Universitas : UIN MAULANA MALIK IBRAHIM MALANG
Jurusan : Teknik Informatika
Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.
Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara sesama dan non-residen perusahaan, jika orang tua pengendali utama adalah penduduk. Investasi langsung keluar juga disebut investasi langsung di luar negeri.
library(readxl)
datainflow <- read_excel(path = "InflowTahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 12
## Keterangan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara T~`
## <dbl> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 NA NA NA NA NA NA
## 2 2011 NA 10322. 6394. 1803. 2125.
## 3 2012 NA 14613. 8202. 3676. 2735.
## 4 2013 NA 17512. 5066. 7024. 5422.
## 5 2014 NA 20807. 11590. 5704. 3512.
## 6 2015 NA 23008. 13072. 6285. 3651.
## 7 2016 NA 30965. 17914. 8842. 4210.
## 8 2017 NA 30797. 16962. 8383. 5452.
## 9 2018 NA 33866. 18610. 9140. 6116.
## 10 2019 NA 38116. 21422. 9614. 7080.
## 11 2020 NA 29400. 14735. 8007. 6657.
## 12 2021 NA 18892. 7505. 5888. 5498.
## # ... with 6 more variables: Kalimantan <dbl>, `Kalimantan Barat` <dbl>,
## # `Kalimantan Tengah` <dbl>, `Kalimantan Selatan` <dbl>,
## # `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "OutflowTahun.xlsx")
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflow$Keterangan,datainflow$`Nusa Tenggar Timur`,type = "l", col= "steelblue")
## Warning: Unknown or uninitialised column: `Nusa Tenggar Timur`.
plot(dataoutflow$Tahun,dataoutflow$`Nusa Tenggara Timur`,type = "l", col= "red")
plot(datainflow$Keterangan,datainflow$`Nusa Tenggara Timur`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Nusa Tenggara Timur`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("green","steelblue"))
library(readxl)
datainflowperbulan <- read_excel(path = "InflowBulan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan <- read_excel(path = "OutflowBulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 11
## Bulan `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara~`
## <dttm> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 423. 177. 194. 51.9
## 2 2011-02-01 00:00:00 482. 353. 40.9 87.6
## 3 2011-03-01 00:00:00 989. 581. 273. 136.
## 4 2011-04-01 00:00:00 1207. 662. 343. 202.
## 5 2011-05-01 00:00:00 1168. 652. 279. 237.
## 6 2011-06-01 00:00:00 1476. 852. 351. 273.
## 7 2011-07-01 00:00:00 1536. 746. 319. 471.
## 8 2011-08-01 00:00:00 3084. 1888. 796. 400.
## 9 2011-09-01 00:00:00 926. 458. 293. 175.
## 10 2011-10-01 00:00:00 1321. 609. 399. 313.
## # ... with 118 more rows, and 6 more variables: Kalimantan <dbl>,
## # `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflowperbulan$`Nusa Tenggara Timur`, type = "l", col = "steelblue")
lines(dataoutflowperbulan$`Nusa Tenggara Timur`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
NusaTenggaraTimurtimeseries <- datainflowperbulan$`Nusa Tenggara Timur`
plot.ts(NusaTenggaraTimurtimeseries , type = "l", col = "steelblue")
logNusaTenggaraTimur <- log(datainflowperbulan$`Nusa Tenggara Timur`)
plot.ts(logNusaTenggaraTimur)
NusaTenggaraTimurinflowtimeseries <- ts(datainflowperbulan$`Nusa Tenggara Timur`, frequency=12, start=c(2011,1))
NusaTenggaraTimurinflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 354.26063 107.55653 211.94511 153.74315 166.54539 134.87637
## 2012 520.21320 400.40009 210.34596 188.73924 154.61893 96.60459
## 2013 801.40881 468.14313 370.60575 319.01870 440.42204 379.88675
## 2014 764.94069 352.59317 254.29539 317.80736 211.53872 208.86926
## 2015 1003.57525 462.49939 337.90267 165.65073 164.58269 161.86011
## 2016 938.19332 517.69098 376.42180 260.96682 269.40487 207.53591
## 2017 1120.63101 519.97228 448.63576 346.27257 308.70103 193.27340
## 2018 1703.23171 600.88294 406.47359 394.92594 321.63133 641.26316
## 2019 1591.43285 639.34846 469.80295 459.24921 409.80388 688.03614
## 2020 1753.58413 856.39178 571.16203 430.82793 224.02301 500.45272
## 2021 1911.27295 681.14882 799.98672 421.79964 543.41196 466.39242
## Jul Aug Sep Oct Nov Dec
## 2011 133.65718 143.06224 239.39248 168.54496 181.67542 129.89078
## 2012 220.52653 274.83472 181.93113 182.31296 189.99917 114.43033
## 2013 453.22273 1605.77412 157.53141 215.82414 123.90755 86.28982
## 2014 157.17584 359.11464 250.53633 218.97225 225.62940 190.89560
## 2015 396.62382 229.43914 203.60812 160.91339 185.58750 178.98394
## 2016 450.85509 239.97087 253.41094 207.34061 298.38504 189.80322
## 2017 459.94020 426.49634 380.90154 461.89635 444.68785 340.19532
## 2018 427.31607 335.76062 354.67206 394.08679 364.50655 171.24512
## 2019 423.59825 495.38520 559.15997 562.55908 452.12778 329.26325
## 2020 431.96778 370.51267 507.26668 274.42710 502.16352 234.46300
## 2021 370.53350 303.60562
NusaTenggaraTimuroutflowtimeseries <- ts(dataoutflowperbulan$`Nusa Tenggara Timur`, frequency=12, start=c(2011,1))
NusaTenggaraTimuroutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 51.91510 87.59781 136.01796 201.56510 236.52224 273.29844
## 2012 61.53800 86.31504 138.95965 292.04098 266.13409 573.74643
## 2013 219.09854 511.19482 811.83687 658.48083 1184.00468 1245.06907
## 2014 43.76414 83.99365 194.29954 225.19582 226.74739 369.03233
## 2015 92.78045 73.75020 188.91345 322.08068 213.12940 391.00065
## 2016 51.36679 132.18025 149.51999 274.86825 391.98383 1016.82533
## 2017 82.92896 92.31245 174.88381 288.56236 457.64791 1458.41157
## 2018 95.04104 159.98378 270.43119 383.49064 685.81478 1561.66962
## 2019 52.43695 175.90384 225.37134 835.24248 1403.74156 168.86768
## 2020 125.58805 163.95628 301.79361 414.75707 992.36116 513.04723
## 2021 27.95339 70.78477 234.56960 454.31546 913.96864 659.14639
## Jul Aug Sep Oct Nov Dec
## 2011 470.99277 400.35784 174.68559 312.78472 305.78182 1041.59536
## 2012 429.29977 452.29231 293.65808 324.02743 318.01724 1023.57425
## 2013 3250.58324 1359.65636 363.71952 310.32495 335.76712 1274.44525
## 2014 851.35807 156.68564 335.74561 436.57324 500.99421 1243.54670
## 2015 857.88037 383.10786 416.53492 488.09038 527.26013 1575.02774
## 2016 534.49221 397.30898 411.35176 470.21969 423.45521 1398.77162
## 2017 488.35871 473.05707 512.95657 534.98492 657.83076 2346.63703
## 2018 517.10551 567.90837 412.25448 510.72320 405.03786 1985.69075
## 2019 942.50254 565.29566 201.41433 232.50391 575.14916 2359.14106
## 2020 625.02056 737.37943 647.27467 909.56877 770.29300 2154.93862
## 2021 466.15882 645.29648
plot.ts(NusaTenggaraTimurinflowtimeseries)
plot.ts(NusaTenggaraTimuroutflowtimeseries)
NusaTenggaraTimurintimeseriescomponents <- decompose(NusaTenggaraTimurinflowtimeseries)
NusaTenggaraTimurintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2012 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2013 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2014 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2015 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2016 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2017 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2018 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2019 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2020 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## 2021 786.89249 124.29528 -26.97517 -91.17079 -135.22606 -73.52109
## Jul Aug Sep Oct Nov Dec
## 2011 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2012 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2013 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2014 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2015 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2016 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2017 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2018 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2019 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2020 -43.17575 40.49345 -103.54069 -131.26107 -121.76903 -225.04157
## 2021 -43.17575 40.49345
NusaTenggaraTimurouttimeseriescomponents <- decompose(NusaTenggaraTimuroutflowtimeseries)
NusaTenggaraTimurouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2012 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2013 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2014 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2015 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2016 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2017 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2018 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2019 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2020 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## 2021 -483.42723 -414.63979 -289.45441 -156.77080 74.63198 231.33878
## Jul Aug Sep Oct Nov Dec
## 2011 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2012 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2013 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2014 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2015 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2016 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2017 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2018 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2019 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2020 339.61073 -7.67380 -180.35978 -105.80297 -80.70026 1073.24754
## 2021 339.61073 -7.67380
plot(NusaTenggaraTimurintimeseriescomponents$seasonal,type = "l", col = "steelblue")
lines(NusaTenggaraTimurouttimeseriescomponents$seasonal,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
plot(NusaTenggaraTimurintimeseriescomponents$trend,type = "l", col = "green")
lines(NusaTenggaraTimurouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(NusaTenggaraTimurintimeseriescomponents$random ,type = "l", col = "green")
lines(NusaTenggaraTimurouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(NusaTenggaraTimurintimeseriescomponents$figure ,type = "l", col = "green")
lines(NusaTenggaraTimurouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))