Introduction

This is the Somalia February Sorghum forecast report. The goal is to assist users in evaluating current forecasts in the context of past forecasts and to translate the forecast component into key assumptions about food security.

The report includes the following key components:

  1. A verbal summary of assumptions based on the statistics in this forecast

  2. Mean Area, Production, and Yield over the years 2010-2020:This provides context for interpreting the grain data

  3. Historical Out of Sample Forecast Error Averaged Over a 10 Year+ Period. We show the Mean Absolute Percent Error (MAPE).

  4. Yield Forecast, (based on February 2022 Precip, NDVI, Et0 ) expressed as percent of mean yield over the period 2012 - 2022.

Assumption Statements

Average Forecast Error For This Point in the Season

At this point in the season historical forecast error, is on average, below 40% for the admin units used in the forecast.


Admin Units Forecast to have Above or Below Average Yields

Of the admin units used in the forecast:

  • 1 are forecast to be severely below average (<50% of average)
  • 12 are forecast to be below average (< 90% of average)
  • 3 are forecast to be average (between 90 to 110% of average)
  • 2 are forecast to be above average (> 110% of average)

Averages are based on the most recent 10 year period of observed yields: (2010-2020)


The forecast identifies severe yield issues (lowest on record) in the following Admin Unit 2-zones: Middle Juba-Bu’aale

The forecast identifies substantially below-average yields (among the lowest 3 on record) in the following Admin Unit 2-zones: Bay-Diinsoor, Bay-Qansax Dheere, Middle Juba-Bu’aale


Summary Figures

Mean area, production, and yields for the years 2010-2020 .



Out of Sample Forecast Error (MAPE)

Mean Absolute Percent Error (MAPE) calculated based on historical out of sample seasonal forecasts. Lower scores indicate greater accuracy. Forecasts are based on model type MODEL1



Yield Forecast for February 2022

Forecast values expressed as percent of Mean Yields over the Years 2010-2020 .

The figure shows predicted percent of mean (center) as well as lower (left) and higher (right) predicted percent of mean intervals.



Static and Dynamic Version of Main Forecast

Roll over the polygon borders to get the district name and % of mean forecast value.

Static Version

This map shows the main % of mean forecast value along with district labels for reference.

Discrete Map

This map shows the main % of mean forecast binned into discrete values. Averages are based on the most recent 10 year period of observed yields: 2012 - 2022

This table shows the forecast percentage of mean values in the above table along with the mean yield values from the first figure.


Table of Mean Yields and Predicted Percent of Mean Values
District % of mean % of mean (low) % of mean (high)
Hargeysa 75 58 91
Gabiley 80 71 89
Jalalaqsi 58 44 71
Marka 72 44 100
Afgooye 82 49 114
Qoryooley 108 88 129
Wanla Weyn 115 94 137
Baydhabo 84 60 107
Buur Hakaba 95 58 132
Diinsoor 70 43 96
Qansax Dheere 80 51 109
Xudur 54 31 78
Tiyeglow 95 54 136
Waajid 79 33 125
Garbahaarey 130 122 138
Baardheere 78 46 111
Bu'aale 35 0 70
Saakow 61 22 101
Afmadow 71 54 88

.
*** –>



  1. Extra/Extended Trees. A type of Random Forest Model↩︎

LS0tCnRpdGxlOiAiRm9yZWNhc3QgUmVwb3J0IHdpdGggQW5hbG9nIFllYXJzLVNvbWFsaWEgT05EIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogeWVzCmZpZ193aWR0aDogNwpmaWdfaGVpZ2h0OiA2CmZpZ19jYXB0aW9uOiB0cnVlCi0tLQoKYGBge3IsZXZhbD1UUlVFLGVjaG89RkFMU0Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFLHJlc3VsdHM9J2hpZGUnfQojLS0tLS0tLS0tLS0tLS0tLS0tLUJhc2UgU2V0dXAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQpybShsaXN0PWxzKCkpCgojLS0tU2V0IFByb2plY3QgRGlyZWN0b3JpZXMKZGlyQmFzZTwtJy9Wb2x1bWVzL0dvb2dsZURyaXZlL015IERyaXZlLycKCmRpckJhc2UyPC0nL1ZvbHVtZXMvR29vZ2xlRHJpdmUvU2hhcmVkIGRyaXZlcy9DSEMgVGVhbSBEcml2ZSAvJwoKIy1Qcm9qZWN0IERpcmVjdG9yaWVzCmRpclByb2o8LXBhc3RlMChkaXJCYXNlMiwncHJvamVjdF9tYWNoaW5lX2xlYXJuaW5nX2ZvcmVjYXN0aW5nLycpICNwcm9qZWN0IGRpcmVjdG9yeQoKZGlyVmlld2VyPC1wYXN0ZTAoZGlyUHJvaiwndmlld2VyLycpCmRpclZpZXdlck91dFN0YXRpYzwtcGFzdGUwKGRpclZpZXdlciwndmlld2VyX3N0YXRpY19zaGFwZXMvJykKZGlyVmlld2VyRHluYW1pYzwtcGFzdGUwKGRpclZpZXdlciwndmlld2VyX2R5bmFtaWNfc2hhcGVzLycpCgpkaXJSZXBvcnQ8LXBhc3RlMChkaXJQcm9qLCdmb3JlY2FzdF9yZXBvcnRpbmcvJykKZGlyUmVwb3J0UmRhdGE8LXBhc3RlMChkaXJSZXBvcnQsJ2ZvcmVjYXN0X3JlcG9ydGluZ19SZGF0YS8nKQoKbGlicmFyeShzdHJpbmdyKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkocmFzdGVyKQpsaWJyYXJ5KHJnZGFsKQpsaWJyYXJ5KG1nY3YpCmxpYnJhcnkodGlkeXIpCmxpYnJhcnkobHVicmlkYXRlKQpsaWJyYXJ5KHNmKQpsaWJyYXJ5KHJtYXBzaGFwZXIpCmxpYnJhcnkodmlyaWRpcykKbGlicmFyeShzY2FsZXMpCmxpYnJhcnkocGxvdGx5KQpsaWJyYXJ5KGZvcmNhdHMpCmxpYnJhcnkoa25pdHIpCmxpYnJhcnkoa2FibGVFeHRyYSkKbGlicmFyeShzaGlueSkKIz09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT0KCiNQYXJhbWV0ZXJzCkNVUlJFTlRfWUVBUjwtMjAyMgpNT05USDwtMgpERUtBRDwtMQpNT0RFTDwtJ0VUJwpDT1VOVFJZPC0nU29tYWxpYScKUFJPRFVDVDwtJ1NvcmdodW0nCiNDUk9QX0FSRUE8LTIgICNQZXJjZW50CkFOQUxPR19ZRUFSUzwtYygxOTk5LDIwMDAsMjAwMSwyMDA4LDIwMDksMjAxMSwyMDEyLDIwMTcpCgptb250aF9uYW1lPC1tb250aC5uYW1lW01PTlRIXSAjbW9udGggdGhlIHByb2R1Y3QgaXMgYmFzZWQgb24KCiMtLUxvYWQgRXhpc3RpbmcgUGxvdHMKc2V0d2QoZGlyUmVwb3J0UmRhdGEpCmxvYWQoZmlsZT1wYXN0ZTAoJzIwX2ZvcmVjYXN0X3JlcG9ydGluZ19tYWluX3Bsb3RzJyxtb250aF9uYW1lLENPVU5UUlksJ18nLFBST0RVQ1QsJy5SZGF0YScpKQpsb2FkKGZpbGU9cGFzdGUwKCcwMV9mb3JlY2FzdF9yZXBvcnRfYWdzdGF0bWFwc18nLENPVU5UUlksJ18nLFBST0RVQ1QsJy5SZGF0YScpKQpgYGAKIyBJbnRyb2R1Y3Rpb24KVGhpcyBpcyB0aGUgYHIgQ09VTlRSWWAgYHIgbW9udGhfbmFtZWAgYHIgUFJPRFVDVGAgZm9yZWNhc3QgcmVwb3J0LiAqKlRoZSBnb2FsIGlzIHRvIGFzc2lzdCB1c2VycyBpbiBldmFsdWF0aW5nIGN1cnJlbnQgZm9yZWNhc3RzIGluIHRoZSBjb250ZXh0IG9mIHBhc3QgZm9yZWNhc3RzKiogYW5kICoqdG8gdHJhbnNsYXRlIHRoZSBmb3JlY2FzdCBjb21wb25lbnQgaW50byBrZXkgYXNzdW1wdGlvbnMgYWJvdXQgZm9vZCBzZWN1cml0eS4qKgoKVGhlIHJlcG9ydCBpbmNsdWRlcyB0aGUgZm9sbG93aW5nIGtleSBjb21wb25lbnRzOgoKMS4gKioqQSB2ZXJiYWwgc3VtbWFyeSBvZiBhc3N1bXB0aW9ucyBiYXNlZCBvbiB0aGUgc3RhdGlzdGljcyBpbiB0aGlzIGZvcmVjYXN0KioqIAoKMi4gKioqTWVhbiBBcmVhLCBQcm9kdWN0aW9uLCBhbmQgWWllbGQgb3ZlciB0aGUgeWVhcnMgMjAxMC0yMDIwOioqKlRoaXMgcHJvdmlkZXMgY29udGV4dCBmb3IgaW50ZXJwcmV0aW5nIHRoZSBncmFpbiBkYXRhCgozLiAqKipIaXN0b3JpY2FsIE91dCBvZiBTYW1wbGUgRm9yZWNhc3QgRXJyb3IgQXZlcmFnZWQgT3ZlciBhIDEwIFllYXIrIFBlcmlvZCoqKi4gV2Ugc2hvdyB0aGUgKioqTSoqKmVhbiAqKipBKioqYnNvbHV0ZSAqKipQKioqZXJjZW50ICoqKkUqKipycm9yICgqKipNQVBFKioqKS4KCjQuICoqKllpZWxkIEZvcmVjYXN0KioqLCAoYmFzZWQgb24gYHIgbGlzX3ZhcnNfcmVwb3J0JG1vbnRoX25hbWVgIGByIGxpc192YXJzX3JlcG9ydCRtYXhfZXZhcl95ZWFyYCBgciBsaXNfdmFyc19yZXBvcnQkdmFyX25hbWVgICkgZXhwcmVzc2VkIGFzICoqcGVyY2VudCBvZiBtZWFuIHlpZWxkKiogb3ZlciB0aGUgcGVyaW9kIGByIGxpc192YXJzX3JlcG9ydCRtaW5fYWdgIC0gYHIgbGlzX3ZhcnNfcmVwb3J0JG1heF9hZ2AuCgo8IS0tIDUuICoqKkZvcmVjYXN0cyBhbmQgRm9yZWNhc3QgRXJyb3IgaW4gQW5hbG9nIFllYXJzKioqIFdlIHNob3cgc3BlY2lmaWMgZm9yZWNhc3RzIGFuZCBmb3JlY2FzdCBlcnJvciBmb3IgeWVhcnMgd2VyZSBjbGltYXRvbG9naWNhbGx5IHNpbWlsYXIgdG8gdGhvc2UgaW4gdGhpcyByZXBvcnQuIC0tPgoKIyBBc3N1bXB0aW9uIFN0YXRlbWVudHMgCiMjIyMgQXZlcmFnZSBGb3JlY2FzdCBFcnJvciBGb3IgVGhpcyBQb2ludCBpbiB0aGUgU2Vhc29uCkF0IHRoaXMgcG9pbnQgaW4gdGhlIHNlYXNvbiAqKipoaXN0b3JpY2FsIGZvcmVjYXN0IGVycm9yLCBpcyBvbiBhdmVyYWdlLCBiZWxvdyA0MCUgZm9yIHRoZSBhZG1pbiB1bml0cyoqKiB1c2VkIGluIHRoZSBmb3JlY2FzdC4KCgoqKioKCiMjIyMgQWRtaW4gVW5pdHMgRm9yZWNhc3QgdG8gaGF2ZSBBYm92ZSBvciBCZWxvdyBBdmVyYWdlIFlpZWxkcwpPZiB0aGUgKioqYWRtaW4gdW5pdHMgdXNlZCBpbiB0aGUgZm9yZWNhc3Q6KioqCgoqIDEgYXJlIGZvcmVjYXN0IHRvIGJlIHNldmVyZWx5IGJlbG93IGF2ZXJhZ2UgKDw1MCUgb2YgYXZlcmFnZSkgIAoqIDEyIGFyZSBmb3JlY2FzdCB0byBiZSBiZWxvdyBhdmVyYWdlICg8IDkwJSBvZiBhdmVyYWdlKSAgCiogMyBhcmUgZm9yZWNhc3QgdG8gYmUgYXZlcmFnZSAoYmV0d2VlbiA5MCB0byAxMTAlIG9mIGF2ZXJhZ2UpICAKKiAyIGFyZSBmb3JlY2FzdCB0byBiZSBhYm92ZSBhdmVyYWdlICg+IDExMCUgb2YgYXZlcmFnZSkgIAoKKipBdmVyYWdlcyoqIGFyZSBiYXNlZCBvbiB0aGUgbW9zdCByZWNlbnQgMTAgeWVhciBwZXJpb2Qgb2Ygb2JzZXJ2ZWQgeWllbGRzOiAoMjAxMC0yMDIwKSA8IS0tYHIgbGlzX3ZhcnNfcmVwb3J0JG1pbl9hZ2AgLSBgciBsaXNfdmFyc19yZXBvcnQkbWF4X2FnYCAtLT4KCioqKiAKCioqKlRoZSBmb3JlY2FzdCBpZGVudGlmaWVzIHNldmVyZSB5aWVsZCBpc3N1ZXMgKGxvd2VzdCBvbiByZWNvcmQpIGluIHRoZSBmb2xsb3dpbmcgQWRtaW4gVW5pdCAyLXpvbmVzOioqKgpNaWRkbGUgSnViYS1CdSdhYWxlCgoqKipUaGUgZm9yZWNhc3QgaWRlbnRpZmllcyBzdWJzdGFudGlhbGx5IGJlbG93LWF2ZXJhZ2UgeWllbGRzIChhbW9uZyB0aGUgbG93ZXN0IDMgb24gcmVjb3JkKSBpbiB0aGUgZm9sbG93aW5nIEFkbWluIFVuaXQgMi16b25lczoqKioKQmF5LURpaW5zb29yLCBCYXktUWFuc2F4IERoZWVyZSwgTWlkZGxlIEp1YmEtQnUnYWFsZQoKCgoqKioKCiMgU3VtbWFyeSBGaWd1cmVzCgojIyMjIE1lYW4gYXJlYSwgcHJvZHVjdGlvbiwgYW5kIHlpZWxkcyBmb3IgdGhlIHllYXJzIDIwMTAtMjAyMCA8IS0tYHIgbGlzX3ZhcnNfcmVwb3J0JG1pbl9hZ2AgdG8gYHIgbGlzX3ZhcnNfcmVwb3J0JG1heF9hZ2AtLT4uCgoqKioKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0V9CnAxYWxsCmBgYAoqKioKCgoKCgojIyMjIE91dCBvZiBTYW1wbGUgRm9yZWNhc3QgRXJyb3IgKE1BUEUpCk1lYW4gQWJzb2x1dGUgUGVyY2VudCBFcnJvciAoTUFQRSkgY2FsY3VsYXRlZCBiYXNlZCBvbiBoaXN0b3JpY2FsIG91dCBvZiBzYW1wbGUgc2Vhc29uYWwgZm9yZWNhc3RzLiAqKkxvd2VyIHNjb3JlcyBpbmRpY2F0ZSBncmVhdGVyIGFjY3VyYWN5KiouIEZvcmVjYXN0cyBhcmUgYmFzZWQgb24gbW9kZWwgdHlwZSBgTU9ERUxgXltFeHRyYS9FeHRlbmRlZCBUcmVlcy4gQSB0eXBlIG9mIFJhbmRvbSBGb3Jlc3QgTW9kZWxdCgoqKioKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0V9CnAyCmBgYAoqKioKCgojIFlpZWxkIEZvcmVjYXN0IGZvciBgciBsaXNfdmFyc19yZXBvcnQkbW9udGhfbmFtZWAgYHIgbGlzX3ZhcnNfcmVwb3J0JG1heF9ldmFyX3llYXJgIApGb3JlY2FzdCB2YWx1ZXMgZXhwcmVzc2VkIGFzIHBlcmNlbnQgb2YgTWVhbiBZaWVsZHMgb3ZlciB0aGUgWWVhcnMgIDIwMTAtMjAyMCA8IS0tYHIgbGlzX3ZhcnNfcmVwb3J0JG1pbl9hZ2AgLSBgciBsaXNfdmFyc19yZXBvcnQkbWF4X2FnYCAtLT4uIAoKVGhlIGZpZ3VyZSBzaG93cyAqKipwcmVkaWN0ZWQgcGVyY2VudCBvZiBtZWFuKioqIChjZW50ZXIpIGFzIHdlbGwgYXMgbG93ZXIgKGxlZnQpIGFuZCBoaWdoZXIgKHJpZ2h0KSAqKipwcmVkaWN0ZWQgcGVyY2VudCBvZiBtZWFuKioqIGludGVydmFscy4KCioqKgpgYGB7cixlY2hvPUZBTFNFLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxmaWcud2lkdGg9OCxmaWcuaGVpZ2h0PTh9CiNwMzwtZ2dwbG90bHkocD1wMyx0b29sdGlwPWMoJ2Rpc3RyaWN0JywncGVyX29mX21lYW4nKSkKcDEKYGBgCioqKgoKIyMjIyBTdGF0aWMgYW5kIER5bmFtaWMgVmVyc2lvbiBvZiBNYWluIEZvcmVjYXN0ClJvbGwgb3ZlciB0aGUgcG9seWdvbiBib3JkZXJzIHRvIGdldCB0aGUgZGlzdHJpY3QgbmFtZSBhbmQgJSBvZiBtZWFuIGZvcmVjYXN0IHZhbHVlLgoKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLGZpZy53aWR0aD04LGZpZy5oZWlnaHQ9OH0KI3AxTHMKcDFMPC1nZ3Bsb3RseShwMUwsdG9vbHRpcD1jKCdhZG1pbjInLCd2YWx1ZScpKSAlPiUgbGF5b3V0KGxlZ2VuZCA9IGxpc3Qob3JpZW50YXRpb24gPSAiaCIsIHggPSAwLjQsIHkgPSAtMC4yKSkKcDFMCmBgYAojIyMjIFN0YXRpYyBWZXJzaW9uClRoaXMgbWFwIHNob3dzIHRoZSBtYWluICUgb2YgbWVhbiBmb3JlY2FzdCB2YWx1ZSBhbG9uZyB3aXRoIGRpc3RyaWN0IGxhYmVscyBmb3IgcmVmZXJlbmNlLgpgYGB7cixlY2hvPUZBTFNFLHdhcm5pbmc9RkFMU0UsbWVzc2FnZT1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsZmlnLndpZHRoPTgsZmlnLmhlaWdodD04fQpwMUxzCgpgYGAKIyMjIyBEaXNjcmV0ZSBNYXAKVGhpcyBtYXAgc2hvd3MgdGhlIG1haW4gJSBvZiBtZWFuIGZvcmVjYXN0IGJpbm5lZCBpbnRvIGRpc2NyZXRlIHZhbHVlcy4gKipBdmVyYWdlcyoqIGFyZSBiYXNlZCBvbiB0aGUgbW9zdCByZWNlbnQgMTAgeWVhciBwZXJpb2Qgb2Ygb2JzZXJ2ZWQgeWllbGRzOiBgciBsaXNfdmFyc19yZXBvcnQkbWluX2FnYCAtIGByIGxpc192YXJzX3JlcG9ydCRtYXhfYWdgCmBgYHtyLGVjaG89RkFMU0Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJyxmaWcud2lkdGg9OCxmaWcuaGVpZ2h0PTh9CnAxTGMKCmBgYAoKIyMjIyBUaGlzIHRhYmxlIHNob3dzIHRoZSBmb3JlY2FzdCBwZXJjZW50YWdlIG9mIG1lYW4gdmFsdWVzIGluIHRoZSBhYm92ZSB0YWJsZSBhbG9uZyB3aXRoIHRoZSBtZWFuIHlpZWxkIHZhbHVlcyBmcm9tIHRoZSBmaXJzdCBmaWd1cmUuIAoqKioKYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0V9CnQxPC1rbml0cjo6a2FibGUoZHRhYiwgY2FwdGlvbiA9ICdUYWJsZSBvZiBNZWFuIFlpZWxkcyBhbmQgUHJlZGljdGVkIFBlcmNlbnQgb2YgTWVhbiBWYWx1ZXMnKQp0MTwta2FibGVfc3R5bGluZyh0MSxib290c3RyYXBfb3B0aW9ucyA9IGMoInN0cmlwZWQiLCAiaG92ZXIiLCJjb25kZW5zZWQiKSkKc2Nyb2xsX2JveCh0MSwgaGVpZ2h0ID0gJzMwMHB4Jywgd2lkdGggPSAnMTAwJScsCiAgYm94X2NzcyA9ICJib3JkZXI6IDFweCBzb2xpZCAjZGRkOyBwYWRkaW5nOiAxcHg7ICIsIGV4dHJhX2NzcyA9IE5VTEwsCiAgZml4ZWRfdGhlYWQgPSBUUlVFKQoKCmBgYAoqKioKCjwhLS0gIyBBbmFsb2cgWWVhciBGb3JlY2FzdHMKWWllbGQgZm9yZWNhc3RzIGluIGFuYWxvZyB5ZWFycy4gPC0tREVTQ1JJUFRJT04gT0YgQU5BTE9HIFlFQVIgUFJPQ0VTUy0tPi4gIAoqKiogLS0+CmBgYHtyLGVjaG89RkFMU0Usd2FybmluZz1GQUxTRSxtZXNzYWdlPUZBTFNFLGZpZy53aWR0aD03LjUsZmlnLmhlaWdodD03LjV9CiNwMwpgYGAKKioqCgo8IS0tICMgQW5hbG9nIFllYXIgRm9yZWNhc3RzIEVycm9ycwpGb3JlY2FzdCBlcnJvcnMgaW4gYW5hbG9nIHllYXJzLiBJZiBvYnNlcnZlZCBkYXRhIGlzIG5vdCBhdmFpbGFibGUgaW4gYSBnaXZlbiB5ZWFyIHdlIGNhbm5vdCBjYWxjdWxhdGUgZm9yZWNhc3QgZXJyb3JzLiBWYWx1ZXMgYXJlIGV4cHJlc3NlZCBhIHBlcmNlbnRhZ2UgIG9mIG9ic2VydmVkIHlpZWxkcyBpbiBhIGdpdmVuIHllYXIgXyh0KV86CgoqKioKJCRcZnJhY3sob2JzZXJ2ZWRfeyh0KX0tZm9yZWNhc3Rfeyh0KX0pfXtvYnNlcnZlZF97KHQpfX0kJAoqKiogCgoqKipQb3NpdGl2ZSAoKykqKiogdmFsdWVzIGluZGljYXRlIGFuIF91bmRlciBwcmVkaWN0aW9uXy4gKioqTmVnYXRpdmUgKC0pKioqIHZhbHVlcyBpbmRpY2F0ZSBhbiBfb3ZlciBwcmVkaWN0aW9uXy4KCioqKiAtLT4KYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0UsZmlnLndpZHRoPTcuNSxmaWcuaGVpZ2h0PTcuNX0KI3A0CmBgYA==