433 2013
## [55,] 30.33342 2014
## [56,] 30.53091 2015
## [57,] 31.00342 2016
## [58,] 29.48089 2017
## [59,] 30.51964 2018
## [60,] 30.63394 2019
## [61,] 30.38186 2020
TR <- ts(TR[,1], start=min(hasılat$Sene), end=max(hasılat$Sene))

plot(TR, ylab="hasılat", xlab="Sene")

library(dynlm)
## Zorunlu paket yükleniyor: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
Ilkgecikme <- dynlm(TR ~ L(TR, 1))
summary(Ilkgecikme)
## 
## Time series regression with "zooreg" data:
## Start = 1973, End = 2020
## 
## Call:
## dynlm(formula = TR ~ L(TR, 1))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6915 -0.3015  0.1187  0.6005  3.3980 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.69526    0.79903    0.87     0.39    
## L(TR, 1)     0.96975    0.03592   27.00   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.527 on 34 degrees of freedom
##   (14 observations deleted due to missingness)
## Multiple R-squared:  0.9554, Adjusted R-squared:  0.9541 
## F-statistic: 728.7 on 1 and 34 DF,  p-value: < 2.2e-16
Ikincigecikme <- dynlm(TR ~ L(TR, 2))
summary(Ikincigecikme)
## 
## Time series regression with "zooreg" data:
## Start = 1974, End = 2020
## 
## Call:
## dynlm(formula = TR ~ L(TR, 2))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3927 -0.7584 -0.1454  0.5632  3.4567 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.52819    0.79156   1.931   0.0624 .  
## L(TR, 2)     0.94162    0.03604  26.126   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.49 on 32 degrees of freedom
##   (14 observations deleted due to missingness)
## Multiple R-squared:  0.9552, Adjusted R-squared:  0.9538 
## F-statistic: 682.6 on 1 and 32 DF,  p-value: < 2.2e-16
Ucuncugecikme <- dynlm(TR ~ L(TR, 3))
summary(Ucuncugecikme)
## 
## Time series regression with "zooreg" data:
## Start = 1975, End = 2020
## 
## Call:
## dynlm(formula = TR ~ L(TR, 3))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.5099 -0.4763  0.0117  0.7124  4.0553 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.11560    1.03799   2.038   0.0504 .  
## L(TR, 3)     0.91532    0.04772  19.181   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.913 on 30 degrees of freedom
##   (14 observations deleted due to missingness)
## Multiple R-squared:  0.9246, Adjusted R-squared:  0.9221 
## F-statistic: 367.9 on 1 and 30 DF,  p-value: < 2.2e-16
AR10 <- dynlm(TR ~ L(TR, c(1:10)))
summary(AR10)
## 
## Time series regression with "zooreg" data:
## Start = 1993, End = 2020
## 
## Call:
## dynlm(formula = TR ~ L(TR, c(1:10)))
## 
## Residuals:
## ALL 9 residuals are 0: no residual degrees of freedom!
## 
## Coefficients: (2 not defined because of singularities)
##                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)       10.2859        NaN     NaN      NaN
## L(TR, c(1:10))1    0.2481        NaN     NaN      NaN
## L(TR, c(1:10))2   -1.1813        NaN     NaN      NaN
## L(TR, c(1:10))3    1.1446        NaN     NaN      NaN
## L(TR, c(1:10))4   -0.5135        NaN     NaN      NaN
## L(TR, c(1:10))5    2.1935        NaN     NaN      NaN
## L(TR, c(1:10))6   -4.4734        NaN     NaN      NaN
## L(TR, c(1:10))7    1.7489        NaN     NaN      NaN
## L(TR, c(1:10))8    1.4787        NaN     NaN      NaN
## L(TR, c(1:10))9        NA         NA      NA       NA
## L(TR, c(1:10))10       NA         NA      NA       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 8 and 0 DF,  p-value: NA
n<-200

u <- ts(rnorm(n))
v <- ts(rnorm(n))

y <- ts(rep(0,n))
for (t in 2:n){
  y[t]<- y[t-1]+u[t]
}

x <- ts(rep(0,n))
for (t in 2:n){
  x[t]<- x[t-1]+v[t]
}

plot(y,type='l', ylab="y[t-1]+u[t]")

plot(x,type='l', ylab="x[t-1]+v[t]")

Spurious <- lm(y~x)
summary(Spurious)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.4082 -3.3099 -0.9423  3.3274 11.0175 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -7.4053     0.4211  -17.59   <2e-16 ***
## x            -0.7765     0.0673  -11.54   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.484 on 198 degrees of freedom
## Multiple R-squared:  0.402,  Adjusted R-squared:  0.399 
## F-statistic: 133.1 on 1 and 198 DF,  p-value: < 2.2e-16
duragan <- dynlm(d(y) ~ d(x))
summary(duragan)
## 
## Time series regression with "ts" data:
## Start = 2, End = 200
## 
## Call:
## dynlm(formula = d(y) ~ d(x))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.41421 -0.67855 -0.07528  0.64812  2.80565 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.099472   0.068904  -1.444    0.150
## d(x)         0.003962   0.069178   0.057    0.954
## 
## Residual standard error: 0.9711 on 197 degrees of freedom
## Multiple R-squared:  1.665e-05,  Adjusted R-squared:  -0.005059 
## F-statistic: 0.00328 on 1 and 197 DF,  p-value: 0.9544